2020-2021 SPRING SEMESTER

Pleasebringthíscyclewithyouforeachlaboratorycourse.

PHYSICS-2 LABORATORY FOR ENGINEERING STUDENTS

2020-2021 SPRING SEMESTER

Pleasebringthíscyclewithyouforeachlaboratorycourse.

EXPERIMENT -1

Electric Charges and Electric Field

Purpose: Charging conductive objects, measuring the electric force between charged objects, observation the electric field lines.

Equipments: Pencil, eraser, calculator.

1. Introduction

When amber is rubbed on a wool fabric, it can pull the light objects. This property is called electricity. Today we use electricity to explain all the incidents caused by electric charges.

Objects can be charged by rubbing, touching (conduction) and induction. For this concept, a charged object is needed. There are two types of charges in the nature; positive charge (protons) and negative charge (electrons). The electric charges with same signs repel and the opposite ones attract each other. A charged object can also attract a neutral one. Everything is made of atoms. If the number of electrons and protons of an atom are equal, it is neutral. If the number of electrons of an atom is more than the number of protons, the net charge is negative, otherwise the net charge of the atom is positive. When a glass rod is rubbed with a silk cloth it gains positive charge by losing electrons, the silk cloth gains the same amount of electrons and it becomes negatively charged. The net charge of the system does not change, this is called charge conservation law. The charge conservation law is similar to energy conservation law. The smallest charge in the nature is the charge of the electron (or proton). All the charges in the nature are the integer multiples of the smallest charge e, it means the charges are quantized,

$$
\begin{equation*}
Q=n e \tag{1}
\end{equation*}
$$

Electric charge is a basic property of the matter like its mass.

Coulomb's Law:

The electric force occurs between charges. Coulomb has found that this electric force is directly proportional to the product of the charges and inversely proportional to the distance between the charges and defined the electric force as follows,

$$
\begin{array}{r}
\vec{F}_{12}=k \frac{q_{1} q_{2}}{r^{2}} \hat{r}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{r} \\
\vec{F}_{12}=-\vec{F}_{21} \tag{3}
\end{array}
$$

where, k is the Coulomb constant, ε_{0} is the permittivity of free space. The values of this quantities in SI unit system is,

$$
k=8.98 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \quad \varepsilon_{0}=\frac{1}{4 \pi k}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}
$$

The direction of the force vector is same with the position vector's direction. Coulomb's law is valid for static point charges. It can be used for the spheric objects if the distance between the spheres is longer than the sum of the radii of the spheres. The law can not be used directly for a random charge distribution. Using superposition principle, this kind of distributions can be solved by simulating the system as it has a huge number of point charges system.

Electric Field:

Physicsts do not like interaction phenomenon, they accept that every object occurs a field and it interacts with other objects through this field. There are scaler and vector field concepts. Vector fields have direction and magnitude. Electric field is a vector field, it is defined as, the Coulomb force acting on a positive test charge per unit charge.

$$
\begin{equation*}
\vec{E}=\frac{\vec{F}}{q_{\text {test }}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{\text {source }}}{r^{2}} \hat{r} \tag{4}
\end{equation*}
$$

The test charge is assumed as small as it does not effect the original electric field. Test charge is used for determining the magnitude and the direction of the force not the existence of the field. Electric field is defined anywhere in space (except the spot that the charge exists).

Electric field is represeted with electric field lines to show the direction and strength of the field. Electric field vector is tangential to electric field lines. The lines start from positive charge and reaches to negative charge and they do not intercept. The strength of the electric field is directly proportional to the number of lines passing through the perpendicular plane.

Van de Graaff Generator:

It is usually hard to provide enough charge accumulation by charging object with rubbing. Van de Graaff generator, is an electrostatic generator which uses a moving belt to accumulate very high amounts of electrical potential on a hollow metal globe on the top of the stand. A simple Van de Graaff-generator consists of a belt of silk, or a similar flexible dielectric material, running over two metal pulleys, one of which is surrounded by a hollow metal globe. As the belt passes in front of the lower comb, it receives negative charge. Electrons then leak from the belt to the upper comb and to the terminal, leaving the belt
positively charged as it returns down and the terminal negatively charged. Since the conductor does not hold any charge inside, all the excess charges stays at the exterior surface of the metal globe. As long as the motor works the charge on the surface increases.

2. Experiment:

1. Experiment setup is introduced to the class.
2. Activate the Van de Graaf Generator is and let the metal globe to get charged.
3. Measure the masses of the little spheres and write down in table.
4. Place the protrector on overhead projector and overlap the shadow of the protrector's center and the shadow of string's fixing point.
5. Stop the generator after providing enough charge on the metal sphere and charge the little spheres by touching them the metal sphere. (they should be grounded before the contact)
6. Remove the generator.
7. Equalize the charges by the contact of two little spheres.
8. Measure the angle from the screen and write it down in table.
9. Calculate the electric force and the charges on the spheres. Write them down in table.

