FLUID MECHANICS VENTURIMETER EXPERIMENT

BACKGROUND

A Venturimeter is a tube with a constricted throat section that increases velocity and decreases pressure (**Figure 1**). Venturimeters are used for measuring the flowrate of both compressible and incompressible fluids in a pipeline.

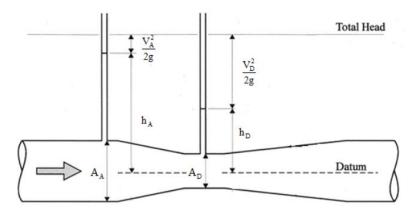


Figure 1. Ideal Conditions for venturimeter

Using the continuity and energy equations between the upstream section (cross-section A) and the throat (narrowest pipe section – cross-section D) it can be shown that;

$$Q = C_d A_D \sqrt{\frac{2g(h_A - h_D)}{1 - \left(\frac{A_D}{A_A}\right)^2}}$$

where, DA=26mm, DD=16mm (Diameters for each section)

 Q_{actual} :Actual discharge, Q_{theory} :Theoretical discharge, C_d :Discharge coefficient, h_A :Head at the upstream section, h_D :Head at the throat section section, A_A :Pipe cross sectional area at the upstream section, A_D :Pipe cross-sectional area at the throat section.

The discharge coefficient (C_d), In other words the coefficient of the Venturimeter, typically has a value between 0 and 1. The actual value is dependent on a given Venturimeter, and then it may change with flowrate.

CALCULATIONS

1. Read the piezometric heights in each section. Fill the table given below.

Experiment 1						
Piezometric	Actual	Area (m ²)	Velocity head			

height (mm)		Flowrate			(m)	
Section	Section	(m ³ /sec)	Section	Section	Section	Section
Α	D		Α	D	Α	D

Experiment 2									
Piezometric height (mm)		Actual Flowrate	Area (m ²)		Velocity head (m)				
Section	Section	(m ³ /sec)	Section	Section	Section	Section			
Α	D		Α	D	Α	D			

- 2. Give brief explanation about venturimeters and experimental setup.
- 3. Use Bernoulli equation to calculate the velocity at the throat section (V_D) . <u>Discuss</u> and compare your result.
- 4. Compute Q_{actual} and Q_{theory} . Find the discharge coefficient (C_d) for both experiments. Discuss your result.
- 5. Do you have any suggestions for improving this apparatures.

Include all 5 answers in your report....