| YTÜ Fizik Bölümü, 2018-2019 Güz Dönemi |     |      |                                                                                                                      | Sınav Tarihi: 04/01/2019                  |                         | Sınav Süresi: 90 dk.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
|----------------------------------------|-----|------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| FIZ1001 Fizik-1 Final                  |     |      |                                                                                                                      |                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Soru Kitapçığı AAAAA                   |     |      | YÖK'ün 2547 sayılı Kanunun <b>Öğrenci Disiplin</b><br><b>Yönetmeliğinin</b> 9. Maddesi olan <b>"Sınavlarda kopya</b> |                                           |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Ad-Soyad                               | 9   | Brum | PP.                                                                                                                  | yapmak ve yaptı<br>fiili işleyenler bir v |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Öğrenci No                             |     |      |                                                                                                                      | alırlar.<br>Öğrencilerin sını             | av salonu               | na <b>hesap makin</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | esi, cep |
| Fizik Grup No                          | 7 1 |      |                                                                                                                      |                                           | 3000000 100000 <b>1</b> | /veya <mark>elektronik</mark> a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Bölümü                                 |     |      |                                                                                                                      | sınav salonuna ge                         | etirmeleri              | kesinlikle yasaktır.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Sınav Salonu                           |     |      |                                                                                                                      |                                           | and the second second   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Dersi Veren Öğretim<br>Elemanı         |     |      |                                                                                                                      | Öğrenci İmza                              |                         | and the state of t |          |

| $g=10\ (m/s^2)\qquad \pi=3$ |    |                             |     |                            |     |                             |     |
|-----------------------------|----|-----------------------------|-----|----------------------------|-----|-----------------------------|-----|
| θ                           | 00 | 300                         | 370 | 450                        | 530 | 600                         | 900 |
| Sin                         | 0  | 0.5                         | 0.6 | $0.7 = \frac{\sqrt{2}}{2}$ | 0.8 | $0.86 = \frac{\sqrt{3}}{2}$ | 1   |
| Cos                         | 1  | $0.86 = \frac{\sqrt{3}}{2}$ | 0.8 | $0.7 = \frac{\sqrt{2}}{2}$ | 0.6 | 0.5                         | 0   |

$$\begin{split} I &= I_{CM} + Md^2; \quad \vec{\tau} = \vec{\tau} x \vec{F}; \ W = \int \tau \ d\theta; \ K_{don} = \frac{1}{2} I\omega^2; \ K_{yuv} = \frac{1}{2} I_{CM}\omega^2 + \frac{1}{2} m v_{CM}^2 \\ \vec{L} &= \vec{\tau} x \vec{F}; \ \vec{\tau} = \frac{d\vec{L}}{dt}; \\ \vec{L} &= I\omega; \sum \vec{L}_t = \sum \vec{L}_f; \ \vec{J} = \Delta \vec{L} = \int \vec{\tau} dt = \vec{\tau}_{ort} \Delta t \\ x(t) &= Acos(\omega t + \phi); \\ T &= \frac{1}{f} = \frac{2\pi}{\omega}; \ a(t) = \omega^2 x(t); \\ \alpha(t) &= \omega^2 \theta(t) \\ \omega &= \sqrt{\frac{k}{n}}; \\ \omega &= \sqrt{\frac{g}{l}}; \ \omega = \sqrt{\frac{\kappa}{l}}; \\ E &= U(t) + K(t) = U_{maks} = K_{maks} \end{split}$$

