1) (30p) The surface tension $\gamma(T, A)$ and heat capacity at constant area $C_A(T)$ for a water surface of area *A* covered by a thin film containing *N* organic molecules are given by

$$\gamma(T,A) = \gamma_0 - \frac{Nk_BT}{A-bN} + \frac{aN^2}{A^2}$$
 and $C_A(T) = Nk_B + Nk_B \left(\frac{T}{T_0}\right)^2$.

Where *a*, *b*, γ_0 and T_0 are constants and k_B is Boltzmann's constant. Expression for differential Helmholtz free energy is given by $dF = -SdT + \gamma dA$.

a) Find the entropy change $\Delta S(T, A)$ of the surface film, from the state (T_0, A_0) to the state (T, A).

b) The temperature of the surface increased from $T_i = 300.0K$ to $T_f = 300.1K$ keeping the surface area *A* constant. What is the probability of the surface returning back to its initial state due to the fluctuations in temperature?

Consider a surface that is covered by *N* dielectric polymer chains placed in a uniform electric field given by $\vec{E} = E_0 \hat{z}$. Each chain consists of *n* electric dipole monomer of which n_{\uparrow} dipole oriented along +z direction and n_{\downarrow} dipole oriented along -z direction. The energy of a dipole in an electric field is given by $\varepsilon = -\vec{P} \cdot \vec{E}$. Assume that all chains on the surface have the same extension *L* under constant and uniform electric field. The length of single dipole monomer is *a*. A model picture of this dielectric polymer surface in two dimensions is given.

$$\vec{E} = E_0 \hat{z}$$

2) (30p) In microcanonical ensemble, find the energy of the surface and the extension of dielectric polymers as a function of temperature, $E_N(T)$ and L(T).

Discuss the extension of dielectric polymers at the limits of $T \to 0$, $T \to \infty$, $E_0 \to 0$ and $E_0 \to \infty$ in the context of order-disorder and entropy.

3) (20p) In canonical ensemble, write the partition function for a single dipole monomer. Find the energy of the surface and the extension of dielectric polymers as a function of temperature, $E_N(T)$ and L(T).

4) (30p) Consider a gas consists of *N* non-interacting atoms in volume *V*. Each atom is formed by three fixed subatomic particles each with two possible energy state: spin up $+\frac{1}{3}\varepsilon$ and spin down $-\frac{1}{3}\varepsilon$. One of the possible states of a single atom is given in the figure.

a) Write the number of quantum states in microcanonical ensemble for the gas. Give the reasoning to your answer.

b) Write the single particle partition function and find the probability of an atom being at the lowest energy state.

c) Find the average energy of an atom and the total energy of the gas as a function of temperature using Boltzmann probability function in canonical ensemble.

