INTRODUCTION TO COASTAL HYDRAULICS

HOMEWORK 1

Question 1

The depth of water at a wave channel varies between 20 cm and 80 cm. What should be the period ranges that generate deep water, shallow water or intermediate water conditions in the channel?

Ouestion 2

If the wave profile is given by; $\eta=0.5 \sin (0.0866x-0.785t)$

- a) Draw the wave profile (for $\Delta t=T/8$, x=0 m)
- b) Calculate the water depth of the recorded wave profile and find the deep water wave length.

Question 3

A wave with a period of T=7 sec and a height of H=3 m is propagating over a water depth of d=10 m. Determine the maximum horizontal and vertical components of particle velocity at z=-4 m below the surface.

Question 4

A wave with a period of T=10 sec and a height of H=2m is propagating from deep water into shallow water.

- a) At a depth of d=100 m, determine the maximum horizontal and vertical components of particle velocity and the maximum horizontal and vertical water particle displacements for z=-80 m and z=-d. (u_{max} , w_{max} , A and B).
- b) At a depth of d=39 m, determine the maximum horizontal and vertical components of particle velocity and the maximum horizontal and vertical water particle displacements for z=-30 m and z=-d. (u_{max} , w_{max} , A and B).
- c) At a depth of d=2.4 m, determine the maximum horizontal and vertical components of particle velocity and the maximum horizontal and vertical water particle displacements for z=0 and z=-d. (u_{max} , w_{max} , A and B).

Ouestion 5

A wave with a period of T=8 sec is propagating over a water depth of d=19 m. The equation of the elliptical orbit is as follows at z=0;

$$\frac{\alpha^2}{7.87} + \frac{\beta^2}{4} = 1$$

- a) Determine the wave profile.
- b) If the movement of the water particle starts at T=0 from the top of the orbit, find the particle velocity at $\frac{3}{4}$ of the orbital length.