What is Control System?

Let us study about a new type of engineering study which is called as Control
Systems Engineering.It's very interesting subject and has a lot of calculation
part.Control system theory evolved as an engineering discipline and due to the
universality of the principles involved, it is extended to wvarious fields like economy,
sociology, biology, medicine etc.In this, you will learn about open and closed loop
control system and also their differences.

Control System theory has played a vital role in the advance of engineering and
science.The automatic control has become an integral part of modern manufacturing and
industrial processes.For example, numerical control of machine tools in manufacturing
industries, controlling pressure, temperature, humidity, viscosity and flow in the process
industry.

When a number of elements or components are connected in a sequence to
perform a specific function, the group thus formed is called a system.In a system when
the output quantity is controlled by varying the input guantity, the system is called
control system.The output quantity is called controlled variable or response and input
quantity is called command signal or excitation.

Types of Control systems:

Control systems are of two types.They are

1)Open Loop System
2)Closed Loop System



1)Open loop control system:

Any physical system which does not automatically correct the variation in its output is
called an open loop system or control system in which the output quantity has no effect
upon the input quantity are called open loop control system.This means that the output
is not feedback to the input for correction.
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In open loop control system, the output can be varied by varying the input.But due to
external disturbances, the system output may change.When the output changes due to
disturbances, it is not followed by changes in input to correct the output.In open loop
systems, the changes in output are corrected by changing the input manually.

2)Closed loop control system:

Control systems in which the output has an effect upon the input quantity in order to
maintain the desired output value are called closed loop systems.

The open loop system can be modified as closed loop system by providing a
feedback.The provision of feedback automatically corrects the changes in output due to
disturbances.Hence the closed loop system is also called automatic control system.The
general block diagram of an automatic control system is shown in the figure below.It
consists of an error detector, a controller, plant (open loop system) and feedback path
elements.
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The reference signal (or input signal) corresponds to the desired output.The
feedback path elements sample the output and convert it to the same type as that of the
reference signal.The feedback signal is proportional to the output signal and it is fed to
the error detector.The error signal generated by the error detector is the difference
between the reference signal and the feedback signal.The controller modifies and
amplifies the error signal to produce better control action.The modified error signal is fed
to the plant to correct its output.



Advantages of Open loop control system:

1.The open loop systems are simple and economical.
2.The open loop systems are easier to construct.
3.Generally, the open loop systems are stable.
Disadvantages of open loop systems:

1.The open loop systems are inaccurate and unreliable.
2..The changes in the output due to external disturbances are not corrected automatically.
Advantages of closed loop systems:

1.The closed loop systems are accurate.

2.The closed loop systems are accurate even in the presence of non-linearities.

3.The sensitivity of the systems may be made small to make the system more stable.
4.The closed loop systems are less affected by noise.

Disadvantages of closed loop systems:

1.The closed loop systems are complex and costly.

2.The feedback in closed loop system may lead to an oscillatory response.

3.The feedback reduces the overall gain of the system.

4.5tability is a major problem in closed loop system and more care is needed to design a

stable closed loop system.

Open & Closed Loop Control Systems Examples:
Example 1 : Electrical Furnace
Open Loop System:

The electric furnace shown in the below is an open loop system.The output in the
system is the desired temperature.The temperature of the system is raised by heat
generated by the heating element.The output temperature depends on the time during
which the supply to heater remains ON.The ON and OFF of the supply is governed by the
time setting of the relay.
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The temperature is measured by a sensor, which gives art analog voltage
corresponding to the temperature of the furnace.The analog signal is converted to digital
signal by an Analog to digital converter (AD converter).The digital signal is given to the
digital display device to display the temperature.In this open loop system, if there is any
change in output temperature then the time setting of the relay is not altered

automatically.

Closed Loﬁp System:

The electric furnace shown in the below figure is a closed loop system. The output
of the closed loop system is the desired temperature and it depends on the time during
which the supply to heater remains ON.
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The switching ON and OFF of the relay is controlled by a controller which is a digital
system or computer. The desired temperature is input to the system through the keyboard
or as a signal corresponding to the desired temperature via ports. The actual temperature
is sensed by Sensor and converted to digital signal by the A/D converter.

The computer reads the actual temperature and compares with the desired
temperature. If it finds any difference then it sends the signal to switch ON or OFF the
relay through D/A converter and amplifiern.Thus the system automatically corrects any
changes in output.Hence it is a closed loop system.



Example 2: Traffic Control System
Open Loop System:

Traffic control by means of traffic signals operated on a time basis constitutes an
open loop control system.The sequence of control signals are based on a time slot
given for each signal. The time slots are decided based on a traffic study.The system will
not measure the density of the traffic before giving the signals.Since the time slot does
not change according to traffic density, the system is open loop system.

Closed Loop System:

Traffic control system can be made as a closed loop system if the time slots
of the signals are decided based on the density of traffic.In closed loop traffic control
system, the density of the traffic is measured on all the sides and the information is fed
to a computer.The timings of the control signals are decided by the computer based on
the density of traffic Since the closed loop system dynamically changes the timings, the
flow of vehicles will be better than open loop system.

Example 3: Numerical Control System
Open Loop System:

Numerical control is a method of controlling the motion of machine components using
of numbers.Here, the position of work head tool is controlled by the binary information
contained in a disk.A magnetic disk is prepared in binary form representing the desired
part P (P is the metal part to be machined). The tool will operate on the desired part P.To
start the open loop system, the disk is fed through the reader to the D/A converter.

The D/A converter converts the FM(frequency modulated) output of the reader to a
analog signal. It is amplified and fed to a servomotor which positions the cutter on the
desired part P.The position of the cutter head is controlled by the angular motion of the
servomotor,

This is an open loop system since no feedback path exists between the output
and input.The system positions the tool for a given input command.Any deviation in the
desired position is not checked and corrected automatically.



The position of the cutterhead is controlled according to the input of the
servomotor.The transducer attached to the cutterhead converts the motion into an
electrical signal.The analog electrical signal is converted to the digital pulse signal by the
A/D converter.Then this signal is compared with the input pulse signal.

If there is any difference between these two, the controller sends a signal to the
servomotor to reduce it.Thus the closed loop system automatically corrects any
deviation in the desired output tool position.An advantage of numerical control is that
complex parts can be produced with uniform tolerances at the maximum milling speed.

Closed Loop System:

A magnetic disk is prepared in binary form representing the desired part P (P is
the metal part to be machined).To start the closed loop system, the disk is loaded in the
reader.The controller compares the frequency modulated input pulse signal with the
feedback pulse signal. The controller is a computer or microprocessor system.

The controller carries out mathematical operations on the difference in the pulse
signals and generates an error signal. The D/A converter converts the controller output
pulse (error signal) into an analog signal.The amplified analog signal rotates the
servomotor to position the tool on the job.

The position of the cutterhead is controlled according to the input of the
servomotor.The transducer attached to the cutterhead converts the motion into an
electrical signal.The analog electrical signal is converted to the digital pulse signal by the
A/D converter.Then this signal is compared with the input pulse signal.

If there is any difference between these two, the controller sends a signal to the
servomotor to reduce it.Thus the closed loop system automatically corrects any
deviation in the desired output tool position.An advantage of numerical control is that
complex parts can be produced with uniform tolerances at the maximum milling speed.



Example 4: Position Control System Using Servomotor

The position control system shown in the below is a closed loop
system.The system consists of a Servomotor powered by a generator.The load whose
position has to be controlled is connected to motor shaft through gear
wheels.Potentiometers are used to convert the mechanical motion to electrical signals.The
desired load position (8r) is set on the input potentiometer and the actual load position

(B:) is fed to feedback potentiometer.

The difference between the two angular positions generates an error
signal which is amplified and fed to generator field circuit.The induced emf of the
generator drives the motor.The rotation of the motor stops when the error signal is zero,

i.e. when the desired load position is reached.

This type of control systems are called servomechanisms.The servo or
servomechanisms are feedback control systems in which the output is the mechanical
position {or time derivatives of position e.g. velocity and acceleration).

https://www.electrical4u.com/speed-control-of-dc-motor/



Direct current (dc) motors have variable characteristics and are
used extensively in variable-speed drives.

DC motors can provide a high starting torque and it is also
possible to obtain speed control over a wide range.

The methods of speed control are normally simpler and less
expensive than those of AC drives.
Both series and separately excited DC motors are normally used

in variable-speed drives, but series motors are traditionally
employed for traction applications.

Due to commutator, DC motors are not suitable for very high

speed applications and require more maintenance than do AC
motors.

With the recent advancements in power conversions, control
techniques, and microcomputers, the ac motor drives are
becoming increasingly competitive with DC motor drives.

Controlled rectifiers are generally used for the speed control of dc
motors.

DC drives can be classified, in general, into three types:
1. Single-phase drives
2. Three-phase drives
3. DC-DC converter drives



» When supply is given to the stator winding of dc motor ,a flux
produced in stator winding which is linked to the rotor winding &
rotor starts rotating.

» Let consider a single coil stator having inductance Ls & resistance
Rs.

» Then electrical equation for de motor is given as
d
V(D) = Ly~ +Rql

» Where ig is current t‘lnwmg through the stator, and Vg be the
generated voltage. By using Laplace transform.

is(s) . Ks
vi(s) 1+ Zgs

K, = l is called the stator gain and

Z, = — is called as the stator time constant

M__i:_d +
Ehgﬂl va

]







. ~M@:i:mpuﬁmlwﬁ=mrrmti,m

I:-.t & :'_‘i" =4 - T. = Ki’i‘
[ .. . . !




Substituting the above ¢quations in equation (5.5.9) with damping md m control,
can be written as
T: -T, = U.+ﬂzl)%+(Fﬁ+an) o 5512

- ’ npdbeege 0
Where J; and J are inertia constant, F; and F are friction coefficient,

If G is for gear we compare the equation (5.5.9) and equation (5.5.12), we see that wi
menccnfgcar,mnwrimrﬁaaudthcdampingnfmmurimm. ‘ _
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7.22 DCMACHINE DYNAMICS

The DC machines are quite versatile and are capable of giving a variety of V-A and speed-torque characteristics
by suitable combinations of various field windings. With solid-state controls their speeds and outputs can be
controlled easily over a wide range for both dynamic and steadv-state operation. By addition of the feedback
circuit, the machine characteristics can be further modified. The aim of this section is to study dc machines
with reference to their dynamic characteristics.

For illustration, let us consider the separately excited
dc machine shown schematically in Fig. 7.106. For

ease of analysis, the following assumptions are made:
(i) The axis of armature mmf is fixed in space, o Ir

along the g-axis.

{ii) The demagnetizing effect of armature reaction is Ry
neglected. v

(ii1) Magnetic circuit is assumed linear (no hysteresis * =
and saturation). As a result all inductances Fig.7.206 Schematic representation of a separately
{which came into play in dynamic analysis) are excited dc motor for dynamic analysis

regarded as constant.
The two inductance parameters appearing in Fig. 7.106 are defined below:
L,= armature self-inductance caused by armature flux; this is quite small* and may be neglected without
causing serious error in dyvnamic analysis
L= self-inductance of field winding; it is quite large for shunt field and must be accounted for
Mutual inductance (between field and armature) = 0; because the two are in space quadrature.

Further for dynamic analysis it is convenient to use speed in rad/s rather than rpm.
Applying Kirchhoff"s law to the armature circuit,

d
Vi=ealt) + Ryig (1) + L, o' (1) (7.134)
where e lt) = K. ip(Dw,: K, = constant (¢(1) = iy(1)) (7.135)
Similarly for the field circuit,
ve(t) = Ryip (1) + Ly diif(:) (7.136)
: T

For motoring operation, the dynamic equation for the mechanical system is

T(e) = Kyip (Nigfny =J % Wn(1) + Da, (1) + Ty (1) (7.137)

* The armature mmf is directed along the low permeance g-axis.



where J = moment of inertia of motor and load in Nms’
D = viscous damping coefficient representing rotational torque loss, Nm rad/s
Energy storage is associated with the magnetic fields produced by ir and i, and with the kinetic energy

of the rotating parts. The above equations are a set of nonlinear* (because of products iy (1) @, and i¢(1)i (1))
state equations with state variables iy i, and @,,. The solution has to be obtained numerically.

Transfer Functions and Block Diagrams

In the simple linear case of motor response to changes in armature voltage, it is assumed that the field voltage
is constant and steady-state is existing on the field circuit, i.e. /= constant. Equations (7.134), (7.136) and
(7.137) now become linear as given below

vif) = Koan, (1) + Ryiy (1) + L, di iy (1) (7.138)
il
) = Kiiy (1) =J§ (1) + Day (1) + T (1) (7.139)
[}
Laplace transforming Eqs (7.138) and (7.139)
W(s) = KL(s) + (R, + 5L,) L,(5) (7.140)
Tis) = K} sy = (s8] + Dy ,(5) +T1(5) (7.141)

These equations can be reorganized as
- V(s)- Klwy,(s)

Tish=
%) = R, +L,)
~ . I/R,
=[s) - Ko, (s)] % (7.142)
(1+x1,)
where 1, = L,/R, = armature circuit time-constant
Also (i, (5) = [T(s)— T} (5)] = _D (7.143)
(1+57,)
where T,, = J/D = mechanical time-constant
T(s) = K71, (s) (7.144)

From Eqs (7.142) — (7.144), the block diagram of the motor can be drawn as in Fig. 7.107. It is a second-
order feedback system with an oscillatory response in general. It is reduced to simple first-order system, if L,
and therefore 1, is neglected

TL{“ 5)
V(s) Ry | I(9) | oo | TOS) (3 11D ls)
1+s5 Ty ’ 1+s Tm

Ko

Fig. 7.207 Block diagram of separately-excited dc mator; inputs V(s) and ,(s)

* This is inspite of the fact that the magnetic circuit has been regarded as linear.



Shunt Generator Voltage Build-up

The qualitative explanation for the voltage build-up e
process in a shunt generator has already been advanced
in Sec. 7.11. Here the mathematical treatment of this
problem will be given, which in fact boils down to the
solution of a nonlinear differential equation.

Referring to Fig. 7.108 it is seen that for any field
current the intercept ab, between the OCC and the
R;-line gives the voltage drop caused by the rate of
{:hange of @ and the intercept be gives the drop in
the field resistance. The two together balance out the
generated emf e, (neglecting iR, the armature drop).
Thus

Ry-line

OCcC

It
ddry .
Ny pr =&, — Ryiy (7.145) Fig. 7.208 Magnetization curve and Ry-line
where @, = field flux/pole
Ny = number of turns of field winding
The field flux < is greater than the direct axis air-gap flux &, because of leakage.
Taking this into account
D= gy (7.146)
Here o is known as the coefficient of dispersion.
Recalling Eq. (7.3),
b, -~ —8 (7.147)
4 Kl’.! ﬂ}”‘, -
Suhstituting FEqs (7.146) and (7.147) in Fo. (7 148),
Nya 2
/O o o iR, (7.148)
K,m, di )
Multiplying numerator and denominator by N, F,,
where F,, is the permeance of the air-gap/pole
Nig  Niod,

K, m, Ko, P Ny
It is easily recognized that the numerator is the unsaturated value of field inductance, L;, and the

denominator is the slope of the air-gap line. Both are constants. Hence,
Ly de .
K__;' :‘-’u_R_.f"'_.r' (1.14“]

&

Rewriting Eq. (7.145)

L de
K, le,—Ryiy



Ly J de,

or f=—|— (7.150)
Xﬁ" : E'H—le'!lr'
where the limits of integration,
e, = residual voltage
e, = instantaneous generated voltage
This integral can be evaluated graphically by sum- e, b
ming up the areas on a plot of 1{e, — Ri;) against e,.
This approach is employed to plot e, against time. The //_'
theoretical time needed for the generated emf to attain the
no-load value, e, would be infinite; hence in practice the
time needed to reach 0.95 e, is taken as the time needed
to reach e,y The variation of e, with time is plotted in
Fig. 7.109. e,
The response is rather sluggish since only small 0 '
voltage differences (= ¢, — Ryip contribute to the flux . .
butld-up (‘1";} ig. 7.209 \Voltage build-up of a shunt generator
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Direct Current Motor Modeling and Control Aspects

4.1 Introduction

Direct current (dc) motors have been used in the industry for the past several years. There
are several classifications among dc motors, and separately excited dc motors and series
motors present excellent speed-torque characteristics, suitable for many industrial utiliza-
tions. As such, dc motors are suitable for a wide range of variable-speed operation, braking,
and speed reversal. For successful implementation of closed-loop speed control, a dc motor
needs to be modeled either in state-space or in the transfer-function form. This chapter
introduces of power conversion, state-space, and transfer-function models. Measurement
of various motor parameters is also included.



4.2 Voltage Equation

A simple representation of a dc motor is shown in Fig. 4.1. The field system consists of
a pair of electromagnets excited from the field voltage V;. The field current is indicated
as [;. The armature conductors are assumed to carry the current as given in Fig. 4.1. The
field flux is constant and stationary in space; furthermore, this flux is perpendicular to the
armature current at any instant. This is one of the most interesting features of de motors
because such a position produces the maximum torque. Applying Fleming's left-hand
rule, the armature flux can be obtained, and it can be seen that the introduction of field
flux with armature flux gives clockwise rotational torque to the motor.

The induced voltage in the armature of a dc motor is equivalent to the generated volt-

age in a dc generator. The induced emf, generally termed back-emf, is labeled as E;, and is
given by

E,

— ®,Z.N, . Paf."‘ {4]]

60

where,
@, = Field flux
Z, = Total number of armature conductors
N, = Rotor speed in rpm
P, = Number of poles
A =2 for wave winding

= P, for lap winding

Field
Voltage, Vi

w

FIGURE 4.1
Sketch of a dec motor structure. |




Putting
2nN,
60
E, = On7, 600, P,/
60 2n
o p
T 2n A

0,

Making
Z: P
K=—7-"2/, then
o ‘A

Eb = K‘bmmr

In a separately excited dc motor, field flux ¢, is kept constant, and hence
Eb = Khl.l}]- (42}
where K, = Kd,, and is called the back-emf constant. The unit of K, is V/(rad/s).