$\mathbf{m}(\mathbf{k g})$		$\mathrm{L}(\mathbf{m})$		$\mathbf{R}(\mathbf{m})$		
$\mathbf{F}_{\mathbf{G}}(\mathbf{N})$	$\boldsymbol{\theta}\left({ }^{\circ}\right)$	$\mathbf{R}(\mathbf{m})$	$\mathbf{F}_{\mathbf{E}}(\mathbf{N})$	$\mathbf{Q}_{1}(\mathbf{n C})$	$\mathbf{Q}_{\mathbf{2}}(\mathbf{n C})$	

Demonstration Experiments:

Fill the glass dish with oil and add some hash particals. Apply an electric potential to the electrodes and observe the electric field lines.

Draw the electric field lines for,

1. Point electrode-point electrode pair (point charges)

2. Plane electrode- point electrode pair (point charge-plane charge)

EXPERIMENT-2

Charging and Discharging of a Capacitor

Purpose: Determination of the capacitance of a capacitor and life constant of a RC circuit.
Equipments: Resistance, capacitor, power supply, voltmeter, stopwatch, graph paper.

1. Introduction

A capacitor is a passive two-terminal electrical component used to store energy electrostatically in an electric field. The forms of practical capacitors vary widely, but all contain at least two electrical conductors separated by a dielectric (insulator); for example, one common construction consists of metal foils separated by a thin layer of insulating film.

When there is a potential difference across the conductors, an electric field develops across the dielectric, causing positive charge to collect on one plate and negative charge on the other plate. Energy is stored in the electrostatic field. An ideal capacitor is characterized by a single constant value, capacitance, C . This is the ratio of the electric charge on each conductor to the potential difference between them. The SI unit of capacitance is the Farad, which is equal to one coulomb per volt.

$$
\begin{equation*}
C=\frac{Q_{0}}{/} / V_{0} \tag{1}
\end{equation*}
$$

For practical applications $\mu \mathrm{F}, \mathrm{nF}, \mathrm{pF}$ is used. The capacitance of a capacitor depends on the geometry of the conductor, the dielectric constant of the insulator.

$$
\begin{equation*}
C=\varepsilon_{0} \frac{A}{d} \tag{2}
\end{equation*}
$$

Where A is the area of the parallel plates and d is the distance between the plates. The charge in a capacitor changes as a function of time while charging and discharging.

The relation of the charge and the voltage is as follows;

$$
\begin{equation*}
q(t)=C . V(t) \tag{3}
\end{equation*}
$$

Capacitors in Series and Parallel:

The schematic diagram is shown for capacitors in series. The plates connected to the power supply is charged directly, the others get charged by induction. Hence, every capacitor's plates have equal positive and negative charges. The sum of the voltage on every capacitor equals to the potential of the power supply. ($\mathrm{V}_{0}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}+\ldots$...

The total voltage difference from end to end is apportioned to each capacitor according to the inverse of its capacitance. The entire series acts as a capacitor smaller than any of its components.

$$
\begin{equation*}
\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\ldots=\sum_{i} \frac{1}{C_{i}} \tag{4}
\end{equation*}
$$

In the figure capacipors are connected in parallel. In this concept, each capacitor holds different amount of charges. The potential difference of all the capacitors are same with the voltage of power supply $\left(\mathrm{V}_{0}=\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\ldots\right.$). when capacitors are in parallel, the charges which the capacitors hold are directly proportional to the capacitance of the capacitors. The equivalent capacitance is the sum of all the capacitances of the capacitors in the circuit.

$$
\begin{equation*}
C_{e q}=C_{1}+C_{2}+C_{3}+\ldots=\sum_{i} C_{i} \tag{5}
\end{equation*}
$$

Charging and Discharging a capacitor through a Resistance:

A resistor-capacitor circuit (RC circuit), is an electric circuit composed of resistors and capacitors driven by a voltage supply.

When the switch is in position 1, power supply gets connected to the circuit, time dependent electric current starts to flow in the circuit $\mathrm{I}(\mathrm{t})$ and the capacitor gets charged (charge). When the switch is open, the power supply becomes unconnected to the circuit and the capacitor gets uncharged through the resistor (discharge). In position 2 , the potential difference on the edges of the capacitor changes by time.

To Charge a capacitor in a RC Circuit

In the figure-2 when the switch in position 1, the capacitor gets charged. If Kirchoff voltage rule is applied to circuit components for a time t,

$$
\begin{equation*}
V_{0}-I(t) \cdot R-\frac{q(t)}{C}=0 \tag{6}
\end{equation*}
$$

Where V_{0} is the power supply voltage, $\mathrm{I}(\mathrm{t})$.R product is the potential on the resistor and $\mathrm{q}(\mathrm{t}) / \mathrm{C}$ is the voltage on the capacitor. $\mathrm{I}=\mathrm{dq} / \mathrm{dt}$ is used in equation (6), it becomes,

$$
\begin{equation*}
\frac{d q}{d t}=\frac{V_{0}}{R}-\frac{q}{R C} \tag{7}
\end{equation*}
$$

By using the initial conditions of $\mathrm{t}=0$ and $\mathrm{q}=0$,

$$
\begin{aligned}
& \int_{0}^{q} \frac{d q}{q-V_{0} C}=-\frac{1}{R C} \int_{0}^{t} d t \\
& \ln \left(\frac{q-V_{0} C}{-V_{0} C}\right)=-\frac{t}{R C}
\end{aligned}
$$

This brings out the following equation,

$$
\begin{equation*}
q(t)=V_{0} C\left(1-e^{-t / R C}\right) \tag{8}
\end{equation*}
$$

The time derivative of the equation (8) is,

$$
\begin{equation*}
I(t)=\frac{V_{0}}{R} e^{-t / R C} \tag{9}
\end{equation*}
$$

From equations (3) and (8), the potential difference on the capacitor in any time is,

$$
\begin{equation*}
V_{C}(t)=V_{0}\left(1-e^{-t / R C}\right) \tag{10}
\end{equation*}
$$

When $\quad t \rightarrow \infty$, voltage, charge and current go to a single value as follows,
$V_{C}(t) \rightarrow V_{0} \quad q(t) \rightarrow Q_{0} \quad I \rightarrow 0$
Usually, this t value is assumed as $\mathrm{t} \cong 5 \tau$.

