

GROUND ANCHOR SYSTEMS

DESIGN OF RETAINING STRUCTURES ASSOC. PROF. PELİN ÖZENER

anchors. The current section covers in more detail the various types of anchor generally used and the procedures for evaluating their ultimate holding capacities.

The general types of anchor used in sheet-pile walls are as follows:

- 1. Anchor plates and beams (deadman)
- Tie backs
- Vertical anchor piles
- Anchor beams supported by batter (compression and tension) piles

Anchor plates and beams are generally made of cast concrete blocks. (See Figure 9.37a.) The anchors are attached to the sheet pile by *tie-rods*. A *wale* is placed at the front or back face of a sheet pile for the purpose of conveniently attaching the tie-rod to the wall. To protect the tie rod from corrosion, it is generally coated with paint or asphaltic materials.

In the construction of *tiebacks*, bars or cables are placed in predrilled holes (see Figure 9.37b) with concrete grout (cables are commonly high-strength, prestressed steel tendons). Figures 9.37c and 9.37d show a vertical anchor pile and an anchor beam with batter piles.

9.16 Anchors

a-) Highway Retaining Structures

b-) Improvement Slope Stability

b-) To reinforce/support the excavation base

c-) In the construction of concrete Dams

Structural Member of Anchors

Anchor add,

Tie rod or cable (Free length) ,

Anchor root

Structural Member of Anchors

Anchor Head

Anchor Head is composed of Bearing plate, strand, Wedge Plate

Different Types of Anchors

Rock Anchors

Design Steps For an anchored wall

Table 4. Typical design steps for an anchored wall (modified after FHWA-RD-81-150, 1982)

Step 1.	Establish project requirements including all geometry, external loading conditions (temporary and/or permanent, seismic, etc.), performance criteria, and construction constraints.
Step 2.	Evaluate site subsurface conditions and relevant properties of in situ soil and rock.
Step 3.	Evaluate design properties, establish design factors of safety, and select level of corrosion protection.
Step 4.	Select lateral earth pressure distribution acting on back of wall for final wall height. Add appropriate water, surcharge, and seismic pressures and evaluate total lateral pressure. A staged construction analysis may be required for walls constructed in marginal soils.
Step 5.	Calculate horizontal ground anchor loads and wall bending moments. Adjust vertical anchor locations until an optimum wall bending moment distribution is achieved.

Design Steps For an anchored wall

<i>a. i</i>	
Step 6.	Evaluate required anchor inclination based on right-of-way limitations,
	location of appropriate anchoring strata, and location of underground
	structures
	structures.
Ct	Dearly and be invested as the land inter-superior for a super-
Step 7.	Resolve each norizontal anchor load into a vertical force component and a
	force along the anchor.
	~
Step 8.	Evaluate horizontal spacing of anchors based on wall type. Calculate
and a	individual anabar loada
	individual anchor loads.
Stan 0	Select type of ground anchor
Step 9.	Select type of ground anchor.
Stan 10	Evaluate vertical and lateral canacity of wall below excavation subgrade
Step 10.	Evaluate vertical and lateral capacity of wan below excavation subgrade.
	Revise wall section if necessary.
Step 11.	Evaluate internal and external stability of anchored system. Revise ground
-	anchor geometry if necessary
	anenor geometry in necessary.
Step 12	Estimate maximum lateral wall movements and ground surface settlements
500p 12.	D ' 1 ' 'C
	Revise design if necessary.
Stan 12	Salast lagging Design uplans fasing drainage systems and segmention
Step 15.	Select lagging. Design waters, facing drainage systems, and connection
	devices.

Figure 37. Vertical and horizontal spacing requirements for ground anchors.

Interaction Between the Anchors:

- In order to prevent the interaction between the anchoo roots;
- The distance between the centers of the two adjacent root should not exceed 4D
- In practice, a minimum interval of 1.5m-2.0m is applied.
- The distance between the root of the anchor and any subground structure (foundation, tunnel) must be greater than 3m.