| $\vec{v}_{ort} = \frac{\Delta \vec{r}}{\Delta t}; \ \vec{v} = \frac{d\vec{r}}{dt}; \ \vec{a}_{ort} = \frac{\Delta \vec{v}}{\Delta t}; \ \vec{a} = \frac{d\vec{v}}{dt}; a_t = \frac{dv}{dt}; a_r = \frac{v^2}{r}$ $a = sbt. \Rightarrow v = v_0 + at; \ x = x_0 + v_0 t + \frac{1}{2}at^2$                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\sum \vec{F} = m\vec{a} \; ; f = -kx; \; \tau = -\kappa\theta; \; f_k = \mu_k N \; ; \; f_s \leq \mu_s N \; ; \; \; W = \int \vec{F} .  d\vec{l} \; \; ; K = \frac{1}{2} \; mv^2$                                                                                                                                                                                                                                                                                                                                                              |
| $W_{T} = \Delta K \; ; \; U = mgy \; ; \; U = \frac{1}{2}kx^{2}; \; W_{kor} = -\Delta U \; ; \; W = \Delta U + \Delta K$                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $P = \frac{dW}{dt} = \vec{r}.\vec{v} \; ; \; \vec{F} = \frac{d\vec{P}}{dt} \; ; \; \vec{P} = m\vec{v} \; ; \; \sum_{i} \vec{P}_{i} = \sum_{i} \vec{P}_{f} \; ; \; \vec{l} = \Delta \vec{P} = \int_{i} \vec{F} dt = \vec{F}_{ort} \Delta t$ $\vec{\omega} = \frac{\Delta \theta}{\Delta t} \; ; \; \vec{\omega} = \frac{d\omega}{dt} \; ; \; \vec{\alpha} = \frac{d\omega}{\Delta t} \; ; \; \alpha = \frac{d\omega}{dt} \; ; \; \alpha_{t} = \alpha r \; ; \; v = r\omega \; ; \; S = r\theta \; ; \; \vec{\alpha} = \vec{a}_{t} + \vec{a}_{r}$ |
| $\alpha = sbt. \Rightarrow \omega = \omega_0 + \alpha t; \ \theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2;$                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\vec{r}_{CM} = \frac{\sum m_i \vec{r}_i}{\sum_{i=1}^{N}}; x_{CM} = \frac{\int x dm}{\sum_{i=1}^{N}}; I = \sum m_i r_i^2; I = \int r^2 dm$                                                                                                                                                                                                                                                                                                                                                                                                      |

Sorular 1-3

m kütleli bir parçacık, konik cismin simetri ekseni etrafında dönsün diye konik bir kasenin içine  $\omega_0$  açısal hızı ile atılmıştır. Bu parçacık, konik cismin simetri ekseni etrafında dönerken aynı zamanda da aşağı, koninin tabanına doğru öteleme hareketi yapmaktadır. Başlangıçta parçacık konik cismin simetri ekseninden R yarıçapı kadar uzaklıkta ise;



1) Yarıçap R/2'de iken parçacığın açısal hızını bulunuz.



a)  $2\omega_0$ 

b)  $\omega_0$ 

 $(c)4\omega_0$ 

d)  $\frac{1}{2}\omega_0$ 

e)  $8\omega_0$ 

2) Cisim ilk durumdan (R) son duruma (R/2) düşey yer değiştirmesi ne olur?



b)  $\frac{2\omega_0^2R^2}{a}$ 

c)  $\frac{\omega_0^2 R^2}{2a}$ 

d)  $\frac{\omega_0^2 R^2}{g}$ 

e)  $\frac{\omega_0^2 R^2}{4g}$ 

3) Yarıçap R/2'de iken parçacığın üzerine etki eden normal kuvveti nedir?



**b)**  $\frac{32mR\omega_0^2}{\sin\theta}$ 

c)  $\frac{mR\omega_0^2}{\sin\theta}$ 

d)  $\frac{16mR\omega_0^2}{\sin\theta}$ 

e)  $\frac{8mR\omega_0^2}{\sin\theta}$ 

#### Sorular 4-7

Yatay şekilde bir kütle-yay sistemi  $\omega=3\pi(rad/s)$  açısal frekansına sahiptir. t=0'da iken kütle  $x_0=0.5$  m'de ve ilk hızı  $\vec{v}_0=-4.5\hat{\imath}$  (m/s)'dir.



4) Sistemin faz sabitini (ilk faz açısını) bulunuz.

# a) $\frac{\pi}{4}$ b) 0 c) $\frac{\pi}{3}$ d) $\frac{\pi}{6}$ e) $\frac{\pi}{2}$

5) Hareketin genliğini bulunuz.



6) Sırasıyla, kütlenin maksimum hız ve maksimum ivmesi SI birim sisteminde aşağıdakilerden hangisidir?



7) Herhangi bir anda kütle-yay sisteminin enerjisi nedir? k = 500 N/m alınız.



#### Soru 8

R yarıçaplı ve M kütleli bir diskin, kenarından  $\frac{2}{5}R$  uzaklıkta küçük bir delik açılmıştır. Disk duvara, üzerindeki bu küçük delikten geçirilen bir iğne yardımı ile asılmıştır. Bu sistem bir sarkaç olarak düşünülürse, denge konumundan küçük bir  $\theta$  açısı kadar ayrılması durumunda sistemin açısal frekansını bulunuz?