4.3 Torque Equation

A separately excited dc motor can be represented in R-L-back emf form and 1s shown
in Fig. 4.2. Here, r, and L. represent armature resistance and inductance, respectively.
Armature voltage and current are shown as v, and i, in Fig. 4.2. Writing Kirchhotf's volt-
age law (KVL),

v,=e, +ni, +L, 4.3)

H
+ a
i
vy

FIGURE 4.2
L 4 T, @y Sketch of a de motor equivalent circuit.




Multiplying both sides using i,, the power equation can be written as

) .2 . Cdi
Vaia = Lis +epls +Lalad—ta

.. di
Under steady-state conditions, — = 0 and hence
t

v.l, =l + Eul,

where I°r, represents armature copper loss. Hence, the air gap power is E.L.. If T, repre-
sents the electromagnetic torque, then
Output power = T,
Neglecting friction and windage losses, this should be equal to air gap power.

ie, E.I, =T.m,

e, T, = Epl, (4.4)
From Equation (4.2),
Ky = E,
and substituting in Equation (4.4), we get
T. =K., (4.5)

It is evident that the torque constant is equivalent to the back-emf constant for a fixed

field excited dc motor.

EXAMPLE 4.1
A permanent magnet dc commutator motor has no load speed of 5,000 rpm when con-

nected to a 115-V dc supply. The armature resistance is 2.8 €}, and other losses may
be neglected. Find the speed of the motor at supply voltage of 80 V and developing a

torque of 0.7 N-m.



SOLUTION:

As an assumption, under no-load, armature current I, = 0.

~E =V, =115V
115
K= (an 5,{][][}) =022V /rad/s
60

Electromagnetic torque, T, = K, I,

0.7
Ia = E =318 A
E,.=V-1LLR, =80-(3.18x 2.8)
=71.09V
Now, N =E£
N: Euy
71.09
N, = 5000 x = 3090
: [ 115 ] P

EXAMPLE 4.2

A separately excited dc motor runs at 1,500 rpm at no load with 220-V supply at the
armature. The voltage is maintained at its rated value. The speed of the motor when
it delivers a torque of 5 N-m is 1,400 rpm. The rotational losses and armature reaction

losses are neglected. Find (a) armature resistance of the motor and (b) voltage applied
to the armature for the motor to deliver a torque of 2.5 N-m at 1,350 rpm.

SOLUTION:

(@)
I. =0 (at no load)

Epr =V, =220V
2m %1500

En=K 220=K
bl = [ a0

J=> K=1.401
Torque, T, =K, 1,

5=1401x1. =1, =3.568 A

Ehz = Va - Iare
Ny, _Ew _,p,,-1400X220_,453,y
N, Eu 1500

o V—Ey,  220-205.33

: I, 3.568

s L=41Q



(b) T=Kpl, =25=1401xI,
—1,=1784 A

Ep =Kpm, = 1.401 % = 198.06 V

(Zn X 135())
Vio=Ey +Lr

=198.03+(1.784x 4.1) = 20534 V

EXAMPLE 4.3

A separately excited dc motor has the parameters 220 V, 25 A, 1,500 rpm, | =06 k -m’,
Ky, =0.567 V/rad /s, and friction is negligible. If the motor starts from rest, find the time
taken by the motor to reach a speed of 1,000 rpm with no lvad. The armature current is
maintained constant at its rated value during starting.

SOLUTION:
T. =K,

=0.567 x 25
=14.175 N-m

During starting, armature current is constant, and hence torque remains constant at
rated value.

dw
—=14.175
J dt

Integrating on either side,

o) b )
jdm - 14';?5 jdt - 23.625jdt
4] ty

W —y = 23;625{':2 - t]}
w, =0, w, =104.71 rad/s

]

And hence
t]_ - tz = 4.432 s

The time taken by the motor to reach a speed of 1,000 rpm =4.432 s.



EXAMPLE 4.4

A variable speed drive rated for 1,500 rpm, 60N-m is reversing to 1,000 rpm under no
load. The motor torque is 20 N-m and reversing time is 0.5 s. Find the moment of inertia
of the drive.

SOLUTION:
dw
T.-T.=]—
L=] n
T, =0 (Given)

T. =20 N-m(Given)
At=0.5sec

2n
Am = (1500 - (-1000) x @

=261.799 rad/s
20%05

J= 261.799

] = 0.03819 kg-m*

EXAMPLE 4.5

In a speed-controlled dc motor drive, the load torque is 30 N-m. At time t = 0, the motor
is running at 500 rpm and the generated torque is 90 N-m. The inertia of the drive
is 0.01 N-ms”/rad. The friction is negligible. Evaluate the time taken for the speed to
reach 1,000 rpm.

SOLUTION:

dw

]ﬁ =T.-T.
Aw=1,000—-500=500 rpm = 5235 rad /s
T. = TL. =90-30=60 N-m
J=0.01

_ JAm
T.-Th
_ 0.01x52.35

60
At=8.726 ms

At

EXAMPLE 4.6

An electric motor is developing a starting torque of 20 N-m, and starts with a load
torque of 8 N-m on its shaft. If the acceleration at start is 100 rad/sec’, what is the value
of moment of inertia?



SOLUTION:

dm
T.-T =<2
L=] R
dm
20-8=152
J dt
i—‘: =100 rad/ sec*(Given)
12=100]
] =0.12 kg-m’
is
+
Fy L
¥
FIGURE 4.2
4 Sketch of a dc motor equivalent circuit.

4.4 State-Space Model

Referring to Fig. 4.2, the voltage equation of a separately excited dc motor is rewritten as

di .
v,=L,—+ri, +e,
dt

Re-arranging the terms and setting e, = Ky,

di, _ L Kym, +v_a (4.6)
dt L. L. L

Let ] represent the moment of inertia in k{g-m2 and B the friction coefficient in N-m/(rad /s).
Now

dm
T.=Bo, + | —+T,
o]t

. . dw,

iLe., Kpi, =B, +] a +To 4.7)
. d{l]r Bﬂ]; T|_ Kbia

Le., e

dt I |



Equations {4.6) and (4.7) completely describe the dynamics of a dc motor and can be put
in matrix form as

a, | [z X L2
dt | | La Ls i . L, v,

do, || Ks -B m,} 0 7 M 0
dt ;o] J

This is equivalent to state-space form

— =Ax+Bu
dt
where
_ .
X=
o,
-—rﬂ X -
A L. L.
| Ky -B
I ]
Li 0
B= N 1
0 —
I
Vi

where u is the input vector and is T
L



The Eigenvalues of the drive system can be found from A matrix by writing:

|sI-Al=0 (4.9)
5 Ky |
_ 10 L. L 0
Le., 5 - =
01] | Ky B
|
542 K, |
L. L,
=0
K, B
St+—
J J |

) 4.10)
52+5[E T }+&+ﬁ=u
JL. L]

r. B r, BY [(K:+rB
‘[z*ﬂi\/(ﬁf] {5

EXAMPLE 4.7

A separately excited dc motor has the following parameters:
r,=05Q, L,=0003H, k,=08v/rad/sec
J=0.0167 kg-mz, B =0.01 N-m/rad/sec

Find the Eigen value and asses the stability of the system.

_[ij]i\)[rig]'_h[ma K ]
L. ] L. ] JL. L,

= —167.27 £/-23519.28
2
=—83.6351176.68

SOLUTION:

The system is stable because the roots are placed in the left side of the s-plane.



EXAMPLE 4.8

A separately excited dc motor has the following parameters:
rr.=0340, L,=1.13mH, k,=1.061v/rad/sec
J=0.035kg-m*, B=0

Find the Eigen value and assess the stahilit:-,? of the system.

—[ a +EJi\/[ i +E]_—4K[Br" - ki ]
Lo 7)WL JL. L.

B 2
o ~300.89+ J=23317.29
B 2

s=-150.45+i76.35

SOLUTION:

The system is stable because the roots are placed in the left side of the s-plane.

EXAMPLE 4.9

A sepa rately excited de motor has the fﬂllnwing parameters:

r,=139Q, L,=000182H, k,=0.331v/rad/sec
] =0.002 kg-mz, B =0.005 N-m/rad/ sec

Find the Eigen value and assess the stabilit}r of the systems.

SOLUTION:

2 2
& Bl 8 BB, K
La J La .T ]La ]Li
B 2
s* +766.24s+32008.52 =0

76624+ \766.247 — 4 x 1% 32008.52
B 2

s=-—444 -7219

The system is stable because the roots are placed in the left side of the s-plane.



4.5 Teansfer Funetion Model

The voltage equation of a dc motor is

L.di,

v, = + i, + Ko,

Taking Laplace transform,

V.(s)=L.sl,(s)+ rL(s) + Ky, (s)
=L (s){L.;s+r}+K,o,(s) (4.11)
V.(s)—K,w,(s)
n+L.s

~1.(s) =

The speed-torque equation is rewritten from Equation (4.7) as

do, B =~ _-T Kl

+—m, =
dt ] ] J

Taking Laplace transform,

B 1i(s) | Kpla(s)
50, (s)+,(s) —=———
I ] J
Kiul.(s) =T (s}
Js+B

4.12)
w,(s)=

Equations (4.11) and (4.12) can be rearranged to obtain the block diagram in Fig. 4.3.

Neglecting the load torque Ty (s), the no-load transfer function is obtained as

O (s) _ Ky (4.13)
V.(s) JL.s"+(BL.+r]J)s+Br +Ki

T.(s)

V. : I, 1 @, (s)
>
. i r, +Lss g . i Js+B

FIGURE 4.3
Transfer function of a de motor.



4.6 Closed-Loop Control Design

To explain the closed-loop control of a dc motor, consider a proportional-integral (PI) con-
troller be incorporated as given in Fig. 44. There are several methods to find the values of

PI constants, and here the Routh-Hurwitz method is employed.
The characteristic equation for the above closed loop control system is

1+G(s)-G(s)=0 4.14)
where G.(3) is the transfer function of PI controller and hence
G.(s)=Kp + % (4.15)
The dc motor is represented by G(s) and is
Ky
Gis)=
(5) JL.s* +(BL, +1,])s+Br, + Kj
PIcontroller DC motor
o) * K v, (s) Ky @45
— ()=K,+~— Ll = 5 >
h Gl ] oG L. s*+(BL,+1,7)s+Br,+EK~
m4s)
FIGURE 4.4
Closed-loop speed control using a proportional-integral (PI) controller.
Substituting G.(s) and G(s) in the characteristic equation, we get
K K |
1+ Kp+— |x _ b =0
[ °Ts ] []Las— +(BL, +1.J)S+Br, +K} |
(Kps+Ki)Ky
* 2 =0 416
JL,s* +(BL, +1.])s* +(Br, + K} )s (4.16)

JL.s’ +(BL, +1,J)s* +(Br, + K} )s + (K s +K; )K, =0
JL,s* +(BL, +1.])s” +(Br, + K§ + K; K, Js + KKy =0

This is the final characteristic equation for the above control system.



EXAMPLE 4.10

Consider a dc motor with the following parameters: L, = 113 H, | = 0.035 kg-mz,
B=01N-m/rad/s r,=0.3 €, K, =106l V/rad/s. Calculate the range of I(P and K, values for
the closed-loop operation of the motor.

SOLUTION:
The characteristic equation for the above case is obtained using Equation (4.16):

0.0395% +0.123 5% +(1.156 + 1.061 K;, )s + 1.061 K, = 0.

To find the range of controller parameters (proportional gain K; and integral gain K;),
apply the Routh-Hurwitz criteria.

s*  0.039 1.156+1.061 K;
s* 0.123 1.061 K,

0.123(1.156+ 1.061 K ) - 0.0395*1.061 K,
0.123

1
5

s 1.061K,

To make the system stable, the first column of the Routh array should not contain any
sign changes, which implies

1.061K,; =0

0.123(1.156+1.061 K, ) - 0.0395 % 1.061 K, )
=

0.123
0.1421+ 0130 Kp —0.041K, >0

1.1+ K, —0315K, >0

As an illustration, let K; =5 (which is greater than zero). Substituting this value in
the above equation,

1.1+ Ky —0.315%x5=0
= Kp > 04769

Here for K, =5, KP should be greater than 0.4769.

It is important to mention that the above values of controller constants always
guarantee stability, but they need not provide optimal dynamic stability. Improved
dynamic response can be obtained by fine-tuning the values of K; and K. In several
cases, an inner current loop is also added, which helps limit the armature current to
permissible values.



4.7 The dc Series Motor

In the dc series motor, the field circuit is connected in series with the armature coil as
shown in Fig. 4.5. The back emf, E,, is

Eb = Kbtbmmr
Armature current produces the flux, ¢, and hence,

LI Iy
{Dm = kfia
Hence,

Ep = K- keia, 4.17)

FIGURE 4.5
AA = Sketch of a de series motor.




Torque

Speed

FIGURE 4.6
Torque-speed characteristics of dec series motor.

In the above equation, k; is the series field constant. Reproducing Equation {4.4) yields
Te- - Ebia - Kbmmmria

. . 4.18)
= Kp®umia

=K, kil

Let Kpk¢ =k, be as the torque constant, and its unit is N-m/A°.

Thus,
TE = kTiE
Furthermore, Equation (4.17) becomes
Eh = lQ'-'l'-l.a"-'-’r {4]9}
Va =ian + kriam, (4.20)

In the above equation, 1, includes armature resistance together with series field resis-
tance. The torque speed characteristic curve is shown in Fig. 4.6.



4.8 Determination of r, and L,

The armature resistance r, of the motor is measured by applying a low dc voltage to arma-
ture terminals. The value of r, can be taken as the ratio of applied armature voltage to the
armature current. In case, the exact value is required, the brush voltage drop is to be sub-
tracted from applied voltage.

To measure L., a low ac voltage (probably through a variac) is applied to the armature
terminals, and the ratio of voltage to current is taken as Z,. Then the armature inductance

is computed as
22
[, =Vl-n
2nf;

where f, is the frequency of ac supply in Hz.

4.9 Determination of K,

The field current is adjusted to the rated value and the motor is rotated by a prime mover
(another motor nsually) at its rated speed, m,. The armature terminals are open circuited
and the induced voltage across the armature is measured as E,. The back-emf constant is
then determined as

ON

K, (4.21)

4.10 Determination of the Moment of Inertia of a Drive System

The moment of inertia of the de drive system can be determined by rctardation or a
running-dnwn test. The dc motor is started under no load and, once the no-load speed
is reached, the input power is noted. Then the motor is switched OFF; as the armature

Speed, $
Nrpm
A
Q
0 -
FIGURE 4.7 B Time

Speed versus time curve of dc motor. (Sec.)



slows down, its kinetic energy is drawn up to supply the various losses produced by
rotation. Now, the variation of motor speed against time t is plotted as shown in Fig. 4.7,

If ] is the moment of inertia of the armature and . its angular velocity at any instant,
then the kinetic energy of the armature is

1

K-E:E]mf

Rotational losses P, = rate of loss of kinetic energy:

P, =i[llw?}
dt] 2

(4.22)

dm,
dt

Pr = ]mr

To calculate P, it is therefore necessary to determine the curve of m, against time t.
. . . dN . .
Referring to Fig. 4.7, to find the gradient a atany point Q, it is usual to draw the tangent

to the curve and to measure the intercepts OA and OB.

dN_oa
dt OB

Now, if the moment of inertia, ], is expressed in kg_-rrl2 and w, in rad/s, then the losses

will be given by Equation (4.22). However,

o, = 2nN,
60
do, 2ndN,
dt a0 dt
Hence,
2y ... dN dN
P.=| — ,——=0.0109 N, —
(E»{]] N dt N dt
Thus,
P,
J=

0.0109x N, x ( dN, ]
dt

91.74 %P, (4.23)

J=—
er(dNr)
dt




EXAMPLE 4.11

A dc series motor has the following parameters: 220 V, 2.5 hp, 5,000 rpm, armature
resistance = 1.26 Q (includes armature resistance and series field resistance). Torque
constant is k; = 0.035 N-m/A*. Under rated condition, find (a) motor current and
(b) torque.

SOLUTION:
(@)
_ 2N,  2x3.14x5,000
60 60
v, =i,1, + kqi,m,
220=1i, x 1.26+0.035x i, x 523.3

=5233rad/s

r

ni,=1124 A
(b)
T, = kyil
=(.035 % 11.24°
= 44213 N-m

EXAMPLE 11.1

A 240-V, permanent magnet, dc motor takes 2 A whenever it operates at no load.
Its armature winding resistance and inductance are 1.43 2 and 10.4 mH, respec-
tively. The flux per pole is 5 mWb and the motor constant K, is 360. The moment
of inertia is 0.068 kg-m”. If the motor is suddenly connected to a 240-V dc source
while operating at no load, determine its speed and armature current as a func-
tion of time.



@ SOLUTION

The no-load data of the motor helps us determine the friction coefficient, D, as
outlined below
Since the motor requires 2 A at no load, its no-load speed is

o, = 240-143x2 _ 43174 rad/s
360 x 5 x 1073

At no load, the developed torque
T,=360x5x103x2=36Nm

is primarily for the rotational losses. The friction coefficient D can then be calcu-
lated as

3.6
131.74

D= = (0.027 N-m-s

Prior to the application of armature voltage the motor speed and armature
current are zero. That is, at t = 0, w_(0) = 0 and i (0) = 0. In addition, the load
torque is zero because the motor operates at no load.

