Series solutions near to Regular Singular points

$$
\left.\begin{array}{l}
y^{\prime \prime}-x y=0 \\
x y^{\prime \prime}+y=0
\end{array}\right\} \quad \begin{gathered}
\text { Both ore linear, second order } \\
\text { variable coefficient dif-eqns. }
\end{gathered}
$$

But, $x=x_{0}=0$ is the ordinary point for $y^{\prime \prime}-x y=0$
$x_{0}=0$ is the singular point for $x y^{\prime \prime}+y=0$

$$
\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n} \text { centered point }
$$

Centered points


Definition: $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0$
If $P\left(x_{0}\right)=0$ for some points $x_{0}$,
(or in general $\lim _{x \rightarrow x_{0}} P(x)=0$ )
then, $x_{0}$ is a singular point of Eqn( $*$ ).
Let divide both sides of the DE $(*)$ by $P(x)$ then, $\quad 1 \cdot y^{\prime \prime}+\underbrace{\frac{Q(x)}{P(x)}}_{:=p(x)} y^{\prime}+\underbrace{\frac{R(x)}{P(x)}}_{:=q(x)} y=0$

If,

$$
\Rightarrow \lim _{x \rightarrow x_{0}}\left(x-x_{0}\right) \cdot \frac{Q(x)}{P(x)}=\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right) \cdot P(x)=a
$$ and

$$
\Rightarrow \lim _{x \rightarrow x_{0}} \underbrace{\left(x-x_{0}\right)^{2} R(x)} \frac{\lim _{x \rightarrow x_{0}}\left(x-x_{0}\right)^{2} \cdot q(x)=b}{P(x)}=b
$$

are both finite, then the point $x_{0}$ is regular singular point, otherwise it is irregular singular point.

Ex: Find all singular points of

$$
\frac{x^{2}(1-x)}{P(x)} y^{\prime \prime}+\frac{(x-2)}{\theta(x)} y^{\prime}-\frac{3 x y}{R(x)}=0 \text { and determine }
$$ whether each one is regular singular point or ier, sing. point.

Let us divide both sides by $P(x)$,

$$
\Rightarrow y^{\prime \prime}+\underbrace{\frac{(x-2)}{x^{2} \cdot(1-x)}}_{p(x)} y^{\prime}-\frac{-\frac{3 x}{x^{2}(1-x)}}{q(x)} y=0
$$

$\Rightarrow P\left(x_{0}\right)=0 \Rightarrow x_{0}$ is singular poirt,

$$
\begin{aligned}
& P(x)=x^{2} \cdot(1-x) \rightarrow P\left(x_{0}\right)=0 \Rightarrow x_{0}^{2} \cdot\left(1-x_{0}\right)=0 \\
& \Rightarrow x_{0}=0, \quad x_{0}=1
\end{aligned}
$$

0,1 are singular points.
At $x_{0}=0$,

$$
\begin{aligned}
& \lim _{x \rightarrow 0}(x-0) \cdot p(x)=\lim _{x \rightarrow 0} x \cdot \frac{(x-2)}{x^{2} \cdot(1-x)}=\infty \rightarrow \\
& \lim _{x \rightarrow 0}(x-0)^{2} \cdot q(x)=\lim _{x \rightarrow 0} x^{2} \cdot \frac{-3 x}{y^{2} \cdot(1-x)}=0
\end{aligned}
$$

Hence, $x_{0}=0$ is the irregular sing. pt.

At $x_{0}=1$,

$$
\left.\begin{array}{l}
\lim _{x \rightarrow 1}(x-1) \cdot \frac{x-2}{x^{2} \cdot(1-x)}=-1 \\
\lim _{x \rightarrow 1}(x-1)^{2} \cdot \frac{-3 x}{x^{2} \cdot(1-x)}=0
\end{array}\right\} \quad \begin{aligned}
& \text { Both ore finite. } \\
& \text { so they ore } \\
& \text { analytic ot } \\
& \text { point } x_{0}=1
\end{aligned}
$$

Hence, $x_{0}=1$ is regular sing. $\rho t$.
Ex: Find all singular points of

$$
\frac{x(x-1)^{2}(x+2)}{P(x)} y^{\prime \prime}+\frac{x^{2} y^{\prime}}{2(x)} \frac{-\left(x^{3}+2 x-1\right)}{R(x)} y=0
$$

and classify them.