## Sorular 9-12

 ${\it M}$  kütleli ve  ${\it R}$  yarıçaplı düzgün bir disk, sürtünmesiz bir masa üzerinde 2M kütleli ve R yarıçaplı başka bir düzgün diske doğru hareket etmektedir. Birinci diskin kütle merkezinin ilk hızı  $v_0$  olup  $\omega_0$  açısal hızı ile dönerken, ikinci disk başlangıçta durgun durumdadır. Birinci disk, ikinciye dokunduğunda (anlık bir çarpışma) gösterildiği gibi ikinci disk durgun durumdadır. Birinci disk ikinciye dokunduğunda hemen birbirlerine yapışmakta ve tek bir cisim olarak hareket etmektedirler.



 $I_{km} = \frac{1}{2}MR^2$ 

9) Disklerin kontak noktasına göre yeni kütle merkezinin yerini bulunuz.



**b**)  $-\frac{2}{3}R$ 

d) R

e)  $\frac{2}{3}R$ 

10) Çarpışmadan sonra birleşen sistemin yeni kütle merkezinin hızını bulunuz.

e)  $R\omega_0$ 

11) Birlesen sistemin yeni kütle merkezine göre eylemsizlik momentini bulunuz.

a)  $\frac{3}{2}MR^2$  b)  $\frac{43}{9}MR^2$ 

c)  $\frac{43}{18}MR^2$ 

 $(d)^{\frac{25}{6}}MR^2$ 

 $e)\frac{65}{18}MR^2$ 

12) Çarpışmadan sonra birleşen sistemin açısal hızını bulunuz.

a)  $\frac{3}{25}\omega_0 + \frac{8}{25}\frac{v_0}{R}$  b)  $-\frac{5}{43}\omega_0$ 

c)  $\frac{3}{43}\omega_0 + \frac{8}{43}\frac{v_0}{R}$  d)  $\frac{11}{43}\omega_0$ 

# Soru 13

Boyutları aynı, kütleleri farklı  $(m_A>m_B>m_C)$  üç silindir (A,B ve C), bir eğik düzlemin tepesindeki aynı noktadan ve aynı anda serbest bırakılıyor.

13) Hangi silindirin aşağı ilk ulaşacağını bulunuz.

a) A

**b)** B

c) C

d) hepsi aynı anda e) yeterli bilgi verilmemiştir

### Soru 14

Bir parçacık şekildeki gibi x-y düzleminde +x yönünde sabit hız ile hareket etmektedir. Parçacığın orijine göre açısal momentumu,



- a) azalır sonra artar
- b) artar sonra azalır
- c) sabittir
- d) sıfırdır çünkü bu dairesel hareket değildir
- e) hiçbiri

# Sorular 15-17

M=3m kütleli bir bobin, ağırlıksız bir ip ile sarılmış olup yatay pürüzlü bir yüzey üzerinde durgun haldedir. R bobinin dış yarıçapı olmak üzere kendi kütle merkezinden geçen eksene göre eylemsizlik momenti  $I_{km}=MR^2$  olarak verilmiştir. Sarılan ip tabakasının yarıçapı R/2'e eşit olup ipin diğer ucu şekildeki gibi m kütleli bir bloğa, düşey olarak sabitlenmiştir. Sistem durgun halden serbest bırakılmaktadır.



15) Bobinin açısal ivmesini bulunuz.



**b)** 
$$\frac{1}{15} \frac{g}{R}$$

c) 
$$\frac{1}{13} \frac{g}{R}$$

d) 
$$\frac{1}{12}\frac{g}{R}$$

$$\underbrace{\frac{2}{25}}_{R} \underbrace{\frac{g}{25}}_{R}$$

16) İpteki gerilmeyi bulunuz.

a) 
$$\frac{12}{15} mg$$

$$\frac{24}{25}mg$$

c) 
$$\frac{23}{24} mg$$

**d)** 
$$\frac{12}{13}mg$$

e) 
$$\frac{12}{17} mg$$

17) Kütle, h = 4R kadar düştükten sonra bobinin açısal hızı nedir?

a) 
$$\sqrt{\frac{32 g}{17 R}}$$

**b)** 
$$\sqrt{\frac{32 \, g}{13 \, R}}$$

c) 
$$\sqrt{\frac{32 \, g}{24 \, R}}$$

d) 