From Eq. (11.8), we get

18 2%

5

Q,(s) =
(0.027 + 0.068s) (1.43 + 10.4 = 107%) + 1.82



or

610859.72

Q (s) =
s(s? + 137.89s + 4636.04)

m

In order to determine the inverse Laplace transform of Q, (s), we expand Q, (s)
into partial fractions as

A B C
Q (5)=—+ +
s s+ 7984 s + 58.10

where A, B, and C can now be determined by the root-substitution method. Thus,

A=s- 610253.72 = 131.74
s(s + 79.84) (s + 58.10) |,

610,859.72
B = (s + 58.10) = 351.87

(s + 58.10)s(s + 79.84) |;_s810

610,859.72
C=(s+7984) = —483.56

(s + 79.84)s(s + 58.10) |.._798s

Finally, we can take the inverse Laplace transform of

131.74 . 35187 483.56

5 s+7984 s+ 5810

Q (s) =

and get the angular velocity in rad/s as

o_(t) = 131.74 + 351.87e7°84 — 483.56¢ 81 fort > 0

The graph of w_(t) is given in Figure 11.2.
From Eq. (11.9), the Laplace transform of the armature current is

23,076.92s + 9162.9
s(s® + 137.89s + 4636.04)

1(s) =

a
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Figure 11.2 The motor speed as a function of time.

In terms of its partial fraction expansion, [ (s) can be written as

2 1054 1056
I(s)=—+ -
5 s+58.10 s+ 7984

Finally, we obtain the armature current as
i () =2 + 1054¢81% — 1056¢ 7% fort >0

which is shown graphically in Figure 11.3.

140
130

120

100 X

iyt)

=S=E28ELLHES
i"

0 002 004 0.06 008 01 012 014 0.16 018 02
t

Figure 11.3 The armature current as a function of time.



EXAMPLE 11.2

The motor given in Example 11.1 is coupled to a load having a torque of 18.58
N‘m. Determine the variation of the motor speed as a function of time after the
motor is suddenly energized at its rated voltage at t = 0.

e SOLUTION

Since the voltage is applied to the armature circuit at t = 0, the initial speed and
the armature current are both zero.
From Eq. (11.8),

18 240  18.58

5 S

(0.027 + 0.068s) (1.43 + 10.4 x 103s) + 1.82

(1.43 + 10.4 x 1073s)

Q,(s) =

or

573,289.87 + s274.02
s(s* + 137.89s + 4636.04)

Q (s) =

m

123.66 . 34229  465.90
5 s+7984 s+ 5810

The inverse Laplace transform of Q, (s) yields

o,(t) = 123.66 + 342.29 g 79843 _ 445 9()g-58.10¢ fort >0

The Laplace transform of the armature current is calculated from Eq. (11.9) as

56,447 963 + 523,076.923

I, (s) =
s(s? + 137.89s + 4636.04)

or in terms of its partial-fraction expansion as

12.18 ) 1027 . 1015
s s+ 7984 s+ 58.10
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Figure 11.4 The variations in (a) the motor speed and (b) armature current as a function
of time.

The inverse Laplace transform of I (s) yields
i(0) = 1218 - 102774 + 1015¢%1%  fort > 0

The variations in motor speed and armature current as a function of time are
given in Figure 11.4.

For all practical purposes, the motor attains its steady-state operation after
five time constants. Thus, this motor takes approximately 86.06 ms (based upon
the largest time constant) to achieve its steady state.

EXAMPLE 11.3

The motor studied in Example 11.1 is suddenly energized with its rated voltage
at t = 0 when it was at rest and coupled to a linear load of T, = 0.1 .

(a) Determine the variation of the motor speed as a function of time for
tz 0.
(b) Calculate the time needed to achieve the steady state.



e SOLUTION

(a)

Since the motor was at rest before it was energized at t = 0, the initial
speed and the initial armature current are zero. Thus, from Eq. (11.8)
with T,(s) = 0.1 Q, (s), we get

1.8 (240/s) - 0.1, (1.43 + 10.4 x 1073%)
g) =
" (0.027 + 0.068s) (1.43 + 10.4 x 10-3s) + 1.82

and after grouping the terms, we obtain

610,859.729
s(s? + 139.37s + 4838.24)

Q (s) =

"

The roots of the polynomial in the denominator are
s, =10, s, = -73.946, and $4 = —65.392

Thus, in terms of partial-fraction expansion, Q2 (s) can be written as

126.256 . 956.776 1092

n"‘l(ﬁ] = -
s s + 73.946 5+ 65.392

The inverse Laplace transform yields, for { > 0

®, (1) = 126.256 + 956.776¢ 796! - 10926539 rad /s

The variation of the speed with time is also given in graphic form in
Figure 11.5a. From Eq. (11.9), we can calculate the Laplace transform of
the armature current as

. 23,076.92s + 43,099.55
! s(s? + 139.37s + 4838.24)

or in partial-fraction expansion form as

8.908 2615 N 2606

I(s) = —— -

- s+73.946 s +65.392



Finally, we can obtain i (f) from the inverse Laplace transform as
i(f) = 8.908 - 2615¢ 3% + 2606e 5% rad/s  for 1>0

Figure 11.5b illustrates the variation of the armature current as a func-
tion of time.
(b) The largest time constant of the above exponential terms is

LI 0.0153 s

To achieve a steady state, the time taken should, at least, be 5t. Hence,
t=5x%0.0153 = 0.0765 s = 76.5 ms

is the time needed to reach the steady state.

In Examples 11.1, 11.2, and 11.3, we deliberately used the same motor to give
you the opportunity to observe the responses of the same motor under different
operating conditions.
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Figure 11.5 The variations in (a) the motor speed and (b) armature current as a function
of time.



EXAMPLE 11.4

A 240-V, 12-hp, separately excited dc motor operating on a load of 15 N'm in
the linear region of its magnetization characteristic has the following param-
eters R, = 0.28 Q, L, = 2.81 mH, R, = 320 Q, lf =2 H, ] =0.087 kg-mz, D =0.02
N'm-s, and K, = 1.03. Determine the variation of the motor speed, armature cur-
rent, and field current as a function of time when the field voltage is suddenly
reduced from 240 Vto 192 Vat = 0.

¢ SOLUTION

Since the motor has been operating at steady state on a load of T; = 15 N-m before
the field voltage is suddenly changed, we have to evaluate first the initial condi-
tions on w, (1), 1,(t), and i(t) from Eqgs. (11.11), (11.12a), and (11.12b) as applied at
steady state for { < 0,

24() = 32[}ff{{}}

1037, (0)a,,(0) = 240 - 0.28i,(0)
1.03i;(0)i,(0) = 15 + 0.02w,,(0)

Simultaneous solution of the above equations yields
w (0) = 300.79 rad/s, i(0) =272 A, and if{ﬂ} =075 A

When the field voltage is reduced to 192 V suddenly, the field current will
drop from 0.75 A to a steady-state value of I, = 192/320 = 0.6 A after a short
duration. Using Eqs. (11.14a), (11.14b), and (11.14¢), we can determine the Laplace

transform of the angular velocity, armature current, and field current as

300(s? + 99.80s + 1960,82)

Q,.(s) = .
s(s? + 100.03s + 1581.73)




27.14(s? + 708.58s + 2116.01)

I(s) =
s(s2 + 100.03s + 1581.73)
o = 0756 + 128
s(s + 160)
or
71.9 16 94 .B68
Q (s) = 3 + 24

s s +80079 s+ 19816

36.307 271.582 + 262.513

[(s) =
s s + 80.079 s+ 19.816
6 0.1
.'f{s] = 0 + >
5 s + 160

in partial fraction expansion form. Taking the inverse Laplace transform yields

, (F) = 371.9 + 241680079 _ 94 ggge-19816!

i (t) = 36.307 - 271.582¢"8007%" + 262,513 19816t
i (£) = 0.6 + 0.15¢716

as the variation of the angular velocity, armature current, and field current, respec-
tively. The waveforms are given in Figures 11.7, 11.8a, and 11.8b. From Figure
11.7, it is clear that the field current attains its steady state at about 30 ms whereas
it takes about 300 ms for the speed and thereby the armature current to do so.
This is in accordance with our assumption that the mechanical response is slug-
gish in comparison with the electrical response that resulted in the change of
states. Another important fact that can be observed from this problem is that the
armature current increases to a peak, which is well over the motor rating. Again
this is mainly due to the mechanical time constant of the motor that does not
allow a rapid change in the back emf of the motor. Therefore, it is recommended
that the field current be gradually varied so that high currents will not take place
in the armature circuit. Lastly, you can notice that the final value of the armature
current is higher than what we had before the field current was reduced. The rea-
son is that the mechanical losses increased significantly with increasing motor
speed leading to a higher torque demand. Consequently, the increase in devel-
oped torque caused an increase in armature current.
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EXAMPLE 11.5

A separately excited dc generator operating at 1500 rpm has the following para-
meters: R, = 3 (), L, = 25 mH, and K, = 30 V/A. If a dc voltage of 120 V is
suddenly applied to the field winding under no load, determine (a) the field cur-
rent and the generated voltage as a function of time, (b) the approximate time to

reach the steady-state condition, and (c) the steady-state values of the field current
and induced voltage.

® SOLUTION
(a) From Eq. (11.25)

120
5
ls) = 3507025
_4 40
5 s + 120

Therefore, the field current is
if(t) = 40(1 — e ™) A fort=0
and the generated voltage is
et) = Ki (1) = 120001 =~ ¢ ™™V  fort =0

The graphs of i;and ¢, are shown in Figures 11.10 and 11.11, respectively.
(b) For all practical purposes, the field current attains its steady-state value
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Figure 11.10 The field current as a function of time.
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Figure 11.11 The induced voltage as a function of time.

(c)

after five time constants. Thus, the time required to reach the steady
state is

5
= —— = (. 7
T 120 0.0417 s or 41.7 ms

The final values of the field current and the induced (no-load) voltage
are I, = 40 A and E, = 1200 V, respectively.
B



EXAMPLE 11.6

The parameters of a 240-V, PM motor are R, = 03 (1, L, = 2 mH, K = 0.8,
] = 0.0678 kg-m?. Determine the motor speed and the armature current as a func-
tion of time when the motor is subjected to a torque of 100 N-m after 200 ms of
starting at no load. Consider a step length of 0.01 s and observe the response for
a period of 0.5 s. Neglect the frictional losses and assume that the motor operates
in the linear region.

® SOLUTION
From Eq. (11.3), for t < 200 ms, we have

x(t) = ["j*;ﬁ’] u(t) = [Zﬂ(,]
0 118 -1475 0
e [-4&0 -150] i [ 0 500]

with initial values of w,(0) = 0 and i,(t) = 0.

For t > 200 ms,
~ 100 29993
uh = [24(3] and  2(0.2) = [ 0.25 ]

The computed speed and armature current waveforms are shown in Figures 11.14
and 11.15, respectively.
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Figure 11.14 The motor speed as a function  Figure 11.15 The armature current as a
of time. function of time.



EXAMPLE 9.1

A separately excited dc generator has the following parameters:

Ry = 10010, Lr=25H
R,=0.259, L,y =0.02H
K, =100V  per field ampere at rated speed

(a) The generator is driven at rated speed and a field circuit voltage V; =200V is suddenly
applied to the field winding.

(i) Determine the armature-generated voltage as a function of time.
(ii) Determine the steady-state armature voltage.

(iii) Determine the time required for the armature voltage to rise to 90 percent of its
steady-state value.

(b) The generator is driven at rated speed and a load consistingof Ry = 1Qand L; =0.15H in
series is connected to the armature terminals. A field circuit voltage V¢ = 200V is suddenly
applied to the field winding. Determine the armature current as a function of time.

Solution

(a) Field circuit time constant 7y = 25/100 = 0.25 sec.
(i) From Eq. 9.11,

100 % 200 /0.
ealt) = —g5— (1 —¢%)
=200(1 - ¥)
(ii) e,(oc) =200 V
(iii) 0.9 X200 =200(1 —e¥)

t =0.575 sec



(b) ¢ =0.25 sec

0.15 + 0.02
Ta = 7T 025 0.136 sec
From Eq. 9.22,
T lslm 100 % 200
28) = T00x 125X 0.5 0.136s(s +4)(s + 7.35)
B 4705.88
 s(s+4)(s +7.35)
= A_] + A 4+ As
5 s+4 5+ 7.35
4705.88
'h A= = 160
W A T ) s+ 735) |,
4705.88
= = -351
2T+ |,
4705.88
Ay=——"— =191
s(s+4) |, 735
From Egq. 9.25,
ia(t) =160 — 351e ¥ + 191¢ ¥
EXAMPLE 9.2

A separately excited dc motor has the following parameters:
R,=051, Lag >0, B~0

The motor generates an open-circuit armature voltage of 220V at 2000 rpm and with a field
current of 1.0 ampere.

The motor drives a constant load torque Tp = 25N-m. The combined inertia of motor and
load is J = 2.5 kg - m?. With field current If = 1.0 A, the armature terminals are connected to a
220V dc source.

(a) Derive expressions for speed (w,,) and armature current (i,) as a function of time.

(b) Determine the steady-state values of the speed and armature current.



Solution
(a} Ea = Km Win

B 220
~ (2000/60) X 27

K = 1.05V/rad/sec

VL =g, + iaRa = Km'l"m + iaRa

From the last two equations,

1"Fr. = Kmh‘-’m + Ra (Km A1 + Km)

.I.Iza..lilI dL.I'.J.n Ra TL
+

IR S
_ ﬂ.s )4 2.5 dUJ.n U.S X 25
=105wm =557 T 105
d
105w, +1.1955™ 4119
dt
220 11.9

V}-(RJ = T = 1.”"-\»“:.“(.'{] + II q'q'.""l'ﬂ('q] + T

220119
~ 5(1.05+ 1.19s)

Wm(S)

_ 174.874
s(s + 0.8824)




198.2 198.2
s  s5+0.8824

wm(t) = 198.2(1 - e—u.sszw]

i = vL KmUJm

a Ra
220 — 1.05wm
B 0.5

=440 — 2.1 X 198.2(1 — ¢ 08824

23.8 +416.2¢ 08824

(b) Steady-state speed is wm(oc) = 198.2 rad/sec.
Steady-state current is [, =i,(0c)=23.8A. H

PROBLEMS

9.1 A separately excited dc generator has the following parameters:
Ry =100 0, Ly =40 H, R, =021, L. =10 mH
K; =100 V/field ampere at 1000 rpm

The generator is driven at the rated speed of 1200 rpm, and the field current is adjusted at 2 A. The
armature is then suddenly connected to a load consisting of a resistance of 1.8 ohms and an
inductance of 10 mH connected in series.

(a) Determine the load terminal voltage as a function of time.
(b) Determine the steady-state value of the load terminal voltage.

(c) Determine the torque as a function of time.



CHAPTER 9
Eﬂd kj, = /oo x -E-:—S- = :20;.-/&

1200 rpm Ri

@ 1200 rpm I-f = 2R
o E“"“‘-m = killla:r Is = l20x2 = 240V

Ealt)= (RatR.) lalt) + (Leg+ z._jg? iald)
Ry Lr
Take Yoplace Transform
Baliygy oo ]
Ry S+ -.E"-L_S)
Rr

En,(‘t) = ,z-l{ra(,s]} = 2’_;:2 (i~ .e’_ %tt)

Tols) =

-3
/o
where Tat = LVRr & (H::;o:)-: = 0-0] Sec.

v'ﬁ(‘é) = R.ila + L, %_I:'*

= 1.8x120(i-e ') + toxia > (r20% f06€ °*Y)

= 216 - 96 e~'oot |,

(b) Velod) = 214 v
<) T= kefla
Eo. = Kily ty, = kg If
K§lon = ka_

-1 3
Ke = - ohe
£ % T o B T

ST =) ia

- t
= 21?#1(]"'& e ) M.m

or T . Ea latlt) - 240 i e - e-—teu{'}
IS, (200 X 2T /4,

= 229.2 (1-€"%) #em



9.2 A separately excited dc motor has the following parameters:

R,=041, Log==0, Km=2V/rad/sec

The motor is connected to a load whose torque is proportional to the speed.
J= 'rmc:lnl' + -'rlu.ad =25 kg -m*
B=B_ 00 + Bioaa =0.25 ke -m? /sec

The field current is maintained constant at its rated value. A voltage V, =200 V is suddenly
applied across the motor armature terminals.

(a) Obtain an expression for the motor speed as a function of time.
(b) Determine the steady-state speed.

(c) Determine the time required for the motor to reach 95 percent of the steady-state speed.

@) Ve=Ri+ Kmm
V(Y= RICS)+ Kmtm(S)  ==vvoo==r ¢
T=Knl = J9E" + 8, o+ Bildm (= TL)

Knii = 3% 4 8 o

KnI(S)= TSM()+BWm(S) -~~~ " ({3
From ® U@
)
K(s) = KnlOm(s) + _M‘_%i; m(s)
sy | Km 2.5
() Kk +RB+ RBSTm (% =3 = a5 ~osec )
Jm 2 !

(&*«s;m&a Sz)  Ptetens” (e LI

i 2 + g xals
= 0,488 % ————
i1+0,.2943
200

l
Wnlt) = 9T.6 (1- o= t/o.244)

(6) (Wm(x)= Q1.6 rad/sec
- £
cc) 0.95x9T.6=97.6C1 - Werur) »e '{“"‘:o,os — t =0 732 e,

cdy Caltr= _\&:ﬁﬁ_

= m-chzi— qr.6 &~ Vo3944%) =5°°“433'F4$€-V g
= |2 + 498 e-t/0.244

fvﬂ.lss = 12A




9.3

A separately excited dc motor has the following parameters:
R, =050, Lyg=0, B=10, J=01kg-m?

The rotational loss is negligible.

The motor is used to drive an inertia load of 1.0 kg- m?. With the rated field current and an
armature terminal voltage of 100V, the motor and the load have a steady-state speed of 1500 rpm.
At a certain time the armature terminal voltage is suddenly increased to 120 V.

(a) Obtain an expression for the speed of the motor-load system as a function of time.

(b) Determine the speed | second after the step increase in the terminal voltage.
(c) Determine the final steady-state speed of the motor.

