EXAMPLE 1. A saturated clay embankment has a height of 10 m . A rock layer located at a depth of 15 m from top of the embankment. The side of embankment make an angle of 35° with the horizontal. Undrained cohesion and unit weight of the soil are $50 \mathrm{kN} / \mathrm{m}^{2}$ and $18.62 \mathrm{kN} / \mathrm{m}^{3}$ respectively.
a) Determine factor of safety against sliding.
b) What is the nature of the critical surface?

SOLUTION 1.

homogenous soil type $c>0, \phi=0$

a) $F s=\frac{c_{u}}{\gamma H m}$ or $F s=\frac{c_{u}}{\gamma H} N s \quad\left(\frac{1}{m}=N s\right)$
$c u=50 k N / m^{2}$
$\gamma=18.62 \mathrm{kN} / \mathrm{m}^{3}$
$D=\frac{H+H^{\prime}}{H}$
$H=10 m$
$D=\frac{10+5}{10}=1.5$

$D=1.5$ and $\beta=35^{\circ}$ from the Taylor's chart; $m=0.17$

$$
F s=\frac{c_{u}}{\gamma H m}=\frac{50}{(18.62)(10)(0.179)}=1.58
$$

b) Midpoint circle failure surface.
c) EXAMPLE 2.

A cut slope is shown in figure
If unconfined compression strength of the soil is $60 \mathrm{kN} / \mathrm{m}^{2}$ and unit weight of the soil is $17 \mathrm{kN} / \mathrm{m}^{3}$, find the factor of safety of the slope against sliding.

SOLUTION 2.

homogenous soil type $c>0, \phi=0$
$q_{u}=60 \mathrm{kN} / \mathrm{m}^{2}$
$c_{u}=\frac{q_{u}}{2}=30 \mathrm{kN} / \mathrm{m}^{2}$
$\gamma=17 \mathrm{kN} / \mathrm{m}^{3}$
$H=3 m$

$\beta=75^{\circ}$ from the Taylor's chart; $\mathrm{m}=0.22$

$$
F s=\frac{c_{u}}{\gamma H m}=\frac{30}{(17)(3)(0.221)}=2.66
$$

EXAMPLE 3.

A cut slope was excavated in a saturated clay. Slope failed when cut reached 6.1 m depth. Rock is very depth in the soil profile.
a) Determine undrained cohesion of the clay.
b) Calculate factor of safety of the slope when slope has 5 m depth and 30 .

SOLUTION 3:

homogenous soil type $c>0, \phi=0$

a) If slope failed; $\mathrm{FS}=1$
$\gamma=17.29 \mathrm{kN} / \mathrm{m}^{3}$
$H=6.1 m$
$D=\infty$

$D=\infty$ and $\beta=40^{\circ}$ from the Taylor's chart; $m=0.18$

$$
\begin{aligned}
& F s=\frac{c_{u}}{\gamma H m} \\
& 1=\frac{c_{u}}{(17.29)(6.1)(0.18)}=2.66 \\
& c_{u}=19 \mathrm{kPa}
\end{aligned}
$$

b)

$$
\begin{aligned}
& c_{u}=19 k P a \\
& \gamma=17.29 \mathrm{kN} / \mathrm{m}^{3} \\
& H=5 m \\
& D=\infty
\end{aligned}
$$

$$
F s=\frac{c_{u}}{\gamma H m}=\frac{19}{(17.29)(5)(0.18)}=1.77
$$

A cut slope is shown in figure.
a) Determine critical height of slope
b)If $\mathrm{H}=10 \mathrm{~m}$, calculate factor of safety.

SOLUTION 4.

homogenous soil type $c>0, \phi>0$
a) $F s=\frac{\tan \phi}{\tan \phi_{d}}$
$\mathrm{FS}=1$ for critical height
$F S=\frac{\tan \phi}{\tan \phi_{d}}$
$1=\frac{\tan 20}{\tan \phi_{d}} \rightarrow \phi_{d}=20^{\circ}$

$\phi \mathrm{d}=20^{\circ}$ and $\beta=45^{\circ}$ from the Taylor's chart; $\mathrm{m}=0.06$
$F S=\frac{c_{u}}{\gamma H m}$
$1=\frac{24}{(18.87)\left(H_{c r}\right)(0.06)}=1.77$
$H_{c r}=20.51 \mathrm{~m}$
b)
$c=24 k P a$
$\varphi=20^{\circ}$
$\gamma=18.87 \mathrm{kN} / \mathrm{m}^{3}$
$H=10 m$

Trial-error
For FS=1.4
$F S=\frac{\tan \phi}{\tan \phi_{d}}$
$1.4=\frac{\tan 20}{\tan \phi_{d}} \rightarrow \phi_{d}=14.57^{\circ}$
$\phi \mathrm{d}=14.57^{\circ}$ and $\beta=45^{\circ}$ from the Taylor's chart; $\mathrm{m}=0.09$

$$
F S=\frac{c_{u}}{\gamma H m}=\frac{24}{(18.87)(10)(0.09)}=1.4
$$

Both factor of safety is equal each other. Than the FS is 1.4

EXAMPLE 5.