Discharging a Capacitor in a RC Circuit

When the switch is in position 2, the power supply would be out of the circuit and the capacitor starts to discharge through the resistor. If the Kirchoff rule is applied,

$$
\begin{equation*}
\left(-I(t) R-\frac{q(t)}{C}=0\right) \tag{11}
\end{equation*}
$$

Using the initial conditions; $\mathrm{t}=0 \mathrm{q}=\mathrm{Q}$, in a time t , equation (11) becomes,

$$
\begin{equation*}
q(t)=Q e^{-t / R C} \tag{12}
\end{equation*}
$$

The potential difference of the capacitor and the current flowing through the current during discharging will be as follows,

$$
\begin{align*}
& V_{C}(t)=V_{0} e^{-t / R C} \tag{13}\\
& I(t)=-\frac{Q}{R C} e^{-t / R C} \tag{14}
\end{align*}
$$

When $t \rightarrow \infty, \mathrm{Vc}, \mathrm{q}$ and I values go to zero and capacitor returns to the initial condition in Figure-2. The RC value in the equations above is called time constant and it is shown with τ.

$$
\begin{equation*}
\tau=R C \tag{15}
\end{equation*}
$$

Question: determine the dimension and the unit of time constant.

The time on charging and discharging in a RC circuit is presented by τ, time constant. It is the time required to decrease of the current of the circuit to e^{-1} times to the initial current during charge and discharging.

2. Experiment

1. Set up the circuit by choosing a $\mathrm{R}_{1} \mathrm{C}_{1}$ pair. Take the switch to desharge position to verify the $\mathrm{t}=0$, $q(t)=0$ initial condition. Set the output voltage of the power supply to 10 V .

Before the experiments be sure that the multimeters are connected right and the capacitors are uncharged.

2. Bring switch to charge position. Measure the elapsed time for the every 1 V voltage change on the capacitor and measure the voltage on the resistor at the same time. Write the values down in Table. Bring the switch to discharge position as soon as 7 V is measured on the capacitor and observe the decrease of the voltage on the capacitor and continue to measure the time untill the voltage value reaches 1 V on the capacitor. Also continue to measure the voltage on the resistor for each 1 V voltage drop on the capacitor. Do not stop measuring the time by the stopwatch for whole experiment.

$\mathrm{R}_{1}=$	$\mathrm{C}_{1}=$				$\mathrm{R}_{2}=$		$\mathrm{C}_{2}=$		
$\mathrm{V}_{\mathrm{C}}(\mathrm{V})$	t(s)	$\mathrm{V}_{\mathrm{R}}(\mathrm{V})$	$\mathrm{I}(\mu \mathrm{A})$	$\ln (\mu \mathrm{A})$	$\mathrm{V}_{\mathrm{C}}(\mathrm{V})$	t(s)	$\mathrm{V}_{\mathrm{R}}(\mathrm{V})$	$\mathbf{I}(\mu \mathrm{A})$	$\ln (\underline{\mu} \mathbf{A})$
1					1				
2					2				
3					3				
4					4				
5					5				
6					6				
7					7				
6					6				
5					5				
4					4				
3					3				
2					2				
1					1				

3. Plot $\mathrm{V}_{\mathrm{C}}=\mathrm{f}(\mathrm{t})$ graph for charging and discharging.
4. Using Ohm's Law $I=V_{R} / R$, calculate the I curent values and $\ln I$ values and write them down in the table.
5. Plot $\ln (\mathrm{I})=\mathrm{f}(\mathrm{t})$ graph for charging and determine the time constant of the circuit using the slope of the graph. Calculate the error.

$\tau_{\mathrm{RIC1}}(\mathrm{~s})($ Charge $)$	
Theoretical value $=$	
Experimental Value $=$	
	$\%$ Error $=\frac{\left\|\tau_{\text {Theoretical }}-\tau_{\text {Experimental }}\right\|}{\tau_{\text {Theoretical }}} .100=$

6. Repeat the experiment for a different resistor-capacitor pair.
7. Plot the graphs given in step 3 and 4 for the new pair. Calculate C_{2} from $C_{2}=\tau / R_{2}$.

	$\mathrm{C}_{2}(\mu \mathrm{~F})($ Charge $)$
Real value $=$	
Experimental value $=$	
	$\%$ Error $=\frac{\left\|C_{\text {Theoretical }}-C_{\text {Experimental }}\right\|}{\tau_{\text {Theoretical }}} .100=$

EXPERIMENT - 3a

 Ohm's Law

 Ohm's Law}

Purpose: Determination of the unknown $R_{l}, R_{2}, R_{\text {SERIES }}$ and $R_{\text {PARALLEL }}$ resistances with ohm's law.