) Because rotatiomol Lesces are meglected , M
S’fen.dz‘ stote, -moter does ol produce mut f‘orgug.
Therefore , before. tha voltage was cAan&ei, Ia =0
Eas V&

Kmildy, = (oD V

X-T-] - '
= = &.6327 V

éo
Affer the voltage was C.fm.naed. ’

Vt = Ea -+ Rolo. = Kmlm+ Ralo

Alse T = Km t:a. = J i‘dm

T dem
v Vi = Kmm t Ra - g7 dwm
= 0.63 T Wm + 5%x1-1/5.631 %

V’l‘ = 0.4Y% Wm + 0.8¢ g’i%

Ve(s) = 0.4% ais)+ 0-36 (8 tdmis) = Wme )



ohere.  Wme = ——’%’-xan - 157.} vod.lsec.

120 . 0. 44 Wm(s) + O.86S Wm(s)~ 0.86x 1571
S

120 + 135.(1ls
S (0.6 + 0.865)

= Wmis) =

lap + 235 .S 139.1 + i51.] S
—1
S o.64 ( L+ ﬂ;if;_a) S(S+ 0-T44)
- A &
= S T By o.vev

H,.‘S'? 3 B:—lq\-?

: -l — 0. T4y
- tomitt) 3 L fomes)§ = 127~ 2298

ra.n’./s::;,

(6) w...]t‘] = 187 - 299 e 27

l

172-95 rad-/sec.

«©)  Wm(0) 187 rad. [sec.

9.4 A separately excited dc motor and its load have the following parameters:

R,=0510, Log =0, K = 2V /rad/sec at rated field current
J=2.0kg m?
B=0.2kg-m?*/sec
For rated field current and a terminal voltage V, = 200 V:

(a) Determine the steady-state speed in radians per second (wy,) and rpm (12). (You do not need
to derive an expression for the motor speed as a function of time for this part.)

(b) The motor is running at the steadv-state speed obtained in part (a). Now, suddenly, the
terminal voliage is decreased to 100 V.

(i) Obtain an expression for the speed of the motor—load system as a function of time.

(ii) Determine the final steady-state speed of the motor in rpm.



(@) steacly state
T=BWm= Kmla
Ia= Jﬁ:
W - TaRa = Ea.= Kmidn
200= T Ra + K QO = -Q"-&+kmwn =MMCK~'*‘&J
= Wm (24 2&‘&’—)3 Wy (24 0.05)
Wm = 2% = q7. 56 rad /sec . 7= GREx60= q31.64 1PM
CoYiMAfter the voltage changes
Ve=@u+iaRa= Kmim+laRa
Also, T= Knlasz J“%‘%"‘+ BWm

W Kmdom 'I'-E& c:%‘g’—"d-swm )= m"C“"'*'&é}‘f%%
= W (2+ 28283 ), 2552 dop = = W x2.05+ a5 A2

W (5)= 2.050,, (S +0.5[S0m(5) = Ghne ]
122 = 2.05wacer +0.5 [ SWals) -~ IT56]

Wm (5= %’ +48.78 _ (00 +48.78S _ [00+46,78S _ 200 + 0.9T56S
2.05+065 = SC2.056t06s) 05SCs+ %; SCs+ 41)
* L
s S+4.1
- 200 +97.56s8 200 46
A S+ 4 | S=e T ga ¢ 78
_ _200+97.56s _ 200 -975bxehl _ ”
> s ls=—4=| - -4\ %6.76

W = 4878+ 40.78 ¢ -+t
(i) Cum (e=>=48.78 reel fsec —> ﬁx&o— HE82 rpm

9.5 A separately excited dc motor has the following parameters:
R,=040, L,=0, K=1
B=10, J=45kg-m?

The motor operates at no load with V¥, =220 V and I; = 2 A. Rotational losses are negligible.

The motor is intended to be stopped by plugging, that is, by reversal of its armature terminal
voltage w (V, = — 220 V).

(a) Determine the no-load speed of the motor.
(h) Obhtain an expression for the mator speed after pligging.

(c) Determine the time taken for the motor to reach zero speed.



fSL.) Km= Kfeg = Ix2 = 2
No- Read —» Vi = Ea = 220 V = Eam Wme

wm; - 220

(b) After Uﬁfﬁa,e_ Mvensn.f — Va=-220vV

V¢ = €a + Rata = Kmim + Ra ta
T =« Emia = ‘_Téf."._':'

dt
ol Wm
Ve = Kntwm + Rnh-%-“ -
e .4 R4 § dmm
= 2idm + P

= Am + ©-9 ﬁ_:_&n
Va(s) = 2 Wm(s)+ ©-9 ( S Wm(s) = Wmo )

—220 = 2WmlS) + 6.9 S W(s) - 0-9x110

s
Wm(s) = § x4 2.312)
- A . 8
S S+ 2-222
tohere A =-1io 3= 220
- -2.222%¢
W) = L fmm&,ﬁ: -llo + 220€ rad./sec.

-l1:2232¢
@) ©a =-tlo + 220 **

t = 0.3!8 sec.

9.6 A separately excited dc motor has the following parameters:

R,=040, K=1
B=G.lkg-m2/sec, J=20kg-m’

The motor drives a constant load torque. With field current f; =2 A and armature terminals
connected to a 100V dc source, the motor rotates at 450 rpm.



(a) Determine the motor current /..
(b) Determine the friction torque (Bw,,) and the load torque (7).

{c) The mator is now disconnected from the de suopply. Obtain an expression for speed as a
function of time. The load torque remains on the motor shaft atter the motor is disconnected
from the supply. What is the new steady-state speed?

Ay Kn= Kf{,}.a IX2 = 2V fvad/sec
Wmo = ﬁ;ler = £7.124 rool/sec .
Ea = Kntom =2 Xx47.124=94.248V I.= -‘9%:#1—“1 = /. fo4h

(b) T= KnmIa= 2x/).504= 23N-m Tg=oix4T.124 =4 T124pN.m.
Te= 23-47124= B.2878 N.m

€ T=Knia=0= JELo 48 thn+Ts
T (S WmC3) = Wmo )T BWm(S) "'s_"’

TSWn(S) = F Wmo + B m(S) 4+ -&s—"ﬁ-ﬂa
W €S = Mﬂ 42485 — 18. 2874

8+3Is 2C540085%5
= A L —+ A‘-
= S +0.05
— arg
= SWm(s> 94. 2485 —18.2 = - 182876
A i l“'° = T2 ¢s+o005) S=o _S

A’; = (S+05)w €%) G4 248s — 18, 287,

Wm(s)= . _182.876 230
€ S+o0.05

Wt = -(92.876 + 230~ 2°5¢
wm(ccr= - 182.876 rad /sec

CHEck . Wm= ~i82.876 1230 = 47./24 = @&no
Ta= ol x182.874 =18.2874 = T,

9.7  The motor in Problem 9.6 runs at 450 rpm, with V; = 100V dc, and the load torque as obtained in
part (b). If the load is removed, find expressions for w,(f) and i,(f). What are the steady-state
values for motor speed and motor current with load removed?

T. removedl
T= Kmia= 542+ Bnwm
Vy = Rein+ Kmm= Kmwm+Ra (1= 22
= 2%+G.5*C?%+ g—'l-ﬂh)- 2mﬂ+o.5§—x_-“"'+a025"‘}m

joo = 2.0 285Wm+ 0.5 %",?”'

afa.'t. B"ﬂh)



12 = 2.0250n(S)+ 05 [swmts)— €7.124 ]
= 2.025m(S) T0.5S Wm(3) ~23.562
Wm(S)= _ 5=t 23.562
2.025 +o.5S

Wecsre Lfo0 +28. 6628 L 200+47.R¢s Al __As
mEYE 0.5s5(Cs+405) SCs+405) 3 S+ 405

A =swmisd| = :.,:?5 = 49.38

A = (s-rl.arzs'.)m,.cs:ls._ vos = 2:;;?. 124X q&qr'

4. 30 s 2.26
W) = —5 P

Wnit) = 49.38 - 2,26 e—%°5t
h}-(ﬂ}- 449.38

= 49,38~2.26=47.12

(f;: ._5‘_".5"_. — _{E_:;_wﬂ- 200— 4Wm

= 200 - 4(4‘? 38-2. ;69-4"5*‘) = 2. %+?9¢e ~4o5¢
£!,=‘2.4B +9.04= 1l.52A ”u = 2.48A — Yo load .

9.8

24 _ _
-gol” - 2.26

A separately excited dc motor has the following parameters:
R,=051, Ki=1
B =0.1 kg - m/seq, J=20kg -’

With field current Iy =2 A and the motor terminals connected to a 100V dc supply, the motor
rotates (with no load) and draws an armature current /;, = 2.469 A.

(a) Determine the motor speed and the developed torque.

(b) A load of constant torque 7. = 10 N - m is now applied. Obtain an expression for speed as a

function of time. What are the new steady-state speed, the motor current, and the developed
torgue?



@ KpIg=1x2=2

[oo= 20, + 0.5 X 2.469= Ea+IaRa
Wo= L‘-‘%‘.’; = 449.38 radian /sec =

ST, =2.2.469=4938 M. m

38, _
H8 x60=471.54 rpm

Cb) [00 = Kmtm + Rala,
Kmig = J?‘? 'f'Bd'bu'*H-
[00 = Km@m + Ra [—f& ot 1 5£:h.+
= 200 405 o 451,@,-1--;—-]- .zw..-ro.f-;,% +0025Wm +2.5

q7.5=05g|‘92 + 2.0250)m

In S cdomain
‘T:"‘ =05 [SWn(s)-W, ] ¥ 2025Wm(5)= 0.5[Swa(s)-44.38] + 2025Wm(3)

5 + 24.84 195 +44.383 A A 48,15 1,238
b e n5S 1205  S(CS+4.95) =-.5_!+qu-_0-|" =8 ' 5tger
Wuct) = 4815+ 1 2319e %5t

Wn |55 = Wm (o) = 48,15 vod fsec —= 457.8 VPR

= Koy O Joo - 2x 4B.1S __
Bl wlld = 22 = 7. 4A

Tlss = KmIa = 2X7.4 =148 N-m

9.9 A separately excited dc motor has the following parameters:
R,=050, Ki=1
B=0.1kg -m/sec, J=20kg - m*

With held current Iy =2 A and the motor terminals connected to a 100V dc supply, the motor

rotates (with no load) at a speed of 471.569 rpm.

(a) Determine the motor current and the developed torque.

(b) The field current is now reduced to 1.0 A. Obtain an expression for speed as a function of
timec. What arc the new steady-state speed, the motor current, and the developed torquce?

BT ar wmo= 2154, 2n = 443027 rad foec

L= —lee-2xa8.32% _ , L0,

Km=KIg =2
TakmIg= 2x248 = 496 N.»




(b> If reduced o 1A Finol met)
km= Kl = IxI =)
00 = Kmwm + & la
Kmla= J g&'—' + Bwm

100 = Kmim + Ra (T:’;.% +—% «J,.._j:ﬁ-aa.-*%ig% +.%f-az.,

a2 £ e.5x2 Y
1XW + 2222 oAwdm °.5x0 iy,

el o = @Wm -f-%‘;-"" 40,05 ®m
J;i’- = WS T S Wm(S) - me +0.05m(s>

122 4+ 44.38 = Wm(s)(1.051S)

"LI£51= S(3+].05) - 5 o S+ied5

A= To5 = 95.24

(oo +49.38(-105) _ _jeb -£1.88 _ _
Aa= —=(1.05) - lor 4586

Wn(t) = §5 24 — 45 86 e-1-o5¢
wnlu = q5.24 - 4586 = 49.38 rad fgec

CHECK : @ra Jog = 9524 Fadl [sec = 909. 4737 1P7

- Ix 9824 _
Inlee = 2252 = 9.52A

T= KmIa= IXx4q52Nm




9.10

A motor-generator set consists of a de generator and a de motor whose armatures are connected
in series. The generator is driven at the rated speed and the motor field current is kept constant at
its rated value. The machines have the following parameters:

Generator Motor

R,=0310 R, =060

K, = Kfwm = 100 V/A Km=Kil;=1.1 N-m/A
Ry =100 2
Li=50H

The rotational losses and the armature inductances are negligible. The motor is coupled to an
inertia load and the combined inertia of the motor and load is J = 1.75 kg - m’.
Derive an expression for the motor speed subsequent to the application of a step voltage of 50V

to the generator field circuit.

9-l0

IGT: k\?-mz

SoH _:fa
iaﬁ [ |

+ V¢ -
- d ¢
Vs = R;;;? +Lfa-_—éﬂ
Vi(s) = Rg Teqes) + L s I;}Cs)

£o -

22 = teo Tiges) + $0s Ifg(s)
£0

S {toeo + $05)

I,cﬂfs,) =

"ea, - k.a_ f-fz_ ;
— _ EY=X-1=
tﬂ-(s)'-' k& I"&'(s) - S(tos+ $05)

Ea - 'E& - EM = 'E’: - kﬂwﬁ
0.3+ 0.4 0.9




dt
- dw
_‘gg Ky = J ="
K 6.9 At
ey @) . = 75 G
ﬂv? t‘L-? i{-
l-2222 Ei. - 1.3%¢% Wy, = .75 —i_E

-2221 E?ts)— 344y Wmls) = 175 S Wmis)

km Eﬂ_ = 3' dm”

dt
- Adw

= Kmidwy = J S
& 0.9 dt
eleg 1) . = 75 L0m
1‘9-? ai_ﬁ- it

o

J.223 2 Ei. - {.3%%¢ W, = .75 _G{_E

-2221 E?cs)— 344 Omls) = 175 S Wmis)



/-2222 Eg(s)
I 34¢4g + 1.785S

Wms) =

- I-2222 % Secan

S(Ctee +56s)(1-344Y + /.75 )

- £9-8%
SCa2+s)( 0. 768§2+5)

A § B & &

& A+5 0. T682+5

45.457 . 28347 _ 73.80857
S A+ S .7682+ S

. - 0- t
Lmit) = 48457+ 28.349€ s 73.8308 &€ e

Example 2A A permaneni-magnel dc motor similar to that shown in
Fig. 2.2-6 is rated at 6 V with the following parameters: r, = 711, L4y =
120 mH, ky =2 oz -in/A, J = 150 poz - in. - s>. According to the motor
information sheet, the no-load speed is approximately 3350 r/min and the
no-load armature current is approximately 0.15 A. Let us attempt to interpret
this information.

First, let us convert ky and J to units that we have been using in this text. In
this regard, we will convert the inertia to kg-mz, which is the same as N-m s,
To do this, we must convert ounces to newtons and inches to meters
(Appendix A). Thus,

C150x 10 %
- (3.6)(39.37)

We have not seen kr before. It is the torque constant and, if expressed in the
appropriate units, it is numerically equal to k,. When k, is used in the expres-
sion for T, (T, = ki, ), it is often referred to as the torgue constant and denoted
ky. When used in the voltage equation, it is always denoted k,. Now we must
convert oz-in. to N-m, whereupon kr equals our k,: hence,

2
5 16)(0.225)(39.37)

1.06 x 107°° kg - m? (2A-1)

— 1.41 = 102N . m/A — 1.41 = 1072V . s/rad

(2A-2)



What do we do about the no-load armature current? What does it represent?
Well, probably it is a measure of the friction and windage losses. We could
neglect it, but we will not. Instead, let us include it as B,,. First, however,
we must calculate the no-load speed. We can solve for the no-load rotor speed
from the steady-state armature voltage equation for the shunt machine, (2.4-2),
with Lapis replaced by ki:

vﬂ - rr:fr? 6 — {?](D‘Iﬂ]

_Ya"Tala DT VA 35y radfs
“r k, (a1 xq02  obdrads
351.1}(6
_ BSL1)(60) _ 3353 r/min (2A-3)
2n
Now at this no-load speed,
T, = kyig = (141 x 1072)(0.15) = 2.12 x 107N - m (2A-4)

Because T; and J{dw,/dt) are zero for this steady-state no-load condition,
(2.3-6) tells us that (2A-4) is equal to B,m,; hence,
S 212x 107 2.12x107°

—_ — — 6. -6 . ) -5
B, o 3811 6.04 x 10" N -m-s (2A-5)

Example 2B The permanent-magnet dc machine described in Example 2A
is operating with rated applied armature voltage and load torque T, of 0.5
oz-in. Our task is to determine the efficiency where percent eff = (power
output /power input) 100.

First let us convert oz-in. into N-m:

_— 0.5
b 16)(0.225)(39.37)

=353 %x10°N-m (2B-1)

In Example 2A we determined k, to be 1.41 x 1072V - s/rad and determined
B, tobe 6.04 x 107°N - m -s.

During steady-state operation, (2.3-6) becomes
T, = B,m, + Tp. (2B-2)

From (2.3-5), with Lypi; replaced by k,, the steady-state electromagnetic
torque is

T, = k1, (2B-3)
Substituting (2B-3) into (2B-2) and solving for w, yields
k. 1
= —J] —— 2B-
iy Hm -lra Bm Tf. {-B 4}

From (2.4-2) with Lypiy = k,. we obtain

Vo = raly + kpo, (2B-5)



EXAMPLE 11.1

A 240-V, permanent magnet, dc motor takes 2 A whenever it operates at no load.
Its armature winding resistance and inductance are 1.43 Q and 10.4 mH, respec-
tively. The flux per pole is 5 mWb and the motor constant K is 360. The moment
of inertia is 0.068 kg:m?. If the motor is suddenly connected to a 240-V dc source
while operating at no load, determine its speed and armature current as a func-
tion of time.

e SOLUTION

The no-load data of the motor helps us determine the friction coefficient, D, as

outlined below
Since the motor requires 2 A at no load, its no-load speed is

o, = 240-143x2 _ 13174 rad/s
360 x 5 x 10°3

At no load, the developed torque
T,=360x5x107x2 =36 Nm

is primarily for the rotational losses. The friction coefficient D can then be calcu-
lated as

3.6
131.74

D= = 0.027 N-m-s

Prior to the application of armature voltage the motor speed and armature
current are zero. That is, at { = 0, 0, (0) = 0 and i,(0) = 0. In addition, the load
torque is zero because the motor operates at no load.

