QUESTION 1

Consider the electrostatic potential in spherical coordinates $V(r, \theta, \phi)=r^{2} \operatorname{Cos} \theta$.
a) Find the corresponding electrostatic field vector $\vec{E}(r, \theta, \phi)$
b) Show that this electric field $\vec{E}(r, \theta, \phi)$ is a legitimate electric field.
c) Find the charge distribution $\rho(r, \theta, \phi)$ that produces this electric field $\vec{E}(r, \theta, \phi)$.
d) Show that this electric field $\vec{E}(r, \theta, \phi)$ satisfies the divergence theorem over an insulating solid sphere of radius R.

QUESTION 2

Consider an insulating long cylindrical shell of inner radius of a and outer radius of b. The electric field at the region $a \leq s \leq b$ is given as $\vec{E}(s, \phi, z)=\frac{k}{s^{2}} \hat{s}$.
a) Find the electric field vector $\vec{E}(s, \phi, z)$ at the regions $s \leq a$ and $b \leq s$.
b) Find the potential $V(r, \theta, \phi)$ at the regions $s \leq a, a \leq s \leq b$ and $b \leq s$. Take the potential $V(s=2 b)=V_{0}$ as reference.

QUESTION 3

Consider a hemispherical shell of radius R with uniform surface charge density σ.
a) Find the electric field vector \vec{E} at the center of the hemisphere.
b) Find the potential at the center of the hemisphere.

QUESTION 4

A solid sphere has radius R and carries a non-uniform charge density $\rho(r)=\alpha r^{3}$, where α is a constant. The potential formed by this sphere given as $V(r)=\left\{\begin{array}{cc}\frac{\alpha R^{6}}{6 \varepsilon_{0} r} & r \geq R \\ \frac{\alpha R^{5}}{5 \varepsilon_{0}}-\frac{\alpha}{30 \varepsilon_{0}} r^{5} & r \leq R\end{array}\right.$.

Find the energy stored in this solid sphere via following two ways
a) $W=\frac{\varepsilon_{0}}{2} \int E^{2} d \tau$
b) $W=\frac{1}{2} \int V d q$