1. Introduction

Current, Resistor and Ohm's Law: An electric current is a flow of electric charges in a given time interval. The SI unit of electric current is the ampere (A), which is equal to a flow of one coulomb of charge per second.

$$
\begin{equation*}
I=\frac{q}{t} \tag{1}
\end{equation*}
$$

The direction of the current is opposite the direction of flow of electrons. The cell, battery and generators are sources of electrical energy in electrical circuits which allow for the movement of charge carriers by creating the potential difference between terminals to which they are connected. A battery is called either a source of electromotive force or, more commonly, a source of emf. The emf ε of a battery is the maximum possible voltage that the battery can provide between its terminals and it is given by

$$
\begin{equation*}
\varepsilon=\frac{w}{q} \tag{2}
\end{equation*}
$$

where w is the work done by generator, q is the charge.

Ohm's law states that the current through a conductor between two points is directly proportional to the potential difference across the two points. Introducing the constant of proportionality, the resistance one arrives at the usual mathematical equation that describes this relationship:

$$
\begin{equation*}
I=\frac{V}{R} \tag{3}
\end{equation*}
$$

where I is the current through the conductor in units of amperes, V is the potential difference measured across the conductor in units of volts, and R is the resistance of the conductor in
units of ohms. More specifically, Ohm's law states that the R in this relation is constant, independent of the current.

Resistors in Series and Parallel:

The circuit, which is shown in figure 1a, connected in series. For series combination of two resistors, the current is the same in both resistors because the amount of charge that passes through R_{1} must also pass through R_{2} in the same time interval. The potential difference applied across the series combination of resistors will divide between the resistors. In figure 1a, because the voltage drop from a to b equals IR_{1} and the voltage drop from b to c equals IR_{2}, the voltage drop from a to c is

$$
\begin{equation*}
\varepsilon=\Delta V=I R_{1}+I R_{2}=I\left(R_{1}+R_{2}\right) \tag{4}
\end{equation*}
$$

The potential difference across the battery is also applied to the equivalent resistance R_{eq}.

$$
\begin{equation*}
\Delta V=I R_{e q} \tag{5}
\end{equation*}
$$

Where, we have indicated that the equivalent resistance has the same effect on the circuit because it results in the same current in the battery as the combination of resistors. Combining these equations, we see that we can replace the two resistors in series with a single equivalent resistance whose value is the sum of the individual resistances:

$$
\begin{equation*}
\Delta V=I R_{e q}=I\left(R_{1}+R_{2}\right) \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
R_{e q}=R_{1}+R_{2} \tag{7}
\end{equation*}
$$

The equivalent resistance of three or more resistors connected in series is

$$
\begin{equation*}
R_{e q}=R_{1}+R_{2}+R_{3}+\ldots \ldots \tag{8}
\end{equation*}
$$

This relationship indicates that the equivalent resistance of series connection of resistors is the numerical sum of the individual resistance and is always greater than any individual resistance.

The circuit, which is shown in figure 1b, connected in parallel. Because the electric charge is conserved the current I, that enters to a point must be equal the total current leaving that point:

$$
\begin{equation*}
I=I_{1}+I_{2} \tag{9}
\end{equation*}
$$

where, I_{1} is the current in R_{1} and I_{2} is the current in R_{2}. The potential differences across the resistors is the same when resistors are connected in parallel.

Figure 1 (a) A series connection for two-resistor circuit, (b) A parallel connection for two-resistor circuit.

Because the potential differences across the resistors are the same, the expression $\Delta V=I R$ gives

$$
\begin{equation*}
I=I_{1}+I_{2}=\frac{\Delta V}{R_{1}}+\frac{\Delta V}{R_{2}}=\Delta V\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{\Delta V}{R_{e q}} \tag{10}
\end{equation*}
$$

From this result, we see that the equivalent resistance of two resistors in parallel is given by,

$$
\begin{equation*}
\frac{1}{R_{e q}}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \tag{11}
\end{equation*}
$$

An extension of this analysis to three or more resistors in parallel gives,

$$
\begin{equation*}
\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots \tag{12}
\end{equation*}
$$

We can see from this expression that the inverse of the equivalent resistance of two or more resistors connected in parallel is equal to the sum of the inverses of the individual resistances. Furthermore, the equivalent resistance is always less than the smallest resistance in the group.

Measurement instruments: The current passing from circuit is measured with ampermeter; potential difference is measured with a voltmeter. Both quantities can be measured with a multimeter. Ampermeter is connected in series with the circuit elements. Ideally, an ampermeter should have zero resistance so that the current being measured is not altered. Voltmeter is connected in parallel and it should have infinite resistance so that no current exists in it.

2. Experiment

1. Chose two resistors from resistance box and set the circuit as shown Figure 2. Adjust power supply to values which is in Table1. Read the current passing from resistor and write down to Table1.