$$
\begin{aligned}
& P(x)=x(x-1)^{2}(x+2) \\
& P\left(x_{0}\right)=0 \Rightarrow x_{0}=0, x_{0}=1, \quad x_{0}=-2 \text { are }
\end{aligned}
$$

singular points.
At $x_{0}=0$,

$$
\left.\begin{array}{l}
\lim _{x \rightarrow 0}(x-0) \cdot \frac{x^{2}}{x(x-1)^{2}(x+2)}=0 \\
\lim _{x \rightarrow 0}(x-0)^{2} \cdot \frac{-\left(x^{3}+2 x-1\right)}{x \cdot(x-1)^{2} \cdot(x+2)}=0
\end{array}\right\}
$$

Both ore finite, so analytic at $x_{0}=0$, Hence $x_{0}=0$ is a regular sing- $p t$.

$$
\begin{aligned}
& \text { At } x_{0}=1 \\
& \lim _{x \rightarrow 1}(x-1) \cdot p(x)=\lim _{x+1}(x-1) \cdot \frac{x^{2}}{p(x)} \\
& \lim _{x \rightarrow 1}(x-1)^{2} \cdot q(x-1)^{2} \cdot(x+2) \stackrel{R(x)}{p(x)}=\lim _{x \rightarrow 1}(x-1)^{2} \cdot \frac{-\left(x^{3}+2 x-1\right)}{x \cdot(x-1)^{2} \cdot(x+2)}=-\frac{2}{3}
\end{aligned}
$$

$x_{0}=1$ is an irregular singular point.

Af $x_{0}=-2$

$$
\begin{aligned}
& \lim _{x \rightarrow-2}(x+2) \cdot p(x)=\lim _{x \rightarrow-2}(x+2) \cdot \frac{x^{2}}{x-(x-1)^{2} \cdot(x+2)}=-\frac{4}{18}, \\
& \lim _{x \rightarrow-2}(x+2)^{2} \cdot q(x)=\lim _{x \rightarrow-2}(x+2)^{2} \cdot \frac{-\left(x^{3}+2 x-1\right)}{x(x-1)^{2} \cdot(x+2)}=0</
\end{aligned}
$$

Hence $x_{0}=-2$ is a regular sing. $p t$.
Renok:

$$
x^{2} y^{4}-2 y=0 \quad \text { near to the } x_{0}=0
$$

$x_{0}=0$ singular $p t$.

$$
\Rightarrow y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

BUT! $\rightarrow$ at the end of the solution procure we con observe that it con not be found two linerly independent infinite power series solutions.

Theorem: If $x=x_{0}$ is a regular singular $p t$ of the diff. eq $P(x) y^{\prime \prime}+\theta(x) y^{\prime}+R(x) y=0$, then there exists at least one solution of the form

$$
y=\left(x-x_{0}\right)^{r} \sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n+r}
$$

where $r$ is a constant to be determined.
The series will converge at least on some interval

$$
0<x-x_{0}<R .
$$

Ex: Find the general solution of the equation

$$
4 x y^{\prime \prime}+3 y^{\prime}+3 y=0 \text { (nee to the point } x=0 \text {.) }
$$

$P(x)=4 x=0 \Rightarrow x=0$ is the singular point

$$
\Rightarrow y^{\prime \prime}+\frac{3}{\frac{3}{4 x}} y^{\prime(x)} y^{\prime}+\underset{q(x)}{\frac{3}{4 x}} y=0
$$

$\left.\lim _{x \rightarrow 0}(x-0) \cdot p(x)=\frac{3}{4}\right\}$ Both are finite, analytic. Hence, $X=0$, is a regulor sing. pt.