Criteria for Anchor Design

Minimum Free Length of Anchor =4.5 m

Z_c çekme çatlağının belirlenmesi

$$\sigma_a = \gamma z K_a - 2c \sqrt{K_a}$$

where K_{σ} = coefficient of Rankine active pressure For determining the depth of tensile crack,

$$\sigma_a = 0 = \gamma z_c K_a - 2c \sqrt{K_a}$$

or

$$z_c = \frac{2c}{\sqrt{K_a \gamma}}$$

With $\phi = 0$, $K_a = \tan^2 (45 - \phi/2) = 1$, so

$$z_c = \frac{2c}{\gamma}$$

Lateral Earth Pressure Distribution

Lateral Earth Pressure Distribution in cohesive and cohesionless soils (Terzaghi and Peck 1967)

Lateral Earth Pressure Distribution in cohesive and cohesionless soils (Terzaghi and Peck 1967)

Normal konsolide kilde m=0.4 Aşırı konsolide kilde m=1

Lateral Earth Pressure Distribution in cohesive and cohesionless soils (Terzaghi and Peck 1967)

KATI - SERT KIL

 $P_a = 0.2\gamma H - 0.4\gamma H$

hareketler az ve kısa süreli

inşaatlarda 0.2yH tersi durumda 0.4yH

Lateral Earth Pressure Distribution (NAVFAC)

Determination of Anchor Loads

Anchor Capacity in Granular Soils <u>Anchor Type B</u>

1st Method

- ϕ' = İçsel sürtünme açısı
- L= Ankraj kök boyu (m)
- n= coefficient based on permeability,injection pressure n≈400-600 kN/m (coarse sands ve gravels k>10⁻⁴ m/sn) n≈130-165 kN/m (fine sands),k=10⁻⁴-10⁻⁶ m/sn

Anchor Capacity in Granular Soils

Anchor Type B

2nd method -. Yöntem (Based on Bearing Capcity Theory)

Expanded Diameter =38-61 cm (High permeable soils)

- $P_i = \pi . D . L . \sigma_v'. tanφ + \pi/4 . (D^2-d^2). Nq. γ . h$
- σ_v ': Vertical Effective stress in the mid point of root(kPa)
- L : Root length(m)
- N_q: Bearing capacity factor
- γ : Unit weight of soil(kN/m³)
- h : Distance from mid point of root to the ground surface
- D: Root diameter
- d : Diameter of drill hole

P_i = K .
$$\pi$$
 . D . L . σ_v' . tan δ + $(\pi/4 . (D^2 - d^2)$. Nq. γ . h) \rightarrow neglected.

• $P_i = K. \pi \cdot D \cdot L \cdot \sigma_v'$. tand

K= depends on injection Pressure, Relative denisty ve installation type

Soil Type	Pressure	K
Dense sand, Gravel	Low	1.4-2.3
Fine sand and sandy silts	Düşük	0.5-1.0
Dense sand	Düşük	1.4

Anchor Capacity in Cohesive Soils ANCHOR <u>TYPE D</u>

$P_i = \pi \cdot D \cdot L \cdot C_u + \pi/4 \cdot (D^2 - d^2) \cdot NC \cdot C_{ub} + \pi \cdot d \cdot I \cdot C_a$

- D : Anchor Root Diameter
- L : Root Length
- C_u : Average Undrained Shear Strength along the anchor root
- $N_{c} = 9$
- c_{ub} : Undrained Shear Strength at the root bottom
- I : shaft length (m)
- c_a : adhesion along the shaft =0.3-0.35 c_u (kPa)

Anchor Capacity in Rocks

$$P_i = \pi \cdot D \cdot L \cdot \delta$$

- D : Shaft diameter
- L : Injection length at the rooth
- δ : Strength between injection and Rock Enjeksiyon-kayaç kesiti mukavemeti (Tipik değerler çizelgelerden alınabilir).

Ankrajlar için güvenli taşıma gücü bulunurken en az 2.0(kayaçta=3.) önemli yapılarda ve kalıcı ankrajlarda daha yüksek güvenlik sayısı değerleri kullanılmalıdır.

Bearing Capacity of Anchors

For the purposes of preliminary design, the ultimate load transferred from the bond length to the soil may be estimated for a small diameter, straight shaft gravity-grouted anchor from the soil type and density (or SPT blowcount value) (Table 6). The maximum allowable anchor design load in soil may be determined by multiplying the bond length by the ultimate transfer load and dividing by a factor of safety of 2.0.

Bearing Capacity of Anchors

Table 6. Presumptive ultimate values of load transfer for preliminary design of small diameter straight shaft gravity-grouted ground anchors in soil.

Soil type	Relative density/Consistency (SPT range) ⁽¹⁾	Estimated ultimate transfer load (kN/m)
	Loose (4-10)	145
Sand and Gravel	Medium dense (11-30)	220
	Dense (31-50)	290
Sand	Loose (4-10)	100
	Medium dense (11-30)	145
	Dense (31-50)	190
Sand and Silt	Loose (4-10)	70
	Medium dense (11-30)	100
	Dense (31-50)	130
Silt-clay mixture with low	Stiff (10-20)	30
plasticity or fine micaceous sand	Hard (21-40)	60
or silt mixtures		

Note: (1) SPT values are corrected for overburden pressure.

