Computer Vision
Prof. Dr. Songul Varli

Based on notes of CS231 in Stanford University from Andrej
Karpathy, Fei-Fei Li, Justin Johnson

OPTIMIZATION
REGULARIZATION
DROPOUT

DATA AUGMENTATION
TRANSFER LEARNING

Iraining

Forward it
through the

Back-
mmmd pPropagaie gmmd network
the errors weights

Update the

labeled datQ gmme
network, get

predictions

- SGD

— Momentum
- NAG

— Adagrad
—— Adadelta
— Rmsprop

Optimize (min. or max.) objective/cost function J(0)
Generate error signal that measures difference
between predictions and target values

-1.0 ~05 "
0.5 10710

Use error signal to change the weights and get
more accurate predictions

Subtracting a fraction of the gradient moves you
towards the (local) minimum of the cost function

Ds: ed| O Qramrajchandradeva e-evolution-of-gradient-descend-optimization-algori -4 106a6 d39
17.05.2021

flx,W) =Wz

10 numbers,
> Indicating class
scores

[32x32x%3]
array of numbers 0...1

17.05.2021

f(.’L',W) :W@ 3072x1

10x1 10x3072
\ 10 numbers,
> Indicating class
scores

[32x32x%3]
array of numbers 0...1

parameters, or “weights”

17.05.2021

stretch pixels into single column

02 |-05] 01 | 20 56 1.1 -96.8 | catscore

15913 (21|00 231 4 32 | | 4379 dog score

0 102502 |-03 -1.2 .
input image 24 61.95 ship score

17.05.2021

Going forward: Loss functions/optimization

airplane -3.45 -0.51
automobile ~ —8 . 37 6.04
bird 0.09 5.31
cat 2.9 —4 .22
deer 4 .48 -4.19
dog 8.02 3.58
frog 3.78 4.49
horse 1.06 —4 .37
- -0.36 -2.09

truck ~0.72 _2 .93

TODO:

1. Define a loss function
that quantifies our
unhappiness with the

3.42 scores across the training
4.64 data.

2.65

5 1 1. Come up with a way of

efficiently finding the

2.04 .
parameters that minimize

5.99 the loss function.

-4.34 (optimization)

-1.5

-4.779

0.14

17.05.2021

Loss functions/optimization

Suppose: 3 training examples, 3 classes.
For some W the scores f(x, W) = Wx are:

cat 3.2 1.3
car 5.1 4.9 2.5

frog 1.7 2.0 3.1

Given an example (x;, y;)
where x; is the image and
where y; is the (integer) label,
and using the shorthand for
the scores vector:

s =fl, W)

the SVM loss has the form:

L; = Z max(O, Sj — Sy, t 1)
J#Yi

17.05.2021

Loss functions/optimization

Suppose: 3 training examples, 3 classes.
For some W the scores f(x, W) = Wx are:

cat 3.2 1.3

car 51 4.9 2.5
frog -1.7 2.0 -3.1
Losses: | 2.9

Given an example (x;, y;)
where x; is the image and
where y; is the (integer) label,
and using the shorthand for
the scores vector:

S = f(xil W)

the SVM loss has the form:

L; = Z max(0,s; — Sy, + 1)

J#Yi

=max(0,5.1-3.2+1)
+max(0,-1.7-3.2+ 1)

= max(0, 2.9) + max(0, -3.9)

=29+0

=29

17.05.2021

Loss functions/optimization

Suppose: 3 training examples, 3 classes.
For some W the scores f(x, W) = Wx are:

cat 3.2 1.3
car 51 4.9 2.5
frog -1.7 2.0 -3.1
Losses: 2.9 0

Given an example (x;, y;)
where x; is the image and
where y; is the (integer) label,
and using the shorthand for
the scores vector:

S = f(xil W)

the SVM loss has the form:

L; = Z max(0,s; — Sy, + 1)

J#Yi

=max(0,1.3-4.9+1)
+max(0,2.0-4.9+ 1)

= max(0, -2.6) + max(0, -1.9)

=0+0

=0

17.05.2021

Loss functions/optimization

Suppose: 3 training examples, 3 classes.
For some W the scores f(x, W) = Wx are:

cat 3.2

car 5.1 4.9 2.5
frog -1.7 2.0 -3.1
Losses: 2.9 0 10.9

Given an example (x;,y;)
where x; Is the image and
where y; is the (integer) label,
and using the shorthand for
the scores vector:

S = f(xir W)

the SVM loss has the form:

L; = Z max(0, Sj — Sy, + 1)

J#Yi

=max(0,2.2-(-3.1)+ 1)
+max(0, 2.5-(-3.1) + 1)
= max(0, 5.3) + max(0, 5.6)
=53+5.6

=10.9

17.05.2021

Loss functions/optimization

Suppose: 3 training examples, 3 classes.
For some W the scores f(x, W) = Wx are:

cat 3.2

car 5.1 4.9 2.5
frog -1.7 2.0 -3.1
Losses: 2.9 0 10.9

Given an example (x;,y;)
where x; is the image and
where y; is the (integer) label,
and using the shorthand for
the scores vector:

s = f(x;, W)
the SVM loss has the form:

L; = Z max (0, Sj — Sy, + 1)

J#Yi

and the full training loss is the
mean over all the examples:

1 N
T
N 1:11

L=(2.9+0+10.9)/3 =4.6

17.05.2021

Example numpy Code

L; = 2 max (0, Sj — Sy, T 1)
J#Yi

def L i vectorized(x, y, W):
scores = W.dot(x)
margins = np.maximum(0, scores - scores[y] + 1)
margins[y] = 0
loss 1 = np.sum(margins)
return loss i

17.05.2021

Optimization: Problems with SGD

Our gradients come from
minibatches so they can be noisy!

N
1
L(W) = N E Li(zi,yi, W)
=1

N
1
i=1

https://en.wikipedia.org/wiki/Stochastic gradient descent

17.05.2021

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

Example [edt]

Let's suppose we want to fita straight line §f =wy - waz o a raining set with cbservations (zy, 23, .., 2,) and comesponding estimated responses (i, i, .. .,) USing least
squares. The objective function to be minimized is:

i n Tt

Qu) = E Qi(w) = Z (i - w) = Z{wl +uga; - i)’
=1 i=1 i=1

The [ast line in the above pseudocode for this specific problem will become:

%(ﬂu + gz —)

— 1:' B =
gﬂ(‘wl + wWa; — yi)2

Lh LYl

Wy

th

2wy +wyz; — 4]
2; (wy +wa; —)

ity Wy

Nofe that in each iteration (also called update), only the gradient evaluated at a single point &; instead of evaluating at the set of all samples.

The key difference compared fo standard (Batch) Gradient Descent is that only one piece of data from the dataset is used to calculate the step, and the piece of data is picked
randomly at each step.

https://en.wikipedia.org/wiki/Stochastic gradient descent

17.05.2021

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

SGD + Momentum
SGD

Tip1 = Ty — aV f(xy)

while True:
dx = compute_gradient(x)
X += learning_rate * dx

SGD+Momentum

Ver1 = pv¢ + Vf(xe)
Tt41 = Tt — V41

vX = 0

while True:
dx = compute_gradient(x)
vX = rho * vx + dx
X += learning_rate * vx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

17.05.2021

AdaGrad

grad_squared = 0

while True:
dx = compute_gradient(x)
lgrad_squared += dx * dx
X -= learning_rate * dx / (np.sqgrt(grad_squared) + 1e-7)

Added element-wise scaling of the gradient based on the
historical sum of squares in each dimension

17.05.2021

Adaptive Moment Estimation (ADAM)

Adam (full form)

first_moment = 0
second_moment = 0
for t in range(1l, num_iterations):
dx = compute gradient(x)
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - betal ** t) } .
second_unbias = second_moment / (1 - beta2 ** t) Bias correction

| X -= learning_rate * first_unbias / (np.sgrt(second_unbias) + le-7)) |
AdaGrad / RMSProp

Momentum

Bias correction for the fact that Adam with beta1l = 0.9,
ﬁrSft and second moment beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
estimates start at zero is a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization®, ICLR 2015

17.05.2021

Beyond Training Error

Train Loss Accuracy

175 -~ —e— ftrain

15.0 —e— val

125 0.8

100

07 4
15

50 06

25

00 05 1

7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 1P500 15000 17500 20000

Better optimization algorithms But we really care about error on new
help reduce training loss data - how to reduce the gap?

17.05.2021

Regularization: Add term to loss

L=~Y0 Y, max(0, f(zi W); — f(zi; W)y, + 1) +AR(W)

In common use:
L2 regularization = E(W) =22, Wy, (Weight decay)

L1 regularization R(W) =22 221 [Whil
Elastic net (L1 + L2) R(W) =332, BW¢; + Wil

___]
17.05.2021

Dropout

Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting™, JMLRE 2014

17.05.2021

Regularization: Dropout

p=0.5# probability of keeping a unit active. higher = less dropout

def train_step(X):
“un X contains the data """

forward pass for example 3-layer neural network

H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # first dropout mask
Hl *= Ul # drop!

H2 = np.maximum(©, np.dot(W2, Hl1l) + b2)

U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

backward pass: compute gradients... (not shown)
perform parameter update... (not shown)

Example forward
pass with a
3-layer network
using dropout

17.05.2021

Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear —x—\

has a tail —
\\

s furry —X——— . cat
__—~ score

has claws +/
mischievous

look

1111

17.05.2021

Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
2499 ~ 10'2* possible masks!
Only ~ 1082 atoms in the universe...

17.05.2021

Dropout: Test time

def predict(X):
ensembled forward pass
H1 = np.maximum(©®, np.dot(Wl, X) + bl) * p # NOTE: scale the activations
H2 = np.maximum(0®, np.dot(W2, Hl) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> \We must scale the activations so that for each neuron:
output at test time = expected output at training time

17.05.2021

""" Yanilla Dropout: Not recommended implementation (see notes below) """

p = 0.5 # probability of keeping a unit active, higher = less dropout

def train step(X):
""* X contains the data

forward pass Tor example 3-layer neural network

H1 = np.maximum(@, np.dot(Wl, X) + bl)

Dropout Summary

Hl *= Ul # drop!