Let assume that $\quad x_{0}=0$

$$
\begin{aligned}
y(x) & =\sum_{n=0}^{\infty} a_{n}\left(x-\ddot{x}_{0}\right)^{n+r} \\
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n+r}, a_{0} \neq 0 \\
y^{\prime}(x) & =\sum_{n=0}^{\infty}(n+r) \cdot a_{n} \cdot x^{n+r-1} \\
y^{\prime \prime}(x) & =\sum_{n=0}^{\infty}(n+r-1) \cdot(n+r) \cdot a_{n} \cdot x^{n+r-2} \\
4 x y^{\prime \prime}+3 y^{\prime}+3 y & =
\end{aligned}
$$

$$
\left.\begin{array}{rl} 
& 4 x\left(\sum_{n=0}^{\infty}(n+r-1) \cdot(n+r) \cdot a_{n} \cdot x^{n+r-2}\right) \\
+ & 3\left(\sum_{n=0}^{\infty}(n+r) \cdot a_{n} \cdot x^{n+r-1}\right) \\
+ & 3\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0+r-1 \\
n+r \Leftrightarrow n+r-1 \\
n \Leftrightarrow n-1 \\
n=0 \Leftrightarrow n=1
\end{array}\right) .
$$

For $n=0$

$$
\begin{aligned}
& \text { For } n=0 \\
& =0
\end{aligned} \frac{\underbrace{(4 \cdot r \cdot(r-1)+3 r) \cdot a_{0} \cdot x^{r-1}}_{n=1}+\sum_{n}^{\infty}\left[(4(n+r)(n+r-1)+3(n+r)) a_{n}+3 a_{n-1}\right] x^{n+r-1}}{=0}=0
$$

** $4 r(r-1)+3 r=0 \longrightarrow$ indicial equation

$$
\text { *\& } a_{n}=\frac{-3 a_{n-1}}{4(n+r)(n+r-1)+3(n+r}=-\frac{3 a_{n-1}}{(n+r)[4(n+r)-1]} \quad \forall n \geqslant 1
$$

$$
b
$$

Recurrence relation

$$
4 r(r-1)+3 r=4 r^{2}-r=0 \rightarrow r_{1}=0, r_{2}=1 / 4
$$

For $r_{1}=0$
Then, the recurrence relation becomes $a_{n}=-\frac{3 a_{n-1}}{n(4 n-1)}$
$\forall n \geqslant 1$
Let $n=1 \Rightarrow a_{1}=-\frac{3 a_{0}}{1.3}$

$$
\begin{aligned}
n=2 \Rightarrow a_{2} & =-\frac{3 a_{1}}{2 \cdot 7} \\
n=3 \Rightarrow a_{3} & =-\frac{3 a_{2}}{3 \cdot 11} \\
n=4 \Rightarrow a_{4} & =-\frac{3 a_{3}}{4 \cdot 15}
\end{aligned}=+\frac{3 \cdot 3 a_{2}}{4 \cdot 15 \cdot 3 \cdot 11}, ~ \frac{3 \cdot 3 \cdot 3 a_{1}}{4 \cdot 15 \cdot 3 \cdot 11 \cdot 2 \cdot 7}
$$

Let us toke $Q_{0}=1$,

$$
a_{n}=\frac{(-1)^{n} \cdot 3^{n-1}}{n!\cdot 7 \cdot 11 \cdot 15 \cdots(4 n-1)}
$$



Hence, $y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$

$$
=\sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot 3^{n-1}}{n!\cdot 7 \cdot 11 \ldots(4 n-1)} \cdot x^{n}
$$

For $r=1 / 4$
Recurrence relation becomes $a_{n}=-\frac{3 a_{n-1}}{n(4 n+1)} \forall n \geqslant 1$
Setting $a_{0}=1$, we get

$$
\begin{aligned}
& a_{1}=-\frac{3 a_{0}}{5}=-\frac{3}{5} \\
& a_{2}=-\frac{3 a_{1}}{2 \cdot 9}=\frac{3^{2}}{2 \cdot 5 \cdot 9} \\
& a_{3}=\frac{-3^{3}}{2 \cdot 3 \cdot 5 \cdot 9 \cdot 13} \\
& a_{4}=\frac{3^{4}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 9 \cdot 13 \cdot 17}
\end{aligned}
$$