ROCK
Refer to figure above.
a) For the infinite slope, given $\gamma_{\text {dry }}=19 \mathrm{kN} / \mathrm{m}^{3}, c=20 \mathrm{kPa}, \phi=25^{\circ}$. If $\mathrm{H}=8 \mathrm{~m}$ and $\beta=20^{\circ}$, what will be the factor of safety of the slope against sliding?
b) For the infinite slope, given $\gamma_{\mathrm{dry}}=19 \mathrm{kN} / \mathrm{m}^{3}, c=20 \mathrm{kPa}, \phi=25^{\circ}$. If $\beta=30^{\circ}$ find the height H which will have a factor of safety of 2.5
c) For the infinite slope with seepage given $\gamma_{\mathrm{sat}}=20 \mathrm{kN} / \mathrm{m}^{3}, c^{\prime}=20 \mathrm{kPa}, \phi^{\prime}=25^{\circ}$. If $\beta=30^{\circ}$ find the height H which will have a factor of safety of 1.5
d) For the infinite slope, given $\gamma_{\text {dry }}=19 \mathrm{kN} / \mathrm{m}^{3}, \mathrm{c}=0, \phi=30^{\circ}$. If $\mathrm{H}=9.5 \mathrm{~m}$ and $\beta=28^{\circ}$, what will be the factor of safety of the slope against sliding?

SOLUTION 5.

a)
$W=\gamma L H$ (weight of the slice)
$W=(19)(L)(8)=152 L k N / m$
$\sigma=\frac{N_{a}}{\text { area }}=\frac{\gamma L H \cdot \cos \beta}{\frac{L}{\cos \beta}}=\frac{152 L \cos ^{2} \beta}{L}=152 \cos ^{2} \beta$ (normal stress at tase of the slice)
$\tau=\frac{T_{a}}{\text { area }}=\frac{\gamma L H \cdot \sin \beta}{\frac{L}{\cos \beta}}=\frac{152 L \sin \beta \cos \beta}{L}=152 \sin \beta \cos \beta$ (shear stress at base of the slice)
$\tau_{d}=c_{d}+\sigma \tan \phi_{d}$
$152 \sin \beta \cos \beta=c_{d}+\left(152 \cos ^{2} \beta\right) \tan \phi_{d}$
$c_{d}=\frac{c}{F S}=\frac{20}{F S}$
$\tan \phi_{d}=\frac{\tan \phi}{F S}=\frac{\tan 25}{F S}$
$152 \sin 20 \cos 20=\frac{20}{F S}+\left(152 \cos ^{2} \beta\right) \frac{\tan 25}{F S}$
$F S=1.69$
or;
$F S=\frac{c}{\gamma H \cos ^{2} \beta \tan \beta}+\frac{\tan \phi}{\tan \beta}$
$1.5=\frac{20}{(19)(H)\left(\cos ^{2} 30\right)(\tan 30)}+\frac{\tan 25}{\tan 30}$
$H=3.5 m$
b)
$F S=\frac{c}{\gamma H \cos ^{2} \beta \tan \beta}+\frac{\tan \phi}{\tan \beta}$
$1.5=\frac{20}{(19)(H)\left(\cos ^{2} 30\right)(\tan 30)}+\frac{\tan 25}{\tan 30}$
$H=3.5 m$
c)
$F S=\frac{c^{\prime}}{\gamma_{s a t} H \cos ^{2} \beta \tan \beta}+\frac{\gamma^{\prime}}{\gamma_{\text {sat }}} \cdot \frac{\tan \phi^{\prime}}{\tan \beta}$
$1.5=\frac{20}{(20)(H)\left(\cos ^{2} 30\right)(\tan 30)}+\frac{(20-9.81)}{20} \frac{\tan 25}{\tan 30}$
$H=2.1 m$
d)
$c=0$
$F S=\frac{\tan \phi}{\tan \beta}$
$F S=\frac{\tan 30}{\tan 28}$
$H=1.1 m$