Çelik cinsi	Çap	Spesifik Dayanım	Alan	
	(mm)	(kN)	(mm^2)	
Alaşımsız çelik				
Tel	7.0	60.4	38.5	
7 telli örgü tel	12.9	186	100	
	15.2	232	139	
	15.7	265	150	
7 telli drawn örgü tel	12.7	209	112	
	15.2	300	165	
	18.0	380	223	
Düşük Alaşımlı Çelik Çubuk				
1030/835	26.5	568	552	
	32	830	804	
	36	1048	1018	
	40	1300	1257	
1230/1080	25	600	491	
	32	990	804	
	36	1252	1018	
Paslanmaz Çelik				
Tel	7	44.3	38.5	
Çubuk	25	491	491	
	32	804	804	
	40	1257	1257	

Figure 11. Potential failure conditions to be considered in design of anchored walls.

Strands

Internal Stability Analysis in Anchors

Internal stability of anchors is based on;

1. Pullout failure of tendon/grout bond:

•2-Tensile Failure of Tendon : If the prestress applied to anchor exceeds the tensile strength of steel tendons, the tendons will be broken and failure will take place. In design, the applied load must not exceed 0.6 times of strength of tendons in design and not exceed 0.8 times of strength in anchor loading tests.

Zemin Ankrajlarında Stabilite Tahkikleri

<u>3- Pullout failure of grout/soil (ground) bond</u>

4-Deep Stability Check :

With the loads transmitted to the cnhor root, a block of soil surrounding the anchoor root may fail.

In practice this problem is seen in shallow anchor roots and rarely encountered in deep anchor roots located at depths more than 5m.

1-Pullout Failure of Tendon/Grout Bond (Adherence Check Between Tendon/Grout)

- Safe bearing capacity of anchor tendons will be compared with the maximum anchor load (P_{i,max}).
- Number of tendons= $(P_{i \text{ max}}) / (P_{pullout})$ (will be rounded to an integer).

• $P_{pullout} = 232*0.6=139 \text{ kN}$

- Not : In this project, tendon with 15.2mm diameter and 7 strands will be used. (Diameter=15.2mm, Cross sectional area =139 mm², Pullout capacity (P_{pullout}) = 232 kN)
- Safe bearing capacity of anchor tendons will be computed based on the number of tendons determined in the previous step.
 - Determination of safe bearing capacity of Anchor tendons
- $P_{\text{tendon, safe}} = \tau_{\text{em}} x A_{\text{tendon surface area}} x \text{ Number of tendons}$
 - $(A_{tendon} = \pi \times D_{tendon} \times L_{tendon})$
 - $D_{tendon} = 15.2 \text{ mm} = 0.0152 \text{ m}$
 - For ribbed steel τ_{em} =700 kN/m²
 - $P_{\text{tendon, safe}} P_{i \text{ max}} > 2.0$ (No adherence problem)

2- Tensile Failure of Tendon

• $P_{\text{pullout strength}} / P_{i,\text{max}} > 1.4 \text{ (needs to be satisfied)}$

P_{pullout strength}=232x0.6x number of tendons=139.2 kN x number of tendons=139.2

3- Pullout failure of grout/soil (ground) bond

Capacity of Anchor root is computed .

- $P_{anchor root}$ = Load capacity of Anchor root
- $(\mathbf{P}_{\text{anchor root}} = \mathbf{q}_{u} \mathbf{x} \mathbf{A})$
 - A=Anchor root frictional area

(A= $\pi x D x L$) (Anchor root diameter (D) =15 cm)

Ultimate unit bearing capacity (q_u) is computed by using the ultimate bearing capacity formula by considering the shear strength properties of the soil.

 $(q_{u=}cxN_{c})$

• Anchor root capacity $(P_{anchor root})$ is compared with the anchor capacity (P_i) . FS needs to be greater than 2.0

Deep Stability Check

- For deep stability in anchored walls, a method based on Kranz is used.
 - A virtual plate is considered in the center of the anchor

- Pa, Lateral earth pressure
- W, weight of block
- P_A, Resultant lateral earth pressure acting on the wall
- Q, bloc balancing force
- A, Load acting on each anchor
- A' equilibrium force
- Factor of safety FS=1.5-2.0