From Eq. (11.8), we get

240
18 —

5

Q (s) =
(0.027 + 0.068s) (1.43 + 10.4 x 107%) + 1.82



or

610859.72

Q,(s) =
s(s? + 137.89s + 4636.04)

In order to determine the inverse Laplace transform of Q, (s), we expand Q_(s)
into partial fractions as

A B C
Q)= —+ +
3 s+ 79.84 s + 58.10

where A, B, and C can now be determined by the root-substitution method. Thus,

A=s. 610,859.72 - 13174
s(s + 79.84) (s + 58.10) |,

B = (s + 58.10) 610859.72 = 351.87

(s + 58.10)s(s + 79.84) |,._ss10

610,859.72
C=(s+79.84) = —483.56

(s + 79.84)s(s + 58.10) |,-_ 7984

Finally, we can take the inverse Laplace transform of

131.74 . 351.87 ~ 483.56
s s+ 79.84 s + 58.10

Q,(s) =

and get the angular velocity in rad/s as
o, () = 131.74 + 351.87¢ 7784 _ 483565810t fort >0

The graph of ©_(t) is given in Figure 11.2.
From Egq. (11.9), the Laplace transform of the armature current is

23,076.92s + 9162.9

1(s)=
s(s + 137.895 + 4636.04)

a
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Figure 11.2 The motor speed as a function of time.

oS8558

In terms of its partial fraction expansion, I (s) can be written as

2 1054 1056
I(s)=—+ -
S s+5810 s+ 79.84

Finally, we obtain the armature current as
i,(8) = 2 + 1054810 — 1056e 7954 for t > 0

which is shown graphically in Figure 11.3.
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Figure 11.3 The armature current as a function of time.



EXAMPLE 11.2

The motor given in Example 11.1 is coupled to a load having a torque of 18.58
N‘m. Determine the variation of the motor speed as a function of time after the
motor is suddenly energized at its rated voltage at t = 0.

® SOLUTION

Since the voltage is applied to the armature circuit at ¢ = 0, the initial speed and
the armature current are both zero.
From Eq. (11.8),

18 230 _ 1838 ) 434104 x 10%)
8 5

Q _(s) =
(0.027 + 0.068s) (1.43 + 10.4 x 1073s) + 1.82

or

573,289.87 + s274.02

Q,.(s) =
s(s* + 137.89s + 4636.04)

123.66 . 34229 465.90
5 5+ 79.84 5+ 58.10

The inverse Laplace transform of Q_(s) yields
o, (1) = 123.66 + 342.29 ¢ 79843 _ 4659058100 for >0

The Laplace transform of the armature current is calculated from Eq. (11.9) as

56,447.963 + 523,076.923

I, (5) =
s(s? + 137.89s + 4636.04)

or in terms of its partial-fraction expansion as

_ 1218 _ 1027 N 1015
s s+ 79.84 s+ 58.10
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Figure 11.4 The variations in (a) the motor speed and (b) armature current as a function
of time.

The inverse Laplace transform of I (s) yields
i(t) = 12,18 - 10277284 + 1015¢3810¢ fort>0

The variations in motor speed and armature current as a function of time are
given in Figure 11.4.

For all practical purposes, the motor attains its steady-state operation after
five time constants. Thus, this motor takes approximately 86.06 ms (based upon
the largest time constant) to achieve its steady state.

EXAMPLE 11.3

The motor studied in Example 11.1 is suddenly energized with its rated voltage
at t = 0 when it was at rest and coupled to a linear load of T; = 0.1 ©,,.

(a) Determine the variation of the motor speed as a function of time for
tz Q.
(b) Calculate the time needed to achieve the steady state.



e SOLUTION

(a) Since the motor was at rest before it was energized at t = 0, the initial
speed and the initial armature current are zero. Thus, from Eq. (11.8)
with T, (s) = 0.1 Q_(s), we get

( 1.8 (240/s) ~ 0.1Q,_(1.43 + 10.4 x 10°%)
5) =
" (0.027 + 0.068s) (1.43 + 10.4 x 10-3%) + 1.82

and after grouping the terms, we obtain

610,859.729

Q) =
s(s? + 139.37s + 4838.24)

The roots of the pnlynnmial in the denominator are
$,=0, s5,=-73946, and  s,=-65.392

Thus, in terms of partial-fraction expansion, Q_(s) can be written as

126.256 . 956.776 1092

Q,(s) = -
s s+ 73946 s+ 65392

The inverse Laplace transform yields, for f > 0
®, (1) = 126.256 + 956.776¢ 73946 — 109245 rad /s

The variation of the speed with time is also given in graphic form in
Figure 11.5a. From Eq. (11.9), we can calculate the Laplace transform of
the armature current as

L6 = 23,076.92s + 43,099.55
‘ s(s2 + 139.37¢ + 4838.24)

or in partial-fraction expansion form as



Finally, we can obtain i () from the inverse Laplace transform as
i () = 8.908 — 2615¢ 96! + 2606 %3 rad /s  for >0

Figure 11.5b illustrates the variation of the armature current as a func-
tion of time.
(b) The largest time constant of the above exponential terms is
1
65.392

=0.0153 s

T =

To achieve a steady state, the time taken should, at least, be 5t. Hence,
t=5x0.0153 = 0.0765 s = 76.5 ms

is the time needed to reach the steady state.

In Examples 11.1, 11.2, and 11.3, we deliberately used the same motor to give
you the opportunity to observe the responses of the same motor under different
operating conditions.
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Figure 11.5 The variations in (a) the motor speed and (b) armature current as a function
of time.



EXAMPLE 11.4

A 240-V, 12-hp, separately excited dc motor operating on a load of 15 N-m in
the linear region of its magnetization characteristic has the following param-
eters R, =028 Q, L, = 2.81 mH, Rf = 320 0, Lf =2 H, [ = 0.087 kg-mz, D =0.02
N-ms, and K; = 1.03. Determine the variation of the motor speed, armature cur-
rent, and field current as a function of time when the field voltage is suddenly
reduced from 240 Vto 192V at = 0.

e SOLUTION

Since the motor has been operating at steady state on a load of T; = 15 N-m before
the field voltage is suddenly changed, we have to evaluate first the initial condi-
tions on o, (t), i (t), and r}(f} from Egs. (11.11), (11.12a), and (11.12b) as applied at
steady state for ¢t < 0,

240 = 320i,(0)
1.03i,(0)w,,(0) = 240 - 0.28i,(0)
103 (0)i,(0) = 15 + 0.020,,(0)

Simultaneous solution of the above equations yields
0, (0) =300.79 rad/s,  {(0)=272A, and i(0)=075A

When the field voltage is reduced to 192 V suddenly, the field current will
drop from 0.75 A to a steady-state value of [. = 192/320 = 0.6 A after a short
duration. Using Egs. (11.14a), (11.14b), and (1 1.{44:}. we can determine the Laplace
transform of the angular velocity, armature current, and field current as

300(s? + 99.80s + 1960.82)

Q (s) =
s(s* + 100.03s + 1581.73)




27.14(s* + 708.58s + 2116.01)

1(s) =
s(s? + 100.03s + 1581.73)
ff ) = 0.75(s + 128)
sl(s + 160)
or
3719 2416 94 868
Q (8= —+ =
5 5 + 80.079 s+ 19.816
36.307 271.582 262.513
1(s) = - + ——
5 s + 80.079 5 + 19.816
0.6 0.1
l} {s) = + 5
5 s + 160

in partial fraction expansion form. Taking the inverse Laplace transform yields

o, () = 371.9 + 24,16e 5007 _ 94 gage-19.816¢

i,(1) = 36.307 — 271.582e78007% 4 267 513, 19816¢
ip(t) = 0.6 + 0.15¢'

as the variation of the angular velocity, armature current, and field current, respec-
tively. The waveforms are given in Figures 11.7, 11.8a, and 11.8b. From Figure
11.7, it is clear that the field current attains its steady state at about 30 ms whereas
it takes about 300 ms for the speed and thereby the armature current to do so.
This is in accordance with our assumption that the mechanical response is slug-
gish in comparison with the electrical response that resulted in the change of
states. Another important fact that can be observed from this problem is that the
armature current increases to a peak, which is well over the motor rating. Again
this is mainly due to the mechanical time constant of the motor that does not
allow a rapid change in the back emf of the motor. Therefore, it is recommended
that the field current be gradually varied so that high currents will not take place
in the armature circuit. Lastly, you can notice that the final value of the armature
current is higher than what we had before the field current was reduced. The rea-
son is that the mechanical losses increased significantly with increasing motor
speed leading to a higher torque demand. Consequently, the increase in devel-
oped torque caused an increase in armature current.
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EXAMPLE 11.5

A separately excited dc generator operating at 1500 rpm has the following para-
meters: R, = 3 0}, L, = 25 mH, and K, = 30 V/A. If a dc voltage of 120 V is
suddenly applied to the field winding under no load, determine (a) the field cur-
rent and the generated voltage as a function of time, (b) the approximate time to
reach the steady-state condition, and (c) the steady-state values of the field current
and induced voltage.

® SOLUTION

{a) From Eq. (11.25)

120
5
) = 35 0025
_4 4w
s s + 120

Therefore, the field current is
i (t) = 40(1 - g 1204y A fort =0
and the generated voltage is
edt) = K (t) = 120001 - ™)V fort =0

The graphs of i;and ¢, are shown in Figures 11.10 and 11.11, respectively.
(b) For all practical purposes, the field current attains its steady-state value
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Figure 11.11 The induced voltage as a function of time.

(c)

after five time constants. Thus, the time required to reach the steady
state is

T = % = 0.0417 s or 41.7 ms

The final values of the field current and the induced (no-load) voltage
are Iy = 40 A and E, = 1200 V, respectively.



EXAMPLE 11.6

The parameters of a 240-V, PM motor are R, = 03, [, = 2 mH, K = 08,
] = 0.0678 kg-m”. Determine the motor speed and the armature current as a func-
tion of time when the motor is subjected to a torque of 100 N-m after 200 ms of
starting at no load. Consider a step length of 0.01 s and observe the response for
a period of 0.5 s. Neglect the frictional losses and assume that the motor operates
in the linear region.

® SOLUTION
From Eg. (11.3), for { < 200 ms, we have

() = [“j’;ﬁ)] u(t) = [ZEU]
0 18 -1475 0
A=[~4ﬂﬂ —150] and B=[ 0 5{1{:-]

with initial values of w,,(0) = 0 and i{t) = 0.

For £ = 200 ms,
100 299.93
ut) = [24:}] and  302) = [ 0.25 ]
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Figure 11.14 The motor speed as a function  Figure 11.15 The armature current as a
of time. function of time.



EXAMPLE 10A A permanent-magnet dc motor is rated at 6 V with the following
parameters: r, = 7Q, L., = 120mH, k; = 20z-in/A, J = 150 poz-in-s>. According to
the motor information sheet, the no-load speed is approximately 33501/min, and the
no-load armature current is approximately 0.15A. Let us attempt to interpret this
information.

First, let us convert k; and J to units that we have been using in this book. In this
regard, we will convert the inertia to kg-m®, which is the same as N-m-s". To do this,
we must convert ounces to newtons and inches to meters (Appendix A). Thus,

1501076
J=—"  _106x10" kg-m> (10A-1)
(3.6)39.37)

We have not seen k; before. It is the torque constant and, if expressed in the appropriate
units, it is numerically equal to k,. When k, is used in the expression for T. (T, = k.i,.).
it is often referred to as the torgue consrant and denoted as k;. When used in the voltage
equation, it is always denoted as k,. Now we must convert ounce-in into newton-meter,
whereupon k; equals our k,; hence,

2

= =141%x102 N-m/A =141x102 V-sfrad (10A-2)
(16)(0.225)(39.37)

What do we do about the no-load armature current? What does it represent? Well,
probably it 1s a measure of the friction and windage losses. We could neglect it, but we
will not. Instead, let us include it as B,,. First, however, we must calculate the no-load
speed. We can solve for the no-load rotor speed from the steady-state armature voltage
equation for the shunt machine, (10.4-2), with L,z replaced by k,:

Vo —rd. _6-(7)0.15)

, = = —= =7351.1rad/s
k, 1.41x107°
= G3LDOD) _ 3353 1/min (10A-3)
2
Now at this no-load speed,
T.=k,i,=(1.41x107)(0.15)=2.12x107° N-m (10A-4)

Since T; and J(d®/dt) are zero for this steady-state no-load condition, (10.3-4) tells us
that (10A-4) is equal to B,,@,; hence,

S 2.12x107  2.12x10°
" o T 3511

r

=6.04x10° N-m-s (10A-5)



EXAMPLE 10B The permanent-magnet dc machine described in Example 10A is

operating with rated applied armature voltage and load torque 7, of 0.5 0z-in. Our task

is to determine the efficiency where percent eff = (power output/power input) 100.
First let us convert ounce-in into newton-meter:

_ 0.5
(16)(0.225)(39.37)

=353x107" N-m (10B-1)

L

In Example 10A, we determined k, to be 1.41 x 107*V s/rad and B,, to be 6.04 x 10°N-m:-s.
During steady-state vperation, (10.3-6) becomes

T,=B,w,+T; (10B-2)
From (10.3-5), with L, replaced by k,, the steady-state electromagnetic torque is
T;v = kr-{:r (IGB_BJ

Substituting (10B-3) into (10B-2) and solving for @, yields

W, =] ——T, (10B-4)



From (10.4-2) with L, = k,,
V,=rl,+ko, (10B-5)

Substituting (10B-4) into (10B-5) and solving for I, yields

m

r,+(k>/B,)
_6+[(l.41><l()_2]f(6.04><10_5}J(3.53X10_3}
T+(1.41x107)° /(6.04 x107%)

V, +(k, /BT,

=0.357A (10B-6)

From (10B-4),

o, =207 s 1 353x107)
6.04x107° 6.04x107°°
=249 rad/s (10B-7)
The power input is
P, =V, 1, =(6)(0.357)=2.14 W (10B-8)
The power output is
Py =T.m, =(3.53x107)(249)=0.8 W (10B-9)
The efficiency is
in
:%100:41.1% (10B-10)
2.14

The low efficiency is characteristic of low-power dc motors due to the relatively large
armature resistance. In this regard, it is interesting to determine the losses due to i’r,
friction, and windage.

P:lr = rafﬁ Z(?)(U.35?}2 =080 W (10B-11)
P, =(B,m,)m, = (6.04x10°)(249)* =0.37 W (10B-12)

Let us check our work:
P,=P, +P;, +P, =089+0.37+0.88=2.14 W (10B-13)

which is equal to (10B-8).



Consider the 100-hp de¢ motor of Examples 11.3 and 11.4 to be driving a load whose torque
varies linearly with speed such that it equals rated full-load torque (285 N-m) at a speed of
2500 r/min. We will assume the combined moment of inertia of the motor and load to equal
0.92 kg-m?. The field voltage is to be held constant at 300 V,

a, Calculate the armature voltage and current required to achieve speeds of 2000 and
2500 r/min.

b. Assume that the motor is operated from an armature-voltage controller and that the
armature voltage is suddenly switched from its 2000 r/min to its 2500 r/min value.
Calc¢ulate the resultant motor speed and armature current as a function of time.

¢. Assume that the motor is operated from an armature-current controller and that the
armature current is suddenly switched from its 2000 r/min to its 2500 r/min value.
Calculate the resultant motor speed as a function of time.

M Solution

a. Neglecting any rotational losses, the armature current can be found from Eq. 11.4 by
setting Toean = Toad

Substituting

[
Thad = (—) Tﬂ
ny

where n 15 the motor speed in r/min, ny = 2500 t/min and T; = 285 N-m gives

_ n Ty
T uffi'fff

Solving for V, = E, + I, R, then allows us to complete the following table:

r/min wy [rad/sec) V. [Vl i, [A] Tiosa [N - m)

2000 209 410 119 228
2500 262 513 149 285




b. The dynamic equation governing the speed of the motor is

dw,,
3? = Toec = Ticaa

Substituting w,, = (7r/30n and w, = (7 /30)n; we can write

()=

Under armature-voltage control,

V,— E
Tma::h = Kf-’ffa = Hrfr ( il)
R,

Va_xf m
=xf;r(_'_‘m)

R,

and thus the governing differential equation is
da,, V: = Kilwo, Ty
J? = Kl; (T) - (; im

dwn 1 (Tf. (x.r,-:ﬁ) KV,
— + mm _—

AT R, JR.

or

dew,

+ 484w, — 247V, =0
di




From this differential equation, we see that with the motor initially at w, = @ =
209 rad/sec, if the armature voltage V, is suddenly switched from ¥, = 413 V to
V; = 513V, the speed will rise exponentially to @, = @ = 262 rad/sec as

-”'r

W, = wy + (w; — e
= 262 — 53¢ radfsec

where 1 = 1/48.4 = 20.7 msec. Expressed in terms of r/min
n = 2500 — 50¢~'"" r/min

The armature current will decrease exponentially with the same 20.7 msec time
constant from an initial value of (V; — V;)/R, = 1190 A to its final value of 149 A,

Thus,
I = 149 4 10417 A

Notice that it is unlikely that the supply to the d¢ motor can supply this large initial
current (eight times the rated full-load armature current) and, in addition, the high
current and corresponding high torgue could potentially cause damage to the dc motor
comumutator, brushes, and armature winding. Hence, as a practical matter, a practical
controller would undoubtedly limit the rate of change of the armature voltage to avoid
such sudden steps in voltage, with the result that the speed change would not occur as
rapidly as calculated here.



¢. The dynamuic equation governing the speed of the motor remains the same as that in
part (b) as does the equation for the load torque. However, in this case, because the motor
1$ being operated from a current controller, the electromagnetic torque will remain
constant at T, = Tt = 285 N-m after the current is switched from its ininal value of
119 A to its final value of 149 A.
Thus

d T
IR = Toen = Tosa = Ti = (—f)wm
1 Wy

or

In this case, the speed will rise exponentially to w, = @y = 262 rad/sec as

W = W + (@, — we’

= 262 — 53¢ ™" rad/sec

where now the time constant r = 1/1.18 = 845 msec.