Figure 2

Table 1

$\mathbf{V}(\mathbf{V})$	$\mathbf{I}_{\mathbf{1}}(\mathrm{mA})$	$\mathbf{R}_{1}=\ldots \ldots \ldots \ldots \ldots$	$\mathbf{I}_{2}(\mathrm{~mA})$	$\mathbf{R}_{2}=\ldots \ldots \ldots \ldots \ldots$
		$\mathbf{R}_{\text {1calculation }}(k \Omega)$		$\mathbf{R}_{\mathbf{2 c a l c u l a t i o n}}(k \Omega)$
2				
5				
7				
9				
15				
		$\mathbf{R}_{1 \text { ave. }}=$		\mathbf{R}_{2} ave.$=$
		$\mathbf{R}_{1 \text { graph }}=$		\mathbf{R}_{2} graph $=$

2. Draw $\mathbf{V}=\mathbf{f}(\mathbf{I})$ graph for each conductor, find resistance values, compare the average of the resistors values which are calculated and write the results down to Table 1.
3. Connect the resistors in series, as repeating the measurements which is in step 1 , write the results down Table 2.
4. Connect the resistors in parallel, as repeating the measurements which is in step 1 , write the results down Table 2.
5. Draw $\mathbf{V}=\mathbf{f}(\mathbf{I})$ graphs for series and parallel connected resistors. Find the equivalent resistance values, compare the average of the resistors values which is calculated and write the results down to Table 2.

Table 2

$\mathbf{V}(\mathbf{V})$	$\mathbf{I}(\mathbf{m A})$			

Conceptual Questions

1. Do all conductor materials obey Ohm's Law? Give an example.
2. Is it true that the direction of the current through the battery is always from the negative to positive terminal, or not? Please explain.
3. How should connect the resistances to be the equivalent resistance is greater than the resistance of each resistor? Please give an example of three resistors.

Questions for research

1. An ampermeter with the internal resistance of 0.10 mA measures maximum $0.3 \mathrm{~m} \Omega$. Which series resistor turns into the ampermeter voltmeter can measure between $0-3 \mathrm{~V}$?
2. How to find the value of the internal resistance of a battery?

EXPERIMENT- 3b

Kirchhoff's Rules

Purpose:

1. Determination of the potential differences across all elements and the current on each circuit component in the multi-loop circuits.
2. Power calculation of the circuit elements and comparison of produced and dissipated power on the circuit.

1. Introduction

Kirchhoff's Rules: Simple circuits can be analyzed using the expression $\Delta V=I R$ and the rules for series and parallel combinations of resistors. Very often, however, it is not possible to reduce a circuit to a single loop. The procedure for analyzing more complex circuits is greatly simplified if we use two principles called Kirchhoff 's rules:
i. Junction rule. The sum of the currents entering any junction in a circuit must equal the sum of the currents leaving that junction (Figure 1):

$$
\begin{equation*}
\sum I_{\text {in }}=\sum I_{\text {out }} \tag{1}
\end{equation*}
$$

Figure 1

ii. Loop rule. The sum of the potential differences across all elements around any closed circuit loop must be zero:

$$
\begin{equation*}
\sum_{\substack{\text { closed } \\ \text { loop }}} \Delta V=0 \tag{2}
\end{equation*}
$$

When applying Kirchhoff's second rule in practice, we imagine traveling around the loop and consider changes in electric potential, rather than the changes in potential energy. You should note that the following sign conventions when using the second rule:

- Because charges move from the high-potential end of a resistor toward the low potential end, if a resistor is traversed in the direction of the current, the potential difference ΔV across the resistor is " $-I R$ " (Fig. 2a). If a resistor is traversed in the direction opposite the current, the potential difference ΔV across the resistor is " $+I R$ " (Fig. 2b).
- If a source of electromotive force (emf) is traversed in the direction of emf (from - to +), the potential difference ΔV is $+\varepsilon$ (Fig. 2c). If a source of emf is traversed in the direction opposite the emf (from + to -), the potential difference ΔV is $-\varepsilon$ (Fig. 2d).
(a)

(b)

(d)

Figure 2 Potential differences in circuit elements.

Power Calculation in Electrical Circuit Elements:

Figure 3

The Kirchhoff's expression is written for closed circuit in Figure 3;

$$
\begin{gather*}
\varepsilon-I R_{1}-I R_{2}=0 \tag{3}\\
\varepsilon=I R_{1}+I R_{2} \tag{4}
\end{gather*}
$$

Expression (4) is obtained. If both sides of the equation are multiplied by the current I,

$$
\begin{equation*}
\varepsilon I=I^{2} R_{1}+I^{2} R_{2} \tag{5}
\end{equation*}
$$

expression (5) is obtained. Where, $I^{2} R_{1}$ and $I^{2} R_{2}$ terms are expressed as the power dissipation as Joule Heat in the R_{1} and R_{2} resistances. The multiplication of εI in the equation gives the power produced by the power supply with emf ε. In other words, produced active power is equal to the dissipated power:

$$
\begin{equation*}
P_{\varepsilon}=P_{R 1}+P_{R 2} \tag{6}
\end{equation*}
$$

2. Experiment

Figure 4

1. Set the circuit as shown Figure 4 . Measure the current intensity and voltage differences on each resistance and write them down Table 1.
2. Using Kirchhoff's Rules, calculate the current passing from each resistor and potential difference between the terminals of resistor. Write results down Table 1.
3. Calculate the relative errors and write them down Table 1.