So, $a_{n}=\frac{(-1)^{n} \cdot 3^{n}}{n!\cdot 5 \cdot 9 \cdot 13 \ldots(4 n+1)}$
Hence,

$$
\begin{aligned}
& y_{2}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\infty}=1 / 4 \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} \cdot 3^{n}}{n!\cdot 5 \cdot 9 \cdot 13 \cdot-(-4 n+1)} x^{n+1 / 4} \\
& y(x)=c_{1} y_{1}+c_{2} y_{2} \text { inf ineir. }
\end{aligned}
$$

$$
\text { NOTE: } \quad 4 x y^{\prime \prime}+3 y^{\prime}+3 y=0
$$

$P(x)=4 x=0 \Rightarrow x=0$ is the singular point

$$
\begin{aligned}
& \Rightarrow 1 y^{\prime \prime}+\sum_{p(x)}^{\frac{3 x}{4 x} y^{\prime}}+\underset{\sum^{\prime}(x)}{\frac{3}{4 x}} y=0 \\
& \lim _{x \rightarrow 0}(x-0) \cdot p(x)=\frac{3}{4}:=P_{0} \\
& \lim _{x \rightarrow 0}(x-0)^{2}-q(x)=0:=q_{0}
\end{aligned}
$$

$\Rightarrow r \cdot(r-1)+p_{0} r+q_{0}=0$ indicial equation formula.

$$
\begin{aligned}
& r \cdot(r-1)+\frac{3}{4} r+0=0 \\
& \Rightarrow 4 r \cdot(r-1)+3 r=0 \Rightarrow 4 r^{2}-r=0 \\
& \Rightarrow r(4 r-1)=0 \\
& \Rightarrow r_{1}=0, r_{2}=1 / 4
\end{aligned}
$$

Theorem: Consider the diff. eqn

$$
\left.\underline{x}^{2} y^{\prime \prime}+\underline{\underline{x(x p(x)})} y^{\prime}+\underline{\left(x^{2} q(x)\right.}\right) y=0
$$

where $x=0$ is a regular singular $p t$.
Then $x p(x)$ and $x^{2} q(x)$ are analytic at $x=0$ with convergent power series expansions

$$
x p(x)=\sum_{n=0}^{\infty} p_{n} x^{n} \text { and } x^{2} q(x)=\sum_{n=0}^{\infty} q_{n} x^{n}
$$

for $|x|<\rho$, where $\rho>0$ is the minimum of the radii of convergence of the power series for $x p(x)$ and $x^{2} q(x)$.

Let $r_{1}$ and $r_{2}$ are the roots of the indicial equation

$$
F(r)=r(r-1)+p_{0} r+q_{0}=0
$$

with $r_{1} \geqslant r_{2}$ if $r_{1}$ add $r_{2}$ ore real.
Then in either the interval $-\rho<x<0$ or the interval $0<x<\rho$,
there exist a solution of the form

$$
y_{1}(x)=|x|^{r_{1}}\left(1+\sum_{n=1}^{\infty} a_{n}\left(r_{1}\right) x^{n}\right)
$$

where the $a_{n}\left(r_{1}\right)$ ore gives by the recurrence relation with $a_{0}=1$ and $r=r_{1}$.

Case 1: If $r_{1}-r_{2}$ is not zero or a positive integer, then in either the interval $-\rho<x<0$, or the interval $0<x<\rho$, there exist a solution of the form

$$
y_{2}(x)=|x|^{r_{2}}\left(1+\sum_{n=1}^{\infty} a_{n}\left(r_{2}\right) x^{n}\right)
$$

The $a_{n}\left(r_{2}\right)$ are also determined by the recurrence relation with $a_{0}=1$ ore $r=r_{2}$. The power seies $y_{1} \& y_{2}$ ore convergent at least $|x|<\rho$.

Case 2: If $r_{1}=r_{2}$, then the second solution is

$$
y_{2}(x)=\frac{y_{1}(x)}{\frac{1}{3}} \ln |x|+|x|^{r_{1}} \sum_{n=1}^{\infty} b_{n}\left(r_{1}\right) x^{n}
$$

Case 3: If $r_{1}-r_{2}=N$, a positive integer, then

$$
y_{2}(x)=a y_{1}(x) \ln |x|+|x|^{r_{2}}\left(1+\sum_{n=1}^{\infty} c_{n}\left(r_{2}\right) x^{n}\right)
$$

The coefficients $a_{n}\left(r_{1}\right), b_{n}\left(r_{1}\right)$ and $c_{n}\left(r_{1}\right)$ and the constant $a$ can be determined by substituting the form of the series solutions for $y$ in the gives equation.

If $a=0$, then there is no logontmic term in the solution.

For each $y_{2}$ in the Case 2 and Case 3 can be said they are convergent at lout for $|x|<\rho$ and they defines a function that is analytic in some neighborhood of $x=0$.

