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CIFAR-10

10 labels 

50,000 training images

each image is 32x32x3

10,000 test images.

Dataset: CIFAR-10 



“Programming has Hello World, 

machine learning has MNIST”



Features:

Flatten

784-dim 
vector

MNIST Dataset
(Modified National Institute of Standards and Technology database)

https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology


If we have 6 5x5 filters, we’ll get 6 separate activation map.

We stack these up to get a new image of size 28x28x6



Convolution
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These are the network 

parameters to be learned.

Each filter detects a 

small pattern (3 x 3). 
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Convolution
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Convolution
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Convolution
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Repeat this for each filter
stride=1

Two 4 x 4 images

Forming 2 x 4 x 4 matrix

Feature

Map



Convolution
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Convolution
Color image: RGB 3 channels
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Low level 

features

Mid level 

features

High level 

features



A closer look at convolution operation:

Stride=1

N=input image size

7x7 input image

F=filter size

3x3 filter 

Output will be 5x5



Stride=2

N=input image size

7x7 input image

F=Filter Size

3x3 filter 

Output will be 3x3



Output Size of convolution operation?



In practice: Common to zero pad the border

P=1 (Zero padding with one)

N=input image size

7x7 input image

After zero padding with one

Input image will be 9x9x

F=Filter size

3x3 filter 

Output will be 7x7
(Same size with input image)



Filters of size F x F and   zero padding  (F-1) / 2  will 

preserve the output image size

e.g.  

F=3 ,    Zero padding with  1

F=5 ,    Zero padding with  2



Exercise:

Input image volume= 32x32x3

10 Filters with the size of 5x5x3 with stride 1, pad 2

Output volume size=???



Exercise:

Input image volume= 32x32x3

10 Filters with the size of 5x5x3 with stride 1, pad 2

Output volume size= 32x32x10



Exercise:

Input image volume= 32x32x3

10 Filters with the size of 5x5x3 with stride 1, pad 2

Number of parameters in this layer=???



Exercise:

Input image volume= 32x32x3

10 Filters with the size of 5x5x3 with stride 1, pad 2

Each filter has 5x5x3=75 +1     (+1 bias parameter)

Number of parameters in this layer= 10x76=760 parameters











Max Pooling
• Makes the representation smaller and more manageble
• Operates over each activation map independently
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Why Pooling

⚫ Subsampling pixels will not change the object

Subsampling

bird

bird

We can subsample the pixels to make image smaller

fewer parameters to characterize the image



Max Pooling
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Max Pooling
• Makes the representation smaller and more manageble
• Operates over each activation map independently

Maxpool with 

2x2 filter and 

stride 2

→

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4





Activation Function: Sigmoid

+ Nice interpretation as the firing rate of a neuron

• 0 = not firing at all 

• 1 = fully firing

- Sigmoid neurons saturate and kill gradients, thus NN will barely learn
• when the neuron’s activation are 0 or 1 (saturate)

🙁gradient at these regions almost zero 

🙁almost no signal will flow to its weights 

🙁if initial weights are too large then most neurons would saturate

Takes a real-valued number and 

“squashes” it into range between 

0 and 1. 



Activation Function: tanh

Takes a real-valued number and 

“squashes” it into range between 

-1 and 1. 



Activation Function :ReLu
Rectified Linear Unit

Takes a real-valued number and 

thresholds it at zero

Most Deep Networks use ReLU nowadays 

🙂Trains much faster

• accelerates the convergence of SGD

• due to linear, non-saturating form 

🙂Less expensive operations

• compared to sigmoid/tanh (exponentials etc.)

• implemented by simply thresholding a matrix at zero

🙂More expressive 

🙂Prevents the gradient vanishing problem



Flattening
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Fully Connected 

Feedforward network



Contains neurons that connect to the entire input volume as in 

ordinary Neural Networks

W(10x3072) * x (1x3072) =Activation(1x10)



Neural Network Intro

Demo

How do we train?

4 + 2 = 6 neurons (not counting inputs)

[3 x 4] + [4 x 2] = 20 weights 

4 + 2 = 6 biases

26 learnable parameters

Weights

Activation functions

http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.45430&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false




learning rate

Gradient Descent

Update each element of θ

Matrix notation for all parameters

Recursively apply chain rule though each node

Review of backpropagation

http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-gradient-notes.pdf


One forward pass
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SoftMax Output 

Softmax function

Prior to applying softmax, some vector components could be negative, or greater than 

one; and might not sum to 1; but after applying softmax, each component will be in 

the interval (0,1), and the components will add up to 1, so that they can be interpreted as 

probabilities.
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0.001

exp

→

normalize

→



Today: CNN Architectures
Case Studies

❑ AlexNet

❑ VGG

❑ GoogLeNet

❑ ResNet



ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) winners

❑ The annual “Olympics” of computer vision.

❑ Teams from across the world compete to see who has the best 
computer vision model for tasks such as classification, localization, 
detection, and more. 