Clearly, the change in motor speed under the current controller is much slower.
However, at no point during this transient do either the motor current or the motor torque
exceed their rated value. In addition, should faster response be desired. the armature
current (and hence motor torque) could be set temporarily to a fixed value higher than the
rated value (e.g.. two or three times rated as compared to the factor of 8 found in part (b)),
thus limiting the potential for damage to the motor.

Practice Problem 11.6

Consider the dc motorfload combination of Example 11.6 operating under current (torque)
control to be operating in the steady-state at a speed of 2000 t/min at an armature current of
119 A. If the armature current is suddenly switched to 250 A, calculate the time required for
the motor to reach a speed of 2500 r/min.

Solution
(.22 sec



Example 2.1

A dc motor whose parameters are given in example 2.3 is started directly from a 220-V dc
supply with no load. Find its starting speed response and the time taken to reach 100 rad/sec.

Solution
w(s) G ~ K, _ 15.968
V(s) wis) = s(JL,) + s(B,L, + JR,) + (B,R, + K}) s’ + 167s + 12874
220
V(s) = —
(s) S
3.512 % 10°
w(s) =

s(s* + 167s + 12874)
w(t) = 272.8(1 — 1.47e ¥'5in(76.02t + 0.744))

The time to reach 100 rad/sec is evaluated by equating the left-hand side of the above cqua-
tion to 100 and solving for t, giving an approximate value of 10 rad/ms.

Example 2.2

A separately-excited dc motor is delivering rated torque at rated speed. Find the efficiency of
the motor at this operating point. The details of the machine are as follows: 1500 kW, 600V,
rated current = 2650 A, 600 rpm, Brush voltage drop = 2 V, Field power input = 50 kW, Ra =
0.003645 (1. L, = 0.1 mH, Machine frictional torque coefficient = 15 N-m/(rad/sec). Field cur-
rent is constant and the armature voltage is variable.

Solution To find the input power, the applied voltage to the armature to support a
rated torque and rated speed has to be determined. In steady state, the armature voltage is
given by

Va = Ra[ar + Khmmr + Vhr

where [ is the rated armature current, given as 2650A, w,,, 15 the rated speed in rad/sec, and
V.. 1s the voltage drop across the brushes in the armature circuit and is equal to 2V (given in
the problem). To solve this equation, the emf constant has to be solved for from the available
data. Recalling that the torque and emf constants are equal. the torque constant can be com-
puted from the rated electromagnetic torque and the rated current as

T,

(4] Th + T[
] -

K, =

an ar



where the rated electromagnetic torque generated in the machine, T,,, is the sum of the rated
shaft torque T, and friction torque T,. The rated shaft or output torque is obtained from the

output power and rated speed as follows:
2r * 600

Rated speed, w,,, = 0 62.83 rad/sec
P, 1500*10°
Rated shaft torque, T, = ey e 23873 N'm

r
Friction torque, T; = B w,,, = 15 *62.83 = 94245 N'm
The electromagnetic torque, T,, = T, + T; = 23,873 + 942.45 = 24 815.45

Therefore, the torque constant is

T, 2481545
== - 9364 N'm/A
‘T, 2650 m/
K, = 9.364 V/(rad/sec)
Hence the input armature voltage is computed as
V, = 0.003645 * 2650 + 9.364 * 62.83 + 2 = 600 V
Armature and field power inputs = V., I, + Field power input = 600 * 2650 + 50,000 = 1640 kW

Output power, P, = 1500 kW

100 = 91.46%

Efficiency. n = 1640 * 10°

Pn 1500 * 10°
P

Example 2.3

A separately-excited dc motor with the following parameters: R, = 0.5 (1. L, = 0.003H, and
K, = 0.8 V/rad/sec. is driving a load of J = 0.0167kg-m’, B, = 0.01 N-m/rad/sec with a load
torque of 100 N-m. [ts armature is connected to a dc supply voltage of 220 V and 1s given the
rated field current. Find the speed of the motor.

Solution The electromagnetic torque balance is given by

dwy,
dt

Té = T'| + B]UJT" "'j

duwy,
In steady statc.T =0

T. =T, + Byw, = 100 + 0.01w,
T, = Kyi, = 100 + 0.0lo,
. (100 + 0.0lw,,) _
i, = < = (125 + 0.0125w,, )
b

e =V — R,i, =220 — 0.5 X (125 + 0.0125w,) = 157.5 = 0.00625w,, = Kyw,

Rearranging in terms of w_,

w,(0.8 + 0.00625) = 157.5

157.5
0.80625

Hence w,, = = 195.35 rad/sec



Example 2.4

A series-excited de machine designed for a variable-speed application has the following
name-plate details and parameters:

3 hp, 230 V, 2000 rpm
R,=LSQR, =070 L, =012 H,L, =003 H,M = 00675 H. B, = 0.0025 N-m/(rad/sec)

Calculate (i) the input voltage required in steady state to deliver rated torque at rated speed
and (i1) the efficiency at this operating point. Assume that a variable voltage source is avail-
able for this machine.

Solution (1) The name-plate details give the rated speed and rated power output of

the machine. from which the rated torque is evaluated as follows:
2N 21 * 2000 3
0 - = o - 209.52 rad,sec

P, 3*745.6
Rated output torque. T, = — = ——— = 675 N-
ed output torque. T, o 309.52 m

Friction torque of the machine, T, = Bywy, = 0.0025 * 209.52 = (.52 N-m

Rated speed, w,,, =

Aiar gap torque. T, = T, + T; = 10.675 + 0.52 = 11.195 N'm
The voltage equation of the de series machine from the equivalent circuit is derived as
di, di,

v = R, + Rgip + Mig,, + LJE + L""’I

where the armature and field current are equal to one another in the series dc machine (I, = 1,)
and, in steady state, the derivatives of the currents are zero, resulting in the following expression:

V= (R, + R + Mu, )1,

and air gap torque is given by
T, = Mig, = Mii = MI; (N'm)

The air gap torque is computed as 11.195 N-m, and the steady-state armature current is found

from the expression above as
95
I, = I—"': LY = 1288 A
) MV 0.0675

which. upon substitution in the steady-state input voltage equation at the rated speed. gives

V =(15+ 0.7 + 0.0675 * 209.52) 12.88 = 210.46V

(i) The input power is P, = VI, = 210.46 * 12.88 = 2.710.45 W
The output power is P, = 3 * 745.6 = 2236.8 W

P, 22368
Efficiency ism = F"_‘ = 1045 * 100 = 82.5%




Example 3.1

A separately-excited dec motor has the following ratings and constants:

2.625 hp.. 120V, 1313 rpm. R, = 08 (L. R, = 100 (). K, = 0.764 Vs / rad. L, = 0.003 H.
L,=22H
The dc supply voltage is variable from 0 1o 120 V both 1o the ficld and armature, indepen-
dently, Draw the torque-speed characteristics of the de motor if the armature and field cur-
rents are not allowed to exceed their rated values, The rated flux is obtained when the field
voltage i1s 120 V. Assume that the field voltage can be safely taken 1o a minimum of 12V only.

Solution (i) Calculation of rated values
20N 2w x 1313

Rated speed. w,, = 60 =0 = 137.56 rad/sec
Output power 2625 % 745.6
o. - i — - — 4 " 1.
Rated 1orque. T, Rated spoed 137,56 1423 N'm
Rated _ i Rated torque 1828 . .
ated armature current. 1, = K, = 0764 NA3A
\/ 120
Rated field current, I, = — = — = 12 A
¥R, 100

(ii) Calculation of torque-speed characteristics:
Case (a) Constant-flux/torque region:

& = Vo — LR, = 120 - 18.63 x 0.8 = 105.1

ey 105.1
Wy = 'K—: = m = 137.56 rad/sec.
W) 137.56 e
Wi = = = 1.0 p.u.
e 13156 P

Hence, constant rated torque is available from 010 1.0 p.u. speed.
Case (b) Field-weakening region:
For | p.u. armature current. the maximum induced emf is

e,  105.1
Ry e

- = 1.0p.u.
& WaE - Ee

To maintain this induced emf in the field-weakening region,

€ _ 10
S e p.u.

':t'ln =



If the range of field variation is known, the maximum speed can be computed as follows:

LN

| =
I man R[ lm

[.2 A ol field current corresponds to rated field flux and hence 0.12 A corresponds 1o
0.1y, and hence
O.1p.u. < by < 1 pu.

1

Wmay = U_I = 10 p.u.

For various speeds between | and 10 p.u.. the field flux is evaluated from the equation as

by, = 3 in p.u.

mn

T = by forl, = 1 p.u.

The torque, power, and flux-vs.-speed plots are shown in Figure 3.2,

Example 3.2
Consider the dc motor given in Example 3.1. and draw the intermittent characternistics if the
armature current is allowed to be 300% of rated value,

Solution (i) Constant-flux/torque region

= 3]

I an - an

T.m = maximum torque = Kyl = 0.764 X 3 < [863 = 427 N-m.
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Figure 3.2 Continuous rating of the dc motor
i ¥ 42,7
Tﬂ.= m:——-—:_’.p._u_

T, 1425



The maximum induced emf 1s
€m = I"""'m:.'n = ]muRa = 12” L3 {3 X 1863) x UB == ?5.29\"

Speed corresponding to this induced emf s

Cu  15.29 A
Wy = K, = 0764 - 9¥.54 rad/sec
98.54
= =0.716 p.u.
Y " 137.56 P

Beyond this speed, hield weakening is performed.

(ii) Field-weakening region:

|
cy = 7520V
e 7529
. o O Tibun.
€ = 1051 105.1 P
¢ _ 0716
e i _——— e———V.L
B

The range of the normalized field flux is

0.1 <d, <]

0.716 0.716
—= = ——— = 16 DA

The maximum normalized speed 1s w,,, = —
d)II'III'I1I-I1I u'l
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Figure 3.3 Normalized motor characteristics for 3 p.u. armature current

T,, = &, per rated current = 3d, in the present case.
The intermittent charactenstics are drawn from the above equations and are shown in Figure 3.3.
Example 3.3

Consider a motor drive with R, = 0.1 pu. &, = | pu.V_ = LI pu. and extreme load
“pera[ing Pﬂiﬂts T:Il:mmj - ﬂl pu Weinimin) = I.lenl = 0.1 P'u"-]-c.‘lrnq\rb =14 p-u.. ﬂnd Wennimax) —
Wy = 1 pu

(i) Find the normalized control voltages to meet these operating points.



(ii) Compute the change in control voltages required for a simultancous change of AT, =
0.02 p.u. and Aw, = 0.01 p.u. for both the extreme operating points. From this, calculate
the resolution required for the control voltage.

Solution Assume that the controller is linearized.

N £ S—

o

from which the electromagnetic torque is,

1.35VoVan = @0y
R,

Ten - [ ]‘hh- p-u.

where V_, is the normalized control voltage for a given steady-state operating point and s
obtained as

TﬂRan * d’lummn
V. =
o 135V,

Since &, = 1 p.u., the control voltage for minimum torque and speed is

s TenIRln + S = 0.1*01 + 0.1

- 135V, 1asen o o0Mpu
Similarly for maximum torque and speed. the control voltage is
TR + Gptimaz  1*0.
Voo = en LT = 1*0.1 + 1 g 0.T4p.u.

1.35V, 1.35* 1.1

Incremental control voltage generates incremental torque and speed as

Rm{Tcn + ﬁTfﬂ) * ml'lll'l + IB<'n|'|'"|

Vin + 8V =

R..AT,., + bu,,
135V,

For both changes, dv,, =

Dividing 8V_, by V_, gives an expression in terms of steady-state operating points as
dvg,  R,0T,, + duy,
Ve RuTen + @y
8T, = 0.02 pu., g, = 001 pu. T, =01 pu.wy, =01 pu.T,, = 1 pu,wy, = | pu.
v, 0.1*0.02 + 001

For Toiomeet 3= = grvor v on ~ O
bv 0.1 *0.02 ;
R T gt o %= - 1:01 = 0.0109

Therefore, the resolution required in control voltage is
BV., = 0,109 #V,, = 0.109 * 0.074 = 0.008066 p.u.



Example 3.4

A separately-excited de motor has 0.05 p.u. resistance and is fed from a three-phase con-
verter. The normalized voltage and field flux are 1 p.u. Draw the torque-speed characteristics
in the first quadrant for constant delay angles of 0, 30, 45, and 60 degrees. Indicate the safe
operating region if the maximum torque limit is 2.5 p.u.

Solution

[1.35V,cosa — ®p0y,]
Ten = R

by, pu.

Substituting the given values yields
T., = 20[1.35 cos a = wy,,]. p-u.

The torque-speed characteristics for various angles of delay are shown in Figure 3.21. The
safe operating region is shaded in the figure.

Example 3.5
The details and parameters of a separately-excited dc machine are
100 hp, S00 V. 1750 rpm, 153.7 A. R, = 0.088 (), L, = 0.00183 H, K, = 2.646 V/(rad/sec)

The machine is supplied from a three-phase controlled converter whose ac input s from a
three-phase 415V, 60 Hz utility supply. Assume that the machine is operating at 100 rpm with
a triggering angle delay of 65°. Find the maximum air gap torque ripple at this operating

point.

04 |- -
iI.Il
02 |- ~
0.0 TR e | |
0 30 60 9% 120 150 180

wl, deg.

Figure 3.25 The armature current, applied voltage. and induced emf for a typical discontinuous conduction



Solution To find the current ripple, it is essential to determine whether the current is
continuous for the given triggering delay by evaluating the critical triggering angle. It is found as
follows:

27N, 2w * 100
60 60

Induced emf, E = Kyw,, = 2.646 * 1048 = 277V
Peak input voltage, V,, = V2 *415 = 5869V

Rotor speed. w,, = = 10.48 rad/sec

Input angular frequency. w, = 2mf, = 2w * 60 = 376.99 rad/sec

; T. = — = ——— = 0.0208 sec
Armature time constant, T, R, 0.088

Machine impedance, Z, = V R} + wiL] = 0.69550)

SLI
Machine impedance angle,B = lan"(mR ) = 1.444 rad

The critical triggering angle is

E/Va |
u:=ﬂ+cns'l{ “f ' 1 (1 _E-tv-]ﬂnﬂ}}} "E"‘B;
c, cosp 3
where
a; = ﬂ = (1.866

2

B, = % = u-Umat) = <0375

¢; = Val + b} = 0.9437

b
8, = tan ‘(;—') =~ ().4086 rad
1
from which the critical angle is obtained as a, = 1.5095 rad = 86.48°. The triggering
angle a is 65°, which is less than the critical triggering angle: therefore, the armature
current is continuous. Having determined that the drive system is in continuous
mode of conduction, we use the relevant equations to calculate the initial current,
given by

(%){mn(? ‘a- B) - sin(; - B)c {G'J};iu - ¢ (<¥)

Yoy = = 2308.1 A

l —e W



The peak armature current is found by having wt = n/6, 1.e.. at the midpoint of the cycle.
This is usually the case, but the operating point can shift it bevond 30°; therefore, it is neces-
sary 1o verify graphically or analytically where the maximum current occurs and then substi-
tute that instant 1o get the peak armature current from the following equation:

i(1) = (!;"}){sin{w‘l +n/3+a-B)-sin(n/3 + a-Be "N - (igl)(l - e VT

+ e =24115A
The armature current ripple magnitude. Ai, = 24115 — 2308.1 = 1034 A
The ripple torque magnitude, AT, = K, A1, = 2646 * 103.4 = 273.86 N°-m
Average air gap torque, T,,., = 1K, = [|2411.5 + 2308.1] * 0.5] * 2.646 = 6244 N-m

Note that the ripple current magnitude is less than 5% and therefore is approximated as a
straight line between s mimmum and maximum values in each part of its cycle.
Torque ripple as a percent of the operating average torque 1s
AT. 273.86

=100 =— *100 = 44%
Tatans 6244

'&Ttn =

Example 3.6

Design a speed-controlled dc motor drive maintaining the field flux constant. The motor
paramciers and ratings are as follows:

220V.83A. 1470 rpm. R, = 4(),) = 0.0607 kg = m,. L, = 0072 H. B, = (.0869 N-m /
rad/sec. K, = 1.26 Virad/sec.

The converter is supplied from 230V, 3-phase ac at 60 Hz. The converter is linear. and its
maximum conirol mnput voltage 18 *10 V. The tachogenerator has the transler tunction
0.063 .
Gls) = i+ [”i}b} The speed reference voltage has a maximum of 10V, The maximum
current permitted in the motor is 20 AL

Solution (i) Converter transfer function:

_ 135V 135 x 230

Ve 10
Vydmax) = 3105 V

K,

= JOSV/V

The rated dc voltage required 1s 220 V, which corresponds 1o a control voltage of 7.09 V. The
transfer function of the converter 1s

31.05

—_— -V
(1 + D.00138s)

G,(s) =



(ii)  Current transducer gain: The maximum safe control voltage is 7.09 Voand this has 1o
correspond 1o the maximum current error:

Iy = 20 A
7.09 7.09
H, = — = = 0.355 V/A
3 IFIII\ 2{: .
(i) Moior transler lunction:
B, 0.0869

= —————————— = (L0449
Ki + R,B, 1.26% + 4 x 0.0869

BT DT
NI 1T VAT L, 0.

