Problem Set for Midterm Exam

1. A consumer has the utility function $U(x, y)=x y$. Income of the consumer is 72 TL , while price of good y is 1 TL per unit. Suppose that the price of x is initially 9 TL . Then the price falls to 4 TL. Find the numerical values of the income effect and substitution effect. Graph your findings and write down the economic meaning of each result.
2. A consumer has the utility function $U=\sqrt{x}+y$.
a. Derive the demand functions for x and y.
b. Are x and y complements or substitutes?
c. Are x and y normal or inferior?
3. Consider an individual who Works for H hours a day. So, her leisure-time is $L=24-H$ per day. If she consumes C amount of consumption goods, her utility is

$$
U(C, L)=\ln (C)+L
$$

a. Express the budget constraint if the price of consumption is p and the hourly wage is w.
b. Express the utility maximization problem.
c. Solve the utility maximization problem to derive the labor supply.
d. What is the price elasticity of demand for consumption?
(Similar problems: Saving-investment decision with Cobb-Douglas utility).
4. Cansel loves cheese sandwiches. A cheese sandwich is made of 2 loafs of bread and 1 slice of cheese. The price of bread is P_{B} and the price of cheese is P_{C}. Cansel's income is $I=18 \mathrm{TL}$ for preparing cheese sandwiches.
a. Write down a utility function of Cansel for consuming cheese sandwich.
b. Plot indifference curves for Cansel's utility function at $U=4$ and $U=6$.
c. Write down her budget constraint.
d. Compute the demand curve for cheese.
e. Is cheese and bread complements or substitutes (Hint: You should look at the crossprice elasticity)
f. Assume the price of cheese falls d own to $P_{C}=2$ from $P_{C}=4$. Calculate the substitution effect given that $P_{B}=1$. Interpret your result.
(Similar problems: The same question with $U(C, B)=\boldsymbol{\operatorname { l n }}(C)+B$. You can also play with the numbers)
5. Ed's utility from vacations (V) and meals (M) is given by the function $U(V, M)=V^{2} M$. Last year, the price of vacations was $\$ 200$, and the price of meals was $\$ 50$. This year, the price of meals rose to $\$ 75$, the price of vacations remained the same. Both years, Ed had an income of $\$ 1500$.
a. Calculate the change in consumer surplus from meals resulting from the change in meal prices.
b. What is the compensating variation for the price change in meals?
c. Calculate the equivalent variation for the price change in meals.
6. Amazon can deliver packages using drones, or standard courier services. A drone can deliver 20 packages per day, and a human courier can deliver 15 packages per day. The amount of packages delivered per day is Y, number of drones is D, and number of couriers is L. They are equally fast.
a. Write down a production function $Y=F(D, L)$ representing this relation.
b. What is the marginal rate of technical substitution of L for D ?
c. Draw isoquants for $Y=45$ and 60 .
d. If the price of D and L are equal, then what is the cost minimizing amount of L ?
(Similar questions: Production function can be Leontief, or Cobb-Douglas)
7. Assume that the production technology is $Y=K+\sqrt{L}$.
a. What is the returns to scale?
b. Find marginal productivities.
8. The production function of a firm is given by $Q=K L+M$ The input prices of K, L, and M are 4,16 , and 1 , respectively.
a. The firm is operating in the short run, with K fixed at 20 units. What is the short-run total cost of producing 400 units of output?
b. What would total cost be if the firm were operating in the long run?
9. Suppose that the number of cars that use a certain bridge is

$$
Q=200-T
$$

where T is the level of toll per car. This is the demand curve for the bridge where T is the price.
a. What is the maximum amount that the society would be willing to pay for the construction for this bridge if the bridge is toll-free?
b. Answer the same question when $T=10$.
c. Interpret your results.
10. Consider the linear demand curve $Q=360-6 P$.
a. What is the price elasticity of demand at $P=40$?
b. In what direction and at what rate should the price be changed to maximize total revenue?