❑ 2012 marked the first year where a CNN was used to achieve a top 5 
test error rate of 15.3%. 

❑ The next best entry achieved an error of 26.2%.



ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) winners



ImageNet Classification with Deep Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]  
“AlexNet”

Architecture:
◦ CONV1

◦ MAX POOL1

◦ NORM1

◦ CONV2

◦ MAX POOL2

◦ NORM2

◦ CONV3

◦ CONV4

◦ CONV5

◦ MAX POOL3

◦ FC6

◦ FC7

◦ FC8

Input: 227x227x3 images (224x224 before padding)

First layer: 96 11x11 filters applied at stride 4

Output volume size? 

(N-F)/s+1 = (227-11)/4+1 = 55 -> [55x55x96]

Number of parameters in this layer? 

(11*11*3)*96 = 35K



. . .

max pool max pool

max pool

conv conv

conv conv conv
. . .

AlexNet



AlexNet
➢ Deep CNN architecture proposed by Krizhevsky [Krizhevsky NIPS 2012].

− 5 convolutional layers (with pooling and ReLU)

− 3 fully-connected layers 

− won ImageNet Large Scale Visual recognition Challenge 2012

− top-1 validation error rate of 40.7%



AlexNet

. . .

4096 4096

Softmax
1000

FC FC



VGGNet
Very Deep Convolutional Networks For Large Scale Image 
Recognition - Karen Simonyan and Andrew Zisserman; 2015

❑ The runner-up at the ILSVRC 2014 competition

❑ 140 million parameters

❑ Smaller filters
Only 3x3 CONV filters, stride 1, pad 1
and 2x2 MAX POOL , stride 2

❑ Deeper network
AlexNet: 8 layers 
VGGNet: 16 - 19 layers

❑ VGGNet: 7.3% top 5 error in ILSVRC’14

Input
3x3 conv, 64
3x3 conv, 64
Pool 1/2
3x3 conv, 128
3x3 conv, 128
Pool 1/2
3x3 conv, 256
3x3 conv, 256
Pool 1/2
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool 1/2
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
Pool 1/2
FC 4096
FC 4096
FC 1000
Softmax



VGGNet
Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has the same effective receptive
field as one 7x7 conv layer.

What is the effective receptive field of three 3x3 conv (stride 1) layers?

7x7

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs. 72C2 for C channels per layer



Input memory:  224*224*3=150K params: 0
3x3 conv, 64 memory:  224*224*64=3.2M params: (3*3*3)*64 = 1,728 
3x3 conv, 64 memory:  224*224*64=3.2M params: (3*3*64)*64 = 36,864
Pool memory:  112*112*64=800K params: 0
3x3 conv, 128 memory:  112*112*128=1.6M params: (3*3*64)*128 = 73,728 
3x3 conv, 128 memory:  112*112*128=1.6M params: (3*3*128)*128 = 147,456
Pool memory:  56*56*128=400K params: 0
3x3 conv, 256 memory:  56*56*256=800K params: (3*3*128)*256 = 294,912 
3x3 conv, 256 memory:  56*56*256=800K params: (3*3*256)*256 = 589,824 
3x3 conv, 256 memory:  56*56*256=800K params: (3*3*256)*256 = 589,824
Pool memory:  28*28*256=200K params: 0
3x3 conv, 512 memory:  28*28*512=400K params: (3*3*256)*512 = 1,179,648 
3x3 conv, 512 memory:  28*28*512=400K params: (3*3*512)*512 = 2,359,296 
3x3 conv, 512 memory:  28*28*512=400K params: (3*3*512)*512 = 2,359,296
Pool memory:  14*14*512=100K params: 0
3x3 conv, 512 memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296 
3x3 conv, 512 memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296 
3x3 conv, 512 memory:  14*14*512=100K params: (3*3*512)*512 = 2,359,296
Pool memory:  7*7*512=25K  params: 0
FC 4096 memory:  4096  params: 7*7*512*4096 = 102,760,448
FC 4096 memory:  4096  params: 4096*4096 = 16,777,216
FC 1000 memory:  1000  params: 4096*1000 = 4,096,000

VGG16:

TOTAL memory: 24M * 4 bytes ~= 96MB / image 

TOTAL params: 138M parameters



VGGNet
Details/Retrospectives :

ILSVRC’14 2nd in classification, 1st in localization

Similar training procedure as AlexNet

No Local Response Normalisation (LRN)

Use VGG16 or VGG19 (VGG19 only slightly better, more memory)

Use ensembles for best results

FC7 features generalize well to other tasks

Trained on 4 Nvidia Titan Black GPUs for two to three weeks.



ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) winners



GoogLeNet
Going Deeper with Convolutions - Christian 
Szegedy et al.; 2015

❑ ILSVRC 2014 competition winner

❑ Also significantly deeper than AlexNet

❑ x12 less parameters than AlexNet

❑ Focused on computational efficiency 



• 22 layers

• Efficient “Inception” module - strayed from 

the general approach of simply stacking conv 

and pooling layers on top of each other in a 

sequential structure

• No FC layers

• Only 5 million parameters!