]

I
T 3 5
T, = 0.1077 sec
T, = 0L.0208 sec
3 1
I, = e 0.7 sec

]

The subsystem transfer functions are

I(s) (1+5sT,)  0.0449(1 + 0.75)
Vis) (14 ST)(1 +5sTy) (1 +0.0208s)(1 + 0.1077s)
w.(s) KyB, 145

I(s) (1+sT,) (1+07s)

(iv) Design of current controller:
T. = T; = 0.0208 sec

T 007l

2T, 2 x 0.001388

& o KT. 38.8 % 0.0208 <
" KHK,T, 00449 x 0355 x 3105 x 07

K

(v) Current-loop approximation:
Lis) K,
Ii(s) (1 +sT,)




where

Ktl ]
K, =—2-- -

H: “ + Kﬂ}
KKK T H

Kg = ——"— = 388
7715 1

~ K= g 0388 - 2P
Ts 0.100

= — = {], ?
L TR T

The vahidity of the approximations is evaluated by plotting the frequency response of the
closed-loop current to its command, with and without the approximations. This is shown in
Figure 3.34. From this figure, it is evident that the approximations are quite valid in the fre-
guency range ol interest.
(vi) Speed-controller design:

T,=T,+ T, = 00027 + 0.002 = 0.0047 sec

K. = KiKeH, 275 X 1.26 x 0.065 g

= BT 0.0869 % 0.7
S 3
2K,T, 2 x 3.70 x 0.0047

T, = 4T, = 4 x 0.0047 = 0.0188 = sec

= = 3.70

K, 28.73

The frequency responses of the speed to its command are shown in Figure 3.35 for cases
with and without approximations. That the model reduction with the approximations has
given a transfer function very close to the original is obvious from this figure. Further, the

10 T

approximate

10° 10! 10° s 10
w, rad/sec

Figure 3.34 Frequency response of the current-transfer functions with and without approximation
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Figure 3.35 Frequency response of the speed-transfer functions with and without approximation
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Figure 3,36 Frequency response of the speed-transfer function with smoothing for the cases with and
without approximation

smoothing of the overshoot by the cancellation of the zero with a pole at —1/4T, is shown
in Figure 3.36. This figure contains the approximated transfer funcuion of third order for
the speed to its command-transfer function and the one without any approximations.
Agan, the closeness of these two solutions justifies the approximations.

The time responses are important to verify the design of the controllers, and they are
shown in Figure 3.37 for the case without smoothing and with smoothing. The case without
any approximation is included here for the comparison of all responses.

Example 3.7

Assume motor poles are complex. Develop a design procedure for the current controller.

Solution  If motor poles are complex, then the procedure outlined above is not applic-
able for the design of the current and speed controllers. One alternative is as follows: the cur-
rent controller is designed by using the symmetric optimum criterion that was applied in the
earlier speed controller design. The steps are given below.

Assuming (1 + sT,) = sT, leads to the following current-loop transfer function:
K = 1+ sT,
i‘(s} - ZT._—{ 5 c}

i(s) by + bys + bys® + bys’
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Figure 3.37 Time response of the speed controller
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where

>
I

KK,T,

=
|

B I(‘H
:T C

b=T+T, +T + KiK_H.
b, =(T, + T))T, + T|T;
h?. = TszT:

Applying symmetric-optimum conditions,

bl = 2byb,

Re
Ty + T, + T, + K,KH,) = 2(1 * KI?H:)HT} +T)T, + T|T)
b3 = 2b,b;
(T, + T)T, + T|T;)* = AT, + T, + T, + K,KH)(T,T,T,)

hUlTr ""-’:{T!.TJ.

4T =TT << T,
(T\T,)?
AT T.T,)
TT;

= K,KH ["T +T, +T ﬁ‘im]
Z.TI_ FLL T ¥ | F 4 r ZTI

=T+ T+ T, + K;KH,

TR
2T, KH,

Also,

T\ T,T
(T. +T+ T, + #) = 2(1 Wi ){m + )T, + Ty

r°c¢

(T (] ) TlT:)
a2~ "1 2T, T,




The next step is to obtain the first-order approximation of the current-loop transfer
function for the synthesis of the speed controller. Since the time constant T_ is known. the
first-order approximation of the current loop is written as

Ws) K,
in(s) 1 +sT,

where the steady-state gain is obtained from the exact transfer function, by setting s = 0, as

K.'.'Kc
T

K,K_H.
1 $ ————

Ki:

e

andT, =T..
From this point, the speed-controller design follows the symmetric-optimum procedure
outlined earlier for the case with the real motor poles.

Example 4.1 A voltage of 230 V applied to the armature of a dc motor results in a
full-load armature current of 205 A. Assume that the armature resistance is 0.2 £).
Find the back EMF E_, the net output power, and the torque, assuming that the rota-
tional losses are 1445 W at a full-load speed of 1750 rpm.



Solution The armature voltage and current are specified as

V, =230V
I, =205A

The back EMF is obtained as

E{' - Va - I.::Ra
= 230 — 205(0.2)
= 189V

The power developed by the armature is thus
P,=E_.I,
= 189(205) = 38,745W

The net output power is thus obtained by subtracting the rotational losses from the
armature developed power:

Py =Py — Py
= 38,745 — 1445
= 37,300 W

The net output torque is now calculated as

Ta=_
i3]

37,300

~ Z£(1750)

=203.536N-m
Example 4.2 The combined armature and series field resistance of a 10-hp 240-V
dc series motor is 0.6 {2. Neglecting rotational losses, it is required to calculate:

(a) Armature current at full rated load

(b) The value of maximum developed armature power and the corresponding
armature current

(c) The armature current at half-rated load using Egs. (4.25) and (4.26)



(a) At full-rated load, neglecting rotational losses, the armature developed power
1S

P, =10 x 746 = 7460 W

The armature current 1s obtained as

2
L _Ho- /(240)* — 4(7460) (0.6)
2(0.6)

= 33968 A

Note that the second solution for I, is 366.032 A if we take the positive signs
in Eq. (4.21). The approximate solution of Eq. (4.26) is 31.083 A with an
error of 2.885 A.

(b) For maximum armature power we have

240
lay = 375 06~ 200 A

The value of P, at this current is obtained using Eq. (4.22) as

~ (240)? B
™= 2006) 24,000 W

(c) At half-rated load we have

P,=5x746 = 3730 W

The corresponding armature current is

240 - 1/(240)? - 4(3730)(0.6)

' 2(0.6)

= 16.198 A

The approximate equation [Eq. (4.43)] yields

3730

The error in this case is 0.656 A.



Prtﬂ

1

Figure 4.9 Obtaining the variation of output power with armature current for a dc series
motor.

The output (or shaft) power of the motor is obtained by subtracting the rotational
power losses form the armature-developed power. The resulting characteristic is
shown in Fig. 4.9.

Example 4.3 A 600-V, 150-hp dc series motor operates at its full-rated load at
600 rpm. The armature resistance is 0.12{) and the series field resistance is

-

la

Figure 4.11 Variation of speed with armature current for a dc series motor.
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Figure 4.12 Torque speed characteristic of a dc series motor.

0.04 (). The motor draws 200 A at full load.

(a) Find the armature back EMF at full load
(b) Find the armature-developed power and internal-developed torque

(c) Assume that a change in load results in the line current dropping to 150 A.
Find the new speed in rpm and the new developed torque

Solution
(a) The armature back EMF is obtained from

E., =V,— I (R.+Ry)
= 600 — 200(0.12 + 0.04)
= 568V
(b) The power developed by the armature is
Pa, = E I,
= 568(200) = 113.6 x 10° W
As a result, we calculate the internal developed torque as

r _ Pa _ 1136 x10°
Y o (2r/60)(600)

= 1808 N-m



(c) For the new line current, we can calculate a new value for the back EMF:
E., = 600 — 150(0.16) = 576 V
From Eq. (4.18) we have
E. = K\ Kyl,
E., = K| K l,m,

As a result,
@2 _la Eq
W, g E,,

Thus

200 (576
“2 =150 \ 568 /"

200 /576
" =150 (ﬁ) (600)

= 811.268 r/min

or

In a similar manner, from Eq. (4.28), we can write
T, (b 2
i\

2
T; = 1808(30) = 1017 N-m

Thus

200



Example 4.4 The series motor of Example 4.3 is required to be started using a
starting resistor Ry such that the starting current is limited to 150% of rated value:

(a) Find the required value of Ry, and the starting torque

(b) If the starting resistor is left in the armature circuit and the motor line current
drops to its rated value of 200 A, find the armature back EMF and the speed of
the motor

Solution
(a) At starting E. = 0:

Vi = I,(Rs + R; + Ry)
600 = 300(0.16 + Ry)
Thus
Rg = 1-849

We know from Example 4.3 that for an armature current of 200 A, the cor-
responding torque is 1808 N-m. Thus for a starting current of 300 A, we have

f 2
Ty = Th (fi)
fid

2
= 1808(%) = 4068 N-m



(b) With the starting resistor left in the armature circuit, we have

E.=V, — Ia{Ra + Rs +Rst]

= 600 — 200(2)
Thus
E. =200V
We now have
Ee _m
E, m
or
200_ m
568 600
As a result,

ny = 211.268 rpm



Example 4.5 Consider the dc series motor of Example 4.3. The full-load output is
150 hp with full-load current given by 200 A.

(a) Find the rotational losses

(b) Find the armature current and power output at maximum efficiency as well as
the value of maximum efficiency

(c) Find the full-load efficiency
Assume the rotational losses are fixed.

Solution
(a) The output power at full load is

P,=150x746 =111.9 x 10°W
From Example 4.3, the armature developed power at full load
P, =113.6 x 10°W

As a result,
Pw =P, — P,

=17 x10°W



(b) For maximum efficiency, the armature current is obtained by

1.7 x 10°
I, = W_ 103.1A

The back EMF for this current is

E. = 600 — 103.1(0.16)
=583.5V

The power developed by the armature is thus
P, =583.5 x 103.1 = 60.16 x 10* W
As a result,

P, =60.16 x 10° — 1.7 x 10°
— 5846 x 10° W

The corresponding input power is

P, = 600 x 103.1
=61.86 x 10° W

As a result, the maximum efficiency is

~ 58.46 x 10°

Mmax = 6186 % 10° — 0.945



(c) The full-load input power is
Pin = 600 x 200 = 120 x 10° W
The output power at full load is
P, =150 %746 = 111.9 x 10° W
Thus the full-load efficiency is

111.9 x 10°
"= T20%10° = 0.9325

Note that at full load, the motor is operating beyond the point of maximum
efficiency.

Example 4.6 The armature resistance of a 10-hp, 230-V dc shunt motor is 0.3 (2.
The field resistance is 160 £2. The motor draws a line current of 3.938 A on no load at
a speed of 1200 rpm. At full load, the armature current is 40 A.

(a) Find the armature current at no load

(b) Find the power developed by the armature on no load
(c) Find the full-load efficiency of the motor

(d) Find the full-load speed of the motor

Solution
(a) The field current is obtained as
230
Ir =—=1438A
7~ 160

Thus the armature current is obtained at
lo=1I0 —If=3938-1438=25A
(b) The back EMF on no load is calculated as

E.=V,— LR,
=230 — 2.5(0.3) = 229.25 V

Thus we obtain the no-load armature power as

Protoad = Ecly
= 229.25(2.5) = 572.125W



(c) At full load, we have
E. =230-40(03) =218V
The armature power is thus calculated as
P, = E.d, = 218(40) = 8720 W

The net power output is obtained by subtracting the no-load power (rota-
tional losses) from part (b) from the armature power:

P, = 8720 — 573.125 = 8146.875 W

The power input is found as

P =V, i,
— 230(41.438) = 9530.625 W

As a result, we calculate the efficiency:

_ 8146.875
"= 9530.625
— 0.855

(d) From part (c), the full-load back EMF is given by
E., =218V

The no-load back EMF from part (b) is

E. =229.25V

Thus we can find the full-load speed as

E.

Nnd = Nno load E_
iy

218



Example 4.7 A 230-V, 25-hp dc shunt motor draws an armature current of 90 A at
full rated load. Assume that the armature resistance is 0.2 () and that the shunt field
resistance is 216 {2. Find the rotational losses at full load and the motor efficiency in
this case.

Solution At a full rated armature current of 90 A, the power developed by the
armature is given by
'Pﬂ = {VF - JIﬂﬁ.:‘l:ijli:ﬂ
= [230 — 90(0.2)](90) = 19,080 W

The output power at full load is
P, =25 x 746 = 18,650 W
As a result, the rotational losses are obtained from

Py =Py — Py
= 19,080 — 18,650 = 430 W

The line current is given by

V;
=1+
L +R!

230
- = — 91.065
gﬂ+2]ﬁ 91.06

The input power is thus

P,, = V,I, = 230(91.065)
=2094491 W

The efficiency can thus be computed as

_ P, 18,650

== =089
P, 20,9449]

Example 4.8 The rotational losses for a 230-V, 25-hp dc shunt motor are found to
be 430 W. The armature resistance is 0.2 2 and the shunt-field resistance is 216 {}.
Obtain the armature current corresponding to maximum efficiency using both the
exact and approximate expressions. Calculate the output power in both cases and
the corresponding maximum efficiency.



Solution The exact formula is given by Eq. (4.65) as

R 1?2 +2I,I;R, — (Pry + Pf) = 0

We have
R, =020Q
Iy = % = 1.065 A
=B sra07w
Py =430 W

Thus we have

0.212 + 21,(1.065)(0.2) — (430 + 244.907) = 0



Alternatively,
I +2.131, — 3374.537 =0

The solution for I, is obtained as

~2.13 + 116.201
I, = >

We take

I

Armas 5

= 57.036 A

The output power is given by Eq. (4.64) as

P, =V, —I*R, — P,
= 230(57.036) — (57.036)*(0.2) — 430
= 12,037.66 W

The input power is given by Eq. (4.62) as

Pin = vJu"“P_f
= 230(57.036) + 244.907 = 13,363.187 W

As a result, the maximum efficiency on the basis of the exact calculation is

12,037.66

Mmax = 13363.187 ~ 00!

The approximate formula [Eq. (4.66)] provides the value of armature current for

maximum efficiency as
Gemax 2 - Rﬂ

= 58.091 A




The output power is calculated as

Py =V, —I?R, — Py,
= 230(58.091) — (58.091)%(0.2) — 430
= 12,256.017 W

The input power is calculated as

Piﬂ = Vf!ﬂ + Pf
— 230(58.09) + 244.907
= 13,605.837 W

The corresponding maximum efficiency is

12,256,017
Tmax: = 13,605,837~ 00!

The final answers are the same to the assumed accuracy.



Example 4.9 A cumulative compound motor is operated as a shunt motor and
develops a torque of 2000 N-m when the armature current is 140 A. When recon-
nected as a cumulative compound motor at the same current, it develops a torque of
2400 N - m. Find the torque when the compound motor load is increased such that the
armature current is increased by 10%.

Solution We use Eq. (4.88) to obtain

2400
= — 1 =02
Pla, = 3000 0

We now have
I, = 1,,(1.1)

As a result, we use Eq. (4.82) to obtain

T, _ (14+0.2)140
T, |1+ 1.1(0.2)](1.1 x 140)
= ﬁz_fzz_z] = 0.8942
But
T, =2400N-m
Thus
Ta, = 0?:322 = 2684 N-m

Clearly, the developed torque increases with an increase in armature current. The
following example deals with the speed variations for the motor considered in this
example.

Example 4.10 Assume that the combined armature and series field resistance
of the motor of Example 4.9 is 0.16 2. Assume that the terminal voltage is 600 V.

Let the motor speed be 1200 rpm when operating as a cumulative compound motor
with an armature current of 140 A. Find the speed corresponding to an armature
current of 110% of 140 A.



Solution A direct application of Eq. (4.84) is all that we need:

@ 600-0.16(140) [1+0.2(1.1)
w, 600-0.16(140x 1.1) | 1402
— 1.004
With
ny = 1200 rpm
then
Ny = — = 1195.346 rpm
271004~ TP

Clearly, the motor speed drops with an increase in armature current.

Example 4.11 The combined armature and series-field resistance of a dc series
motor is 0.15 (2. The motor operates from a 250-V supply, drawing an armature
current of 85 A at a speed of 62.83 rad/s. Establish the torque—speed characteristic
of the motor. Find the torque and speed when driving a constant power load with the
characteristic

21334 x 10°
B w

T,

Solution 'We note at the outset that we can solve the problem by assuming that
armature-developed power is 21.334 x 10> W and apply techniques already known

to us. We opt, however, for the following solution procedure.
We have

V, =250V  I,=85A at62.83rad/s

Thus

E. = 250 — (85)(0.15) = 237.25V

237.25 i
K| Kz = m = 44.424 x 10



As a result,

2.7765 x 10°
(44.424 x 103w + 0.15)?

I, =

To match the load, we require that

2.7765 x 10° 21334 x 103
(44.424 x 103w + 0.15)? w

Thus
1.9735 x 102w? — 11682 x 102w +225x 103 =0

The solution for m is

w" = 59.00 rad/s
The corresponding torque is

T* =361.59 N-m

Example 4.12 A 120-V dc shunt motor has an armature resistance of 0.1 2 and
develops a torque of 111.16 N-m when running at 1100 rpm. Neglecting rotational
losses, it is required to:

(a) Establish the torque—speed characteristic of this motor
(b) Find the developed torque at a speed of 1150 rpm
(c) Find the motor speed when the developed torque is 30 N-m

(d) Find the motor speed when it drives a load with the following torque-speed
characteristic:

T, = 6.2778V/w

(e) Calculate the torque, armature-developed power, and armature current for the
conditions of part (d)

(f) Assuming that the field resistance is 120(}, find the line current and the
power input for the load conditions of part (d)



Solution
(a) We have

V,=120V  T=111.16 N-m at 1100 rpm
R, =0.19

The power developed by the armature can be calculated as

P, = 11|.16(—§§11m) = 12.805 x 10° W

But
Pﬂ = (VI - faRa)"a
Thus

12.805 x 10° = (120 — 0.11,)1,



As a result,

0.172 — 1201, + 12.805 x 10* = 0

I, =118.39A
E. =120-0.1(118.39) = 108.16 V
E. 108.16 _3
Koy = P (27/60)(1100) 938.97 x 10
wp = Ke = 127.8 rad/s
Ko = 8.8166
R,

We can conclude that
Ia = 8,3166(127.8 — w]

(b) For n = 1150 rpm, we get

T,=8.8166(127.8 — %g-(nsn) = 64.998N - m

(¢) ForT, =30N-m,
30 = 8.8166(127.8 — w)

As a result,

w = 124.4 rad/s



(d) For a load with the torque—speed characteristic
T, = 6.2778Vw

to match, we have

6.2778/w = 8.8166(127.8 — w)
Thus

0.507 x 1072w = (127.8 — w)?
or

w? —256.11w + 16.333 x 10° = 0

The solution is

w = 119.95 rad/s



(e) The torque is obtained from
T) = 6.2778v/119.98 = 68.764 N - m
The armature-developed power is
P, = Tjw = 8.2503 x 10° W
Thus we use
Py = (Vi — laRa)la
To obtain /,:
8.2503 x 10° = (120 — 0.11,)I,
or
0.1 — 1201, + 8250 x 10> =0

As a result,

I,=73.22A



(f) The field current is calculated as

p o120
T =120

1A
Thus
I =1+
=T7T4.22A
The power input is

Pin = Vrfl.
= 120(74.22)
= 8.9064 x 10° W

Example 4.13 A dc series motor is rated at 250 V and has a combined armature
and series-field resistance of 0.15 €. The constant K;K> is found to be

K1 K, = 44.424 x 107 V/A -rads/s



I
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wg Wy w

Figure 4.23 Effect of series resistance on torque—speed characteristic of series motor.
The motor drives a load with characteristic

_21.334 x 10°
B w

T

It is desired to drive the load at 55 rad/s. Find the required value of a series resis-
tance, Ry, to achieve this requirement.