Table1

	$\mathbf{V}_{\mathbf{1}}(\mathbf{V})$	$\mathbf{V}_{\mathbf{2}}(\mathbf{V})$	$\mathbf{I}_{\mathrm{AB}}(\mathbf{m A})$	$\mathbf{V}_{\mathbf{A B}}(\mathbf{V})$	$\mathbf{I}_{\mathbf{B C}}(\mathbf{m A})$	$\mathbf{V}_{\mathbf{B C}}(\mathbf{V})$	$\mathbf{I}_{\mathrm{BD}}(\mathbf{m A})$	$\mathbf{V}_{\mathrm{BD}}(\mathbf{V})$
Measureme nt Values								
Teoretical Values								
Relative Error								

4. Calculate the power and the relative error for each component of the circuit. Write results down the Table 2.

Table 2

	$\mathbf{P}_{1 \mathrm{k} \Omega}$	$\mathbf{P}_{2,7 \mathrm{k} \Omega}$	$\mathbf{P}_{4,7 \mathrm{k} \Omega}$	$\mathbf{P}_{V_{1}}$	$\mathbf{P}_{V_{2}}$	Total $\mathbf{P}_{\text {dissipation }}$	Total $\mathbf{P}_{\text {produced }}$	$\mathbf{P}_{\text {difference }}$
Experimental Values								
Teoretical Values								
Relative Error								

Conceptual Questions

1. If there is a difference between produced and dissipated power in the experiment, describe the reasons for this.
2. Which is the condition that potential difference between the ends of a battery condition becomes greater than its electromotive force?
3. Nowadays, the cars typically use 12 V battery. 6 V battery was used years ago, Why has changed and why not 24 V ?

EXPERIMENT- 4

Magnetic Force Acting on a Current-Carrying Conductor

Purpose: Measurement of force acting on a current- carrying conductor and observation of induction electromotor force in a uniform magnetic field.

Equipments: DC power supply, dynamometer, multimeter, 2 magnets.

Introduction

The magnetic force that acts on a charge q moving with a velocity \vec{V} in a magnetic field \vec{B} is,

$$
\vec{F}=q \vec{V} x \vec{B}
$$

The direction of this magnetic force is perpendicular both to the velocity of the particle and to the magnetic field. The magnitude of this force is

$$
F_{B}=|q| V B \operatorname{Sin} \theta
$$

Where θ is the small angle between \vec{v} and \vec{B}. The SI unit of \vec{B} is the tesla (T), where

$$
T=\frac{N}{A \cdot m}
$$

The Magnetic Force acting on Electric Charge:

When the particle's velocity vector makes any angle $\theta \neq 0$ with the magnetic field, the magnetic force acts in a direction perpendicular to both \vec{v} and \vec{B}; that is, $\overrightarrow{F_{B}}$ is perpendicular to the plane formed by \vec{v} and \vec{B} (Fig. 1a). The magnetic force exerted on a positive charge is in the direction opposite the direction of the magnetic force exerted on a negative charge moving in the same direction (Fig. 1b).

Figure 1. The direction of the magnetic force $\overrightarrow{F_{B}}$ acting on a charged particle moving with a velocity \vec{v} in the presence of a magnetic field \vec{B}.(a) The magnetic force is perpendicular to both \vec{v} and \vec{B}. (b) Oppositely directed magnetic forces $\overrightarrow{F_{B}}$ are exerted on two oppositely charged particles moving at the same velocity in a magnetic field.

Figure 2. Right- hand rule; the vector \vec{v} is in the direction of your thumb and \vec{B} in the direction of your fingers. The force $\overrightarrow{F_{B}}$ on a positive charge is in the direction of your palm, as if you are pushing the particle with your hand.

Figure 2 reviews right-hand rule for determining the direction of the cross product $\vec{v} \times \vec{B}$ and determining the direction of $\overrightarrow{F_{B}}$ Here the thumb points in the direction of \vec{v} and the extended fingers in the direction of \vec{B}. Now, the force $\overrightarrow{F_{B}}$ on a positive charge extends outward from your palm. The advantage of this rule is that the force on the charge is in the direction that you would push on something with your hand-outward from your palm. The force on a negative charge is in the opposite direction.

Magnetic Force Acting on a Current-Carrying wire:

The straight segment of wire of length L and cross-sectional area A, carrying a current \vec{I} in a uniform magnetic field \vec{B} is shown in Figure 3. The magnetic force exerted on a charge q moving with a drift velocity \vec{v}_{d} is $q \vec{v}_{d} \times \vec{B}$.To find the total force acting on the wire, we multiply the force $q \vec{v}_{d} \times \vec{B}$ exerted on one charge by the number of charges in the segment. Because the volume of the segment is $A L$, the number of charges in the segment is $n A L$, where
n is the number of charges per unit volume. Hence, the total magnetic force on the wire of length L is

$$
\vec{F}_{B}=\left(q \vec{v}_{d} \times \vec{B}\right) n A L
$$

We can write this expression in a more convenient form, the current in the wire is $I=n q v_{d} A$ Therefore,

$$
\overrightarrow{F_{B}}=\vec{I} L \times \vec{B}
$$

Figure 3. A segment of a current-carrying wire in a magnetic field \vec{B}. The magnetic force exerted on each charge making up the current is $q \vec{v}_{d} \times \vec{B}$ and the net force on the segment of length L is $\vec{I} L \times \vec{B}$.

