QUESTION 1

Consider the electrostatic potential in spherical coordinates $V(r, \theta, \phi) = r^2 Cos\theta$.

a) Find the corresponding electrostatic field vector $\vec{E}(r, \theta, \phi)$

b) Show that this electric field $\vec{E}(r, \theta, \phi)$ is a legitimate electric field.

c) Find the charge distribution $\rho(r, \theta, \phi)$ that produces this electric field $\vec{E}(r, \theta, \phi)$.

d) Show that this electric field $\vec{E}(r, \theta, \phi)$ satisfies the divergence theorem over an insulating solid sphere of radius *R*.

QUESTION 2

Consider an insulating long cylindrical shell of inner radius of a and outer radius of b. The electric field at the region $a \le s \le b$ is given as $\vec{E}(s, \phi, z) = \frac{k}{s^2}\hat{s}$.

a) Find the electric field vector $\vec{E}(s, \phi, z)$ at the regions $s \le a$ and $b \le s$.

b) Find the potential $V(r, \theta, \phi)$ at the regions $s \le a, a \le s \le b$ and $b \le s$. Take the potential $V(s = 2b) = V_0$ as reference.

QUESTION 4

A solid sphere has radius R and carries a non-uniform charge density $\rho(r) = \alpha r^3$, where α is a

constant. The potential formed by this sphere given as $V(r) = \begin{cases} \frac{\alpha R^6}{6\varepsilon_0 r} & r \ge R\\ \frac{\alpha R^5}{5\varepsilon_0} - \frac{\alpha}{30\varepsilon_0} r^5 & r \le R \end{cases}$

Find the energy stored in this solid sphere via following two ways **a)** $W = \frac{\varepsilon_0}{2} \int E^2 d\tau$ **b)** $W = \frac{1}{2} \int V dq$