• ILSVRC’14 classification winner (6.7% top 5 

error)

GoogleNet



GoogLeNet
“Inception module”: design a good local network topology 

(network within a network) and then stack these modules on top 

of each other



ResNet



ResNet
Deep Residual Learning for Image Recognition - Kaiming He, 
Xiangyu Zhang, Shaoqing Ren, Jian Sun; 2015

❑ Extremely deep network – 152 layers

❑ Deeper neural networks are more difficult to train.

❑ Deep networks suffer from vanishing and exploding gradients.

❑ Present a residual learning framework to ease the training of 
networks that are substantially deeper than those used previously. 



ResNet

❑ ILSVRC’15 classification winner (3.57% top 
5 error, humans generally hover around a 
5-10% error rate)

❑ Swept all classification and detection 
competitions in ILSVRC’15 and COCO’15!



ResNet
• What happens when we continue stacking deeper layers on a 

convolutional neural network?

• 56-layer model performs worse on both training and test error

-> The deeper model performs worse (not caused by overfitting)!



ResNet
• Hypothesis: The problem is an optimization problem. 

Very deep networks are harder to optimize.

• Solution: Use network layers to fit  residual mapping 
instead of directly trying to fit a desired underlying 
mapping.

• We will use skip connections allowing us to take the 
activation from one layer and feed it into another layer, 
much deeper into the network.

• Use layers to fit residual F(x) = H(x) – x
instead of H(x) directly



ResNet
Residual Block
Input x goes through conv-relu-conv series and gives us F(x). That result is then 
added to the original input x. 

Let’s call that H(x) = F(x) + x. 
In traditional CNNs, H(x) would just be equal to F(x). So, instead of just 
computing that transformation (straight from x to F(x)), we’re computing the 
term that we have to add, F(x), to the input, x. 



ResNet

Full ResNet architecture:

• Stack residual blocks

• Every residual block has two 3x3 conv layers

• Periodically, double # of filters and 
downsample spatially using stride 2 (in each 
dimension)

• Additional conv layer at the beginning

• No FC layers at the end (only FC 1000 to 
output classes)



Accuracy comparison



Keras: The Python Deep Learning library

Keras is a high-level neural networks API, written in Python and capable of 

running on top of TensorFlow, CNTK, or Theano. It was developed with a 

focus on enabling fast experimentation. Being able to go from idea to result

with the least possible delay is key to doing good research.

https://keras.io/why-use-keras/

https://github.com/tensorflow/tensorflow
https://github.com/Microsoft/cntk
https://github.com/Theano/Theano
https://keras.io/why-use-keras/


TensorFlow

TensorFlow offers multiple levels of abstraction so you can choose the 
right one for your needs. Build and train models by using the high-level 
Keras API, which makes getting started with TensorFlow and machine 
learning easy.

If you need more flexibility, eager execution allows for immediate 
iteration and intuitive debugging. For large ML training tasks, use the 
Distribution Strategy API for distributed training on different hardware 
configurations without changing the model definition.

https://keras.io/backend/

https://www.tensorflow.org/about

https://keras.io/backend/
https://www.tensorflow.org/about


import tensorflow as tf

mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

print('X_train:', x_train.shape)

print('y_train:', y_train.shape)

print('X_test:', x_test.shape)

print('y_test:', y_test.shape)

model = tf.keras.models.Sequential([

tf.keras.layers.Flatten(input_shape=(28, 28)),

tf.keras.layers.Dense(512, activation=tf.nn.relu),

tf.keras.layers.Dropout(0.2),

tf.keras.layers.Dense(10, activation=tf.nn.softmax)

])

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test, y_test)



• Gradient-based learning applied to document recognition; ann 
LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner; 1998

• ImageNet Classification with Deep Convolutional Neural Networks -
Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton; 2012

• Very Deep Convolutional Networks For Large Scale Image 
Recognition - Karen Simonyan and Andrew Zisserman; 2015

• Going Deeper with Convolutions - Christian Szegedy et al.; 2015

• Deep Residual Learning for Image Recognition - Kaiming He, 
Xiangyu Zhang, Shaoqing Ren, Jian Sun; 2015

• Stanford  CS231- Fei-Fei & Justin Johnson & Serena Yeung. Lecture 9

• Coursera, Machine Learning course by Andrew Ng.
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• The 9 Deep Learning Papers You Need To Know About 
(Understanding CNNs Part 3) by Adit Deshpande 
https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-
Learning-Papers-You-Need-To-Know-About.html

• CNNs Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and 
more … By Siddharth Das 
https://medium.com/@siddharthdas_32104/cnns-architectures-
lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5

• Slide taken from Forward And Backpropagation in Convolutional 
Neural Network. – Medium , By Sujit Rai
https://medium.com/@2017csm1006/forward-and-
backpropagation-in-convolutional-neural-network-4dfa96d7b37e
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