2. Experiment

The set which will be used in experiment is shown in Figure 4.

Figure 4. The experiment set-up.

1. Set the multimeter $(10 \mathrm{~A})$ to current read setting.
2. While the current zero in the set write the F_{0} value down in Table-1. This force is the total weight of the conductive rod and cables.
3. Firstly, turn on multimeter then the power supply and give current to set-up.
4. Using current adjustment switch on power supply, adjust the currents which are in table1 and write $\mathrm{F}_{\text {dynamometer down in Table } 1 .}$
5. Subtract F_{o} from the $\mathrm{F}_{\text {dynamometer }}$ (which is seen from dynamometer) and write $\mathrm{F}_{\text {dynamometer }}-\mathrm{F}_{0}$ down in Table 1.
6. The angle between L and \vec{B} is 90° in this experiment. Magnetic force is calculated from the $\mathrm{F}_{\mathrm{m}}=I L B \sin \theta$ correlation. (The length of wire $(\mathrm{L})=2.5 \mathrm{~cm}$, magnetic field $\mathrm{B}=0.50 \mathrm{~T}$).

Table 1

I(A)	$\mathrm{F}_{\text {dynamometer }}(\mathrm{N})$	$\frac{\mathrm{F}_{0}=\ldots \ldots \ldots . \mathrm{N}}{\mathrm{~F}=\mathrm{F}_{\text {dynamometer }}-\mathrm{F}_{0}}$	$\mathrm{F}_{\mathrm{m}}=\mathrm{ILB} \sin \theta$ (N)	F_{m} - F
0				
1.0				
1.5				
2.0				
2.5				
3.0				
3.5				
4.0				
4.5				

7. Verification of right hand rule: Determine the direction of the current through the conductors and magnetic force. Find direction of magnetic force as using right- hand rule.

8. Observation of Induction Emf:

Install the experimental set-up and adjust multimeter to mA and connect cable which is between magnets to multimeter directly. (Figure 5)

Figure 5.

Pull down the copper conductor wire which is inside the magnet and release suddenly. Please note that a current passing from multimeter with this sudden motion. Explain the reason for this current? The magnitude of this current depends on what?

EXPERIMENT-5

Investigation of Motion of Charged Particles in Electric and Magnetic Fields and Determination of Charge-to-Mass (e/m) Ratio for the Electron

Purpose: Investigation of electrons acting in a uniform electric and magnetic fields, determination of e / m ratio experimentally.

Equipments: The cathode ray tube, high voltage sources, multimeters, Helmholtz coil, scientific calculator, graph paper, pencil, eraser.

Introduction

Investigation of Electron Trajectories in a Uniform Electric Field

Emitted electrons from the filament of the cathode ray tube are accelerated under a V_{A} voltage. The trajectory of electrons projected at constant speed across a uniform electric field in a direction perpendicular to the field is shown in Figure 1.

Figure 1 The parabolic trajectory of an electron entering a uniform electric field in a direction perpendicular to the field.

Electrons make linear motion in the x -axis and the constant acceleration in the y-axis. Electric force on electron is $\vec{F}=m \vec{a}=q \vec{E}$. The position of the electron at any moment is

$$
\begin{align*}
x & =v_{0} t \\
y & =\frac{1}{2} a t^{2}=\frac{1}{2} \frac{e}{m} E t^{2} \tag{1}
\end{align*}
$$

These are parametric equations. Trajectory equation is obtained, if time parameter is changed.

$$
\begin{equation*}
y=\frac{1}{2} \frac{e}{m} \frac{E}{v_{0}^{2}} x^{2} \tag{2}
\end{equation*}
$$

Velocity of the electron is determined from law of conservation of energy;

$$
\begin{equation*}
e V_{A}=\frac{1}{2} m v_{0}^{2} \Rightarrow v_{0}=\sqrt{\frac{2 e V_{A}}{m}} \tag{3}
\end{equation*}
$$

Electric field between the plates applied $V p$ voltage with the distance d is expressed by equation (4).

$$
\begin{equation*}
E=\frac{V_{P}}{d} \tag{4}
\end{equation*}
$$

In this case, equation (2) turns to

$$
\begin{equation*}
y=\frac{V_{P}}{4 d V_{A}} x^{2} \tag{5}
\end{equation*}
$$

In the equation (5), applied acceleration and deflection voltages and the distance d between the plates are constant, so that the trajectory equation is expressed as

$$
\begin{equation*}
y=\text { constant } \cdot x^{2} \tag{6}
\end{equation*}
$$

This is the equation of a parabola.

Motion of an Electron in a Uniform Magnetic Field

When a particle having charge q and velocity $\overrightarrow{v_{0}}$ enters to a uniform magnetic field perpendicularly, it moves in a circular trajectory. Depending on the sign of the particle, it turns in a clockwise or counter clockwise. The trajectory of an electron in a magnetic field directed into to the page is shown in Figure 2(a). A uniform magnetic field is produced by Helmholtz coils in this experiment.

Figure 2 (a) The circular trajectory of an electron in a magnetic field directed into the page (b) The coordinates of any point L on the trajectory.

