

You must show all of your work explicitly and clearly, and must explain your reasoning to get full credit.

QUESTIONS

Q1. (25/100)
Consider an infinite plane grounded conductor with a hemispherical bump of radius a. A charge Q is placed distance of $y=h$ from the plane of the sheet, centered above the bump. Using method of images:
a) Find the image charge (or charges) and positions, that satisfy the boundary condition,
b) Find the potential above the conductor.
c) What is the electrostatic force on the charge.
d) What is the energy of the system.

Q2. (25/100)
Two parallel plates at $\mathrm{z}=0$ and $\mathrm{z}=\mathrm{zO}$ are at kept at potential of V 0 and 0 , respectively. The region between the plates contains a uniform charge ρ_{0}, which is generated at the left plate and collected at the right plate.
a) Find the potential between the plates. Hint: Solve Poisson's equation in one dimension for uniform charge density.
b) Find the electric field vector between plates.
c) Find the work requires to displace single charge from the left plate to the right plate using the definition $W=\int \vec{F} \cdot \overrightarrow{d l}$.

Q3. (25/100) Two infinite grounded metal plates lie parallel to the $x z$ plane, one at $y=0$, the other at $y=a$. The left end, at $x=0$, consists of two metal strips: one, from $y=0$ to $y=a / 2$, is held at a constant potential V_{0}, and the other, from $y=a / 2$ to a , is at potential $-V_{0}$. Find the potential inside the infinite slot.

Q4. (25/100)

The potential $V(\theta)=V_{0}\left(\frac{1}{2} \operatorname{Cos} \theta+\operatorname{Cos}^{2} \frac{\theta}{2}\right)$ is specified on the surface of a hollow sphere of radius R .
a) Find the potential inside the sphere $r \leq R$.
b) Find the potential outside $r \geq R$ the sphere.
c) Find the surface charge density of the sphere