Solution The motor torque with R, inserted in series with the field is

44.424 % 10-3(250)*
(0.15 + Ry + 44.424 x 10-3w)?

With w = 55 rad/s, the load torque is

I = 21.334 x 103 — 38780 N-m
55
To match the load, we have
3
187.89 — 2.7765 x 10 :
(Rp 4 2.5933)

Thus we get
R, = 0.0821 2



Example 4.14 Assume that the speed of the series motor of Example 4.13 is
controlled to the same specifications, but now we use an armature shunt resistance
control scheme. Find the required value of R., given that R, = 0.1 2.

Tu f

i
i
I
I
! 1
I I
1 1

wa Wy w

Figure 4.25 Effect of armature shunt resistance R. on torque-speed characteristic of dc
series motor.



Solution Our specifications call for

Ty =38789N-m

@ = 55 rad/s
We are given that
R, =019
Thus
R; =0.0502

We use the torque expression

K1 K2V (R. — K1 Kyw)
(Ra + R){R: + [Re/(Ra + R)|(Ra + K1 Ka0)}?

a —

We thus have

2.7765 x 10°(R, — 2.4433)

387.89 = -
(0.1 + R.){0.5 + [R./(0.1 + R.)](2.5433)}

After a few manipulations, we obtain

R? — 38.799R. — 4.0393 =0
The required answer is obtained as

R. = 38.903Q
Example 4.15 For the motor of Example 4.13, suppose that a resistance R, = 5002

1s available. It is now decided to use series and shunt armature resistance control to
achieve the required specifications. Find the value of the required R,.

Solution With R, = 50 2, our torque equation becomes

2.7765 x 10°(50 — 2.4433)
(50.1)[0.05 + Ry + (50/50.1)(2.5433))’

387.89 =

We solve for R, to obtain

R, = 18419 x 1073 Q



Example 4.16 Assume that a diverter is used with the motor of Example 4.13,
such that & = 0.9. For the speed of 55 rad/s, find the resulting torque.

Solution The torque developed is obtained as

2.7765 x 10°(0.9)
[0.1 + 0.9(0.05 + 2.5433))°

a:

As a result, we conclude that

T.=421.8 N-m

Note that this torque is higher than that without the diverter.

Example 4.17 The armature resistance of a dc shunt motor is 0.1 £2 and its shunt-
field resistance is 120§). The value of wy is 127.8 rad/s and the constant K, is
0.93897. The motor torque is 65 N-m. Find the value of R, for the motor to run
at 1100 rpm carrying this load.

Solution We use

where

R
=14==
x +-Rf

Thus

2n(1100) _ oo 0.1(65)
60 (0.93897)’



As a result,

x = 16.381 or 0.954

We take
R
X + R, 16.381
Thus
R.
R_f = 15.381
As a result,

R. = 15.381(120) = 1.846 x 10°

Example 4.18 For the motor of Example 4.17, suppose that R, = 1.5 x 103 Q.
Now we want to achieve the same results, but with shunt-field and series armature
resistance control. Find the required value of R,.

Solution We use

R. RN\* R, +R
MZ(U(](I+—)—(1+E;) '—a'j:;—!iﬂ,
sh

Thus

1500\ 1500\ ? (R, + R»)65
120

115.19 = 127.8( 1 + ——
( 120/ (0.93897)?

As a result,
R, + R, =0.11983
The required value of R, is then

Ry = 0.024)



Example 4.19 For the motor of Example 4.17, assume that series and shunt arma-
ture resistance control is used with R, = 0.03 £). Find the value of R, to obtain a
torque of 65 N-m at a speed of 1100 rpm.

Solution Let

Y =T (Ro/R)
Thus
Rﬂ + R,b}’
w = wpy — T,
k2
As a result,

(0.1 +0.3y)65

115.19 = 127 .8y

(0.93897)°
The solution for y is
y = 0.97591
Thus
R, =1.21520Q)

Example 4.20 A starter for a 220-V dc series motor is required such that the max-
imum current be 270 A and the minimum current is not be less than 162 A. The
armature and series field resistances add up to 0.12 £2. The magnetization character-
istic of the motor is as follows:

Motor Current (A) 162 180 198 216 234 252 270
EMF at 750 rpm 193 200 206 211.2 215.8 220 224

Find the required number of resistance steps, n.



Solution With the given information, we have

Imax = 270 A
Imin = 163 A

Thus
Inax _ 270

K=~ 162

= 1.66667

From the magnetization characteristic

Enux = 224

Thus

We can now find b:

| =
2
3



The resistance R, is obtained from

W “_220 B
R, = I =270 = 0.81481512
We also have
R, =0.12Q

All the necessary ingredients of Eq. (4.170) are now available and we thus have

_ . log{1 — [(1 - 0.696)/0.696(1.667 — 1)](1 — 0.12/0.8148)}
n= log 0.696373

= 3.2543

We note that n is noninteger. We therefore take the closest integer of higher value
than the calculated value. Thus we take

n=4
Example 4.20 (Continued) The task here is to find Ijyin. We start by noting that

R, 0.12
M % _0.8527
yo=1-2"=1-5%18

Since we had I, = 162 A already, we move up to the next point on the magnetiza-
tion characteristic. Thus take

Emin =200V

Thus

270
K——-rga—— 1.5

a:&‘!z].m

b =— = 0.74667

==

We now calculate

1 -8

y=b(K—-1)

= 0.86023



The process is repeated for I,i, = 198 A to obtain
y = 0.70558

In Fig. 4.39 we plot the two points in the y — Inis plane. A simple linear approx-
imation to solve for [, requires solving

198 — 2., 0.8527 —0.70

I' 180  0.86 — 0.8527

¥l

I N

070 ———~——~-

3

|

|

|

I ! |
| |
| |
| | 1

180 I, 198 1
Figure 4.39 Finding /,,

min*




As a result, we conclude that
I =180.8A

Having obtained the proper values of n and I, we can now conclude our design
example by finding the resistance steps.

Example 4.20 (Conclusion) For I;;, = 180.8 A, we obtain

270
K=——=149
180.8 34
224
=———=1.1183
4=2003
1.1183
= —— = (.74
1.4934 88

Now we have

R, =0.8148Q
ri = b(K — 1)R; = 0.7488(1.4934 — 1)(0.8148) = 0.301 2
ry = bry = 0.22544 Q)
ry = br, = 0.16882)

This concludes the starter design.

Example 4.21 A 230-V three-phase supply is available to drive a separately
excited dc motor through a three-phase full-wave bridge rectifier circuit connected
to the armature terminals. The armature resistance is 0.2 {2, and the motor draws a
current of 205 A when running at 1750 rpm with an armature voltage of 230 V dc.

(a) Find the firing angle o under the specified conditions

(b) Find the firing angle a required for the motor to run at 875 rpm
(c) Find the motor’s speed for a firing angle of 75 degrees

(d) Find the motor’s speed for a firing angle of zero

Solution
(a) We apply Eq. (4.186):
3v2

2 (230) cos«

230 = —
i

As a result,

o =42.2°



(b) For a speed of 1750 rpm, we have
E., =V, —I,R, =230 — 205(0.2) = 189V

For a speed of 875 rpm, we require
Ef-.l :Ef|_:_=94*5 V
w

As a result,
Vo, = Eoy + 1R, = 94.5 + 205(0.2) = 135.5V

We can now obtain the required firing angle:

V,, = 1355 = 3-?(230)::0”2

a; = 64.14°



(c) With a3 = 75 degrees, we obtain

3
Vi, = ‘—f (230)cos75° = 80.39 V

Thus

E. = V,, — LR,
= 80.39 — 205(0.2) = 39.39V
E., 39.39

n3y = ny -E: = (1750) —— 180 = = 364.74 rpm
(d) With oy = 0 degrees, we have
Vo, = §£{23{11) = 31061V

As a result,

E., = 310.61 — 41 = 269.61 V

269.61
1750( 25 )_ 2496.4 rpm

Example 4.22 For the motor of Example 4.21, assume that the speed correspond-
ing to a = 0 is the base speed. Find the firing angle of the field rectifier circuit cor-
responding to a speed of 3000 rpm. What would be the firing angle for a speed that is
twice base speed?

Solution Operation in region I should satisfy Eq. (4.178), requiring that

.'ﬁ,w;, = .'fm



Invoking Eq. (4.191), we have

Iy, = I wcoso

Thus
oSy — wp  2496.38
T o 3000
a = cos”) 0.83 = 33.7°
For w = 2wy,
cosa = 0.5
As a result,
o = 60°

Example 4.23 The armature voltage of a separately excited dc motor is controlled
by a one-quadrant chopper with chopping frequency of 200 pulses per second from a
300 V dc source. The motor runs at a speed of 800 rpm when the chopper’s time ratio
is 0.8. Assume that the armature circuit resistance and inductance are 0.08 {2 and
15 mH, respectively, and that the motor develops a torque of 2.72 N-m per ampere
of armature current.

Find the mode of operation of the chopper, the output torque, and horsepower
under the specified conditions.

Solution From the problem specifications at 800 rpm, using Eq. (4.201), we get,

E. = (2.72]%’(300) — 2279V



The armature circuit time constant is obtained as

Ly 15x107% 3
e N Y = 1875 % 10~7s

The chopping period is given by

1
T=—=5x103
200 >

We obtain the critical on-time using Eq. (4.197) as

227.9
. _ -3 5/187.5 _
to, = 187.5 x 10 In[l + 30 (e l)}

=38x 107
We know that 7,, = 0.8 x 5 x 1073 = 4 x 1073, As a result, we conclude that the

chopper output current is continuous.
To obtain the torque output, we use Eq. (4.203) rearranged as

K, ¢'f fon
Thus we obtain
2.72
T, = —|0.8(300) — 227.9
0.08 [ ( ) ]
=411.4N-m

The power output is obtained as

P, = (41 1.4)%(300) =345 x 10°W

To illustrate the principle of field control, we have the following example.



Example 4.24 Assume for the motor of Example 4.23 that field chopper control is

employed to run the motor at a speed of 1500 rpm while delivering the same power
output as obtained at 800 rpm and drawing the same armature current.

Salution  Although we can use Eq. (4.205), we use basic formulas instead,

P, 345x10°

L= —= = 2279V
R # 151.3

This is the same back EMF. Recall that

Thus the required field flux is obtained as

8
¢’_5, = ¢fnz_':=ﬁ¢ﬁ,

where the subscript n denotes the present case, and the subscript 0 denotes the field
flux for Example 4.23. Assume that ¢, corresponds to full applied field flux; then

b, Vi 15
¢, Vo 8
The required chopped output voltage is V,,. Now we have
Yo _ fon
Vi T
Thus
ton _ 8
T 15

Assuming that T = 5 x 1073 s, we get

lon = 2.67 x 10735

EXAMPLE 9.1
A separately excited dc generator has the following parameters:
Ry = 10019, Lr=25H
R,=0.251, L.y =0.02H
K.=100V  per [lield ampere al rated speed



(a) The generator is driven at rated speed and a field circuit voltage Vi =200V is suddenly
applied to the field winding.

(i) Determine the armature-generated voltage as a function of time.
(ii) Determine the steady-state armature voltage.

(iii) Determine the time required for the armature voltage to rise to 90 percent of its
steady-state value.

(b) The generator is driven at rated speed and a load consistingof B = 1 Qand L; =0.15H in
series is connected to the armature terminals. A field circuit voltage Vi = 200 V is suddenly
applied to the field winding. Determine the armature current as a function of time.

Solution

(a) Field circuit time constant = 25,/100 = 0.25 sec.
(i) From Eq. 9.11,

_ 100 % 200 /0,25
est) = g5 1 =0
=200(1 —e™*)
(ii) ea(o0) =200 V
(iii) 0.9 %200 =200(1 —e ™)
f=10.575 sec
(b) 7 =10.25 sec
0.15 + 0.02
Tat = W =().136 sec
From Eq. 9.22,
100 = 200

I Bl
2() = 100X 125 X025 X 0.136s(s * 4) (5 + 7.35)

_ 4705.88
s(s+4)(s+7.35)

Ay Az Az
— 4 +
5 s+4 s+7.35

4705.88

Gra)+735) |, €0

5=0

where A=

4705.88

= =351
s(s +7.35)

s=—4

2




~ 4705.88

_ = 191
s(s+4) |- 735

3

From Eq. 9.25,

i(t)=160 —351e ¥ + 191 ™ m

EXAMPLE 9.2

A separately excited dc motor has the following parameters:
R,=0511, Lag =0, B0

The motor generates an open-circuit armature voltage of 220V at 2000 rpm and with a field
current of 1.0 ampere.

The motor drives a constant load torque Ty =25 N-m. The combined inertia of motor and
load is J = 2.5 kg - m®. With field current /; = 1.0 A, the armature terminals are connected to a
220V dc source.

(a) Derive expressions for speed (wy,) and armature current (i,) as a function of time.

(b) Determine the steady-state values of the speed and armature current.



Solution
{a} E, =Knwm

220

K. =
™ (2000/60) X 27

= 1.05V/rad/sec

Vi=e, +ials = Knwm +HiaR,

d
=Kmia=1% 1y

From the last two equations,

J Eiu.,'m T]'_
Vi=K +R,| ———— + —
t m'm a Ko dr Km)

RJdwm | RuTy

= R ¢ +
miely WO

0.5 %X 2.5duwn » 0.5 % 25

e g 1.05
= 1.05w,, + 1.19%m 4 119
et
Vi(s) = E = 1.05wm(s) + 1.195wm(s) + 11—_'9

220119
u.,m'.rs _j{]ﬂ5+1195:|

=i 174.874
~ s(s +0.8824)

198.2 198.2
s s+0.8824

W (f) = 198.2(1 — g 088240

. Vi — Kmivm
“T TR,
a
220 — 1.05w,
0.5

=440 — 2.1 X 198.2(1 — g~ 088230
=23.8 +416.2¢ 08824

(b) Steady-state speed is wy(oc) = 198.2 rad/sec.
Steady-state current is [, =i(sc) =23.8A. N



4.27.  Figure 4-24 depicts the Ward-Leonard system for controlling the speed of the motor M. The
generator field voltage, v, is the input and the motor speed, ®,, is the output. Obtain an expression
for the transfer function for the system, assuming idealized machines. The load on the motor is
given by Jo , + bw,,, and the generator runs at constant angular velocity ,.

+ Ug =

Fig. 4-24

From Fig. 4-24, (4.16), and (4.19), the equations of motion are:

di
i § & i
Vo Rﬁzﬁ + Lﬂ >a or Vfg = {Rﬁ + Lfgs) IE

e kgmgfm =Ri + kﬂfﬁmm or kgmg,()& = RI + kmfﬁnﬂm

T, =kli=Jo, +bo, o KkLI=(b+J)Q,

Hence,

_ 9,0 _ ko

i V) R, + Ls)kals + BR + JRs)

4.28. A separately excited generator can be treated as a power amplifier when driven at a constant angular
velocity ®,. Derive an expression for the voltage gain, V,(s)/V(s), in terms of the parameters given
in Fig. 4-25 and the proportionality constant kw,, in (4.8).

L, R,
ol o

ya

oL
wy = CONSt, Re §

Fig, 4-25

In the transform domain, the equations are, from Fig. 4-25,
V,=@R +Ls) &-=koJ,
Also, &= (R, + R, + Ls)I, and ¥, + R,{,. Consequently,
Vi) _ R oo, |l || 1
V,(s) 'ﬁf(Ra +R) (L + sl +1s)
where 1,= L,/R, and 1, = L/(R, + R)).




4.29.

power gain =

4.30.

In Problem 4.28, R, = 0.1 Q, R,=10 Q, R, = 0.5 Q, and kw,, = 65 V/A. What are (a) the voltage
gain, and () the power gain if the generator is operating under steady state with 25 V applied across
the field?

Notice that under steady state the d/dr terms go to zero, i.e., s = 0. Therefore:

R ko
() voltage gain = i NN (). ) I,
R(R, +R)  (10)0.1 + 0.5)
)] input power to the field = (2150)1 =625 W

E =k, = (65)(_;_3.] - 1625 V

I = 1629 _om08a
2 01 +05

output power = (270.8)%0.5) = 36 675 W

A separately excited dc motor, having a constant field current, accelerates a pure inertia load from
rest. Represent the system by an electrical equivalent circuit. The various symbols are defined in
Fig. 4-26(a).

L, R, is R i L
Y™ A - - s g W
A WA AN— L
v =C v
Wy
= Iy = const.
(a) ®

Fig. 4-26



The equations of motion are:

di,
v=RaIe+L¢ p7 + e

e =H_,mﬂ
Z Hfiﬂ - Ja,

These equations yield

di, (Y
AR R I8 Sy P [, a
ARl

which is similar to

v=Ri+Lfi+ljfd:
dt C

corresponding to the circuit of Fig. 4-26(b). For equivalence: R<» R, L «<» L,, and C & Jf{k{,}’.