Ul = np.random.rand(*H1.shape) < p # 7irst dropoutl mask

"HZ = Np.maximum(u, Np.dot(wZ, H1) + 0Z)

drop in forward pass

H2 *= U2 # drop!

U2 = np.random.rand(*H2.shape) < p # sccond dropout mask

out = np.dot(wW3, H2) + b3

backward pass: compule gradients. ..

perform parameter update... (not
def predict(X):
ensembled Torward pass
H1 = np.maximum(¢, np.dot(Wl, X) + bl)
H2 = pp.maximum(¢, np.dot(W2, H1l) + b2
out = np.dot(W3, H2) + b3

(not shown)
shown)

* p # NOTE: scale the activations
* p # NOTE: scale the activations

scale at test time

17.05.2021

Regularization: Data Augmentation

114 Cat”
Load image
and label
@

Compute
loss

—V

> CNN

17.05.2021

Regularization: Data Augmentation

“Cat”
Load image
and label

T —
.‘\-

Compute

loss
—

—» CNN

T —

Transform image

17.05.2021

Data Augmentation
Horizontal Flips

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

___]
17.05.2021

Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness

___]
17.05.2021

Data Augmentation
Get creative for your problem!

Random mix/combinations of :

- translation

- rotation

- stretching

- shearing,

- lens distortions, ... (go crazy)

___]
17.05.2021

Transfer Learning

“You need a lot of a data if you want to
train/luse CNNs”

Donahue et al, "DeCAF: A Deep Convolutional Activation
Feature for Genenc Visual Recognition”™, ICML 2014

Transfer Learning with CNNs e e S Worors

2014
1. Train on Imagenet

FC-

] e

{3

17.05.2021

Donahue et al, "DeCAF: A Deep Convolutional Activation
Feature for Genenc Visual Recognition”™, ICML 2014

Transfer Learning with CNNs e e S Worors

2014

1. Train on Imagenet 2. Small Dataset (C classes)

Reinitialize
this and train

> Freeze these

i

=t 1SlIgIE| SIISIIE! 1SS 1B IS)ISHIE| SIS |IE
Eii'ﬂii'ﬂ I,I,'n ;;'u ;;'n
2lelg 38 & glgE 2R 23E

17.05.2021

Donahue et al, "DeCAF: A Deep Convolutional Activation
Feature for Genenc Visual Recognition”™, ICML 2014

Transfer Learning with CNNs e e S Worors

2014

1. Train on Imagenet 2. Small Dataset (C classes) 3. Bigger dataset

Reinitialize :
" FC4096 | . . Train these

. this and train

Com 512 \
With bigger

d .

MaxPool ataset, train
HaxFool more layers

Conv 512
> Freeze these
MaxPool
> Freeze these
Conv-izo_ .
"~ Conv-128 Lower learning rate
—— when finetuning;
 Conv64 MaxPool 1/10 of original LR
) is good starting
[image] Em J point

17.05.2021

ImageNet Classification with Deep Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

“AlexNet”
Architecture: Input: 227x227x3 images (224x224 before padding)
° CONV1
First layer: 96 11x11 filters applied at stride 4
- MAX POOL1
o NORM1
c CONV2 Output volume size?
> MAXPOOL2 N-F)/s+1 = (227-11)/4+1 = 55 -> [55x55x96
- +1 = - +1 = ->
NORM (N-F)/s ()/ [55x55x96]
° CONV3
o CONV4 Number of parameters in this layer?
> CONV5 o
. MAX POOL3 (11*11*3)*96 = 35K

17.05.2021

AlexNet

W

conv max pool conv

/ max pool
3X3 3><3
s=2

227%227 X3 P = 0 55X55 X 96 27X%27 X96 P = 2 27X%27 X256

13;;;3 13x13 x384 | - T 13x13x384 | L 13%13 x256 6X6 X256
X

11><11 5><5

17.05.2021

AlexNet

» Deep CNN architecture proposed by Krizhevsky

5 convolutional layers (with pooling and ReLU)
3 fully-connected layers
won ImageNet Large Scale Visual recognition Challenge 2012

top-1 validation error rate of 40.7%

) g 3] 1K N
__ L'.\.-_'-‘-'.. = . ' 3 sy i
3 - N :
T 192 192 128 2048 2048
128\ = - — __
27 , Y.,
N A N3 13 13
N — s, AL
CAT ! '-l‘.\ "
....... 3 " S R T~) \
— . 13 AN 13 dense dense
27 . 3|\ I3
3§ =
192 192 128 Max] .
Max 128 Max pooling 2948 2048
pooling pooling

dense

1000

17.05.2021

AlexNet

o O
O 10
FC FC
0
o o T

4096 4096