The constant magnetic force on the electron is given by the equation;

$$
\begin{equation*}
F=e v_{0} B \sin \theta \tag{7}
\end{equation*}
$$

where, the magnetic force plays the role of centripetal force. Radius of the trajectory is defined from Newton' law $\left(\sum F_{r}=m a_{r}\right)$;

$$
\begin{equation*}
e v_{0} B=m \frac{v_{0}^{2}}{R} \Rightarrow R=\frac{m v_{0}}{e B} \tag{8}
\end{equation*}
$$

Using (3) formula, it is obtained;

$$
\begin{equation*}
R=\frac{1}{B} \sqrt{\frac{2 m V_{A}}{e}} \tag{9}
\end{equation*}
$$

Radius R of the circular trajectory is also found by using the Pythagorean theorem in Figure 2.(b).

$$
\begin{equation*}
R=\frac{x^{2}+y^{2}}{2 y} \tag{10}
\end{equation*}
$$

Determination of e/m Ratio

If the electrons move under the presence of a uniform electric field \vec{E} and a magnetic field \vec{B}, it will experience a force called as "Lorentz force".

$$
\begin{equation*}
\vec{F}_{\text {Lorentz }}=\vec{F}_{\text {Elec. }}+\vec{F}_{\text {Mag. }}=\mathrm{e} \vec{E}+\mathrm{e} \vec{v}_{0} \times \vec{B} \tag{11}
\end{equation*}
$$

Lorentz force can be zero for an appropriate the electric and magnetic fields perpendicular to each other. For this case, $\vec{F}_{\text {Lorentz }}=0 \Rightarrow \vec{E}=\vec{v}_{0} \times \vec{B}$ is obtained. Using (3) and (4) formulae for \vec{v}_{0} and \vec{E}, we can get e / m ratio.

$$
\begin{equation*}
\frac{e}{m}=\frac{V_{P}^{2}}{2 d^{2} B^{2} V_{A}} \tag{12}
\end{equation*}
$$

The Helmholtz Apparatus

The apparatus consists of two identical circular coils having N turns, radius r and distance ℓ each other. The identical currents flow in both coils with same direction. It provides a highly uniform magnetic field through axial direction of coils. The magnetic field between coils is found by the BiotSavart law.

$$
\begin{equation*}
B=\frac{32.10^{-7} \pi N I}{5 \sqrt{5} r} \tag{13}
\end{equation*}
$$

Figure 3 The magnetic field lines of the Helmholtz coils

Experiment

Investigation of Electron Motion in an Electric Field

1. Electrons emitted from the filament of the cathode ray tube are accelerated by a high V_{A} voltage and electrons that strike the slanted screen cause the fluorescent material to glow, and thus the beam of electrons is visible as a trajectory on the screen (Figure 4).

Figure 4 Experimental setup
2. The separation between two plates is $5,2 \mathrm{~cm}$. Set the acceleration voltage V_{A} to 4000 V and the deflection voltage V_{P} to 1250 V . Write down the coordinates (x, y) of the beam of electrons at the fluorescent screen in Table 1.

Table 1

$x(\mathrm{~cm})$	$y(\mathrm{~cm})$	$x^{2}\left(\mathrm{~cm}^{2}\right)$				
0						
2			gradient. x^{2}	$V_{P} /\left(4 d V_{A}\right)$		
4						
6						
8						
10						

3. Plot $y=f(x)$ and $y=f\left(x^{2}\right)$ graphs. Calculate the gradient of $y=f\left(x^{2}\right)$ graph.
4. Compare $y=$ gradient. x^{2} and equation (5). Interpret them.

Investigation of Electron Motion in a Magnetic Field

1. Set the acceleration voltage V_{A} to 3000 V and the current I of Helmholtz coils to $0,41 \mathrm{~A}$.
2. Read the coordinates (x, y) of the beam of electrons on the fluorescent screen and calculate radius R using equation (5). Write down the obtained results in Table 2.

Table 2

$x(\mathrm{~cm})$	$y(\mathrm{~cm})$	$R(\mathrm{~cm})$
2		
3		
4		
5	$R_{\text {Average }}$	
6		

3. Calculate the magnetic field using equation (13). $(N=320$ and $r=0,068 m)$
$B=\frac{32.10^{-7} \pi N I}{5 \sqrt{5} r}=$
4. Calculate radius R using equation (9). ($e=1,6 \times 10^{-19} C$ and $\left.m=9,1 \times 10^{-31} \mathrm{~kg}\right)$
$R=\frac{1}{B} \sqrt{\frac{2 m V_{A}}{e}}=$.
5. Compare and interpret values of R and $R_{\text {Average }}$.

Determination of e/m Ratio

1. Observe the deflected the beam of electrons on the fluorescent screen by setting the acceleration voltage V_{A} to 3000 V and the deflection voltage V_{P} to 700 V . Set an optimum current I of Helmholtz coils to go through x-axis of the electron beam. Write down the optimum current I in Table 3 for $V_{P}=700 \mathrm{~V}$. Repeat it for different V_{P} values as in Table 3.
2. Calculate the magnetic fields using equation (13). ($N=320$ and $r=0,068 m$)
3. Find e / m ratios using equation (12). Calculate average of them.

Table 3

$V_{A}(V)$	$V_{P}(V)$	$I(A)$	$B(T)$	$e / m(C / \mathrm{kg})$
3000	700			
3000	800			
3000	900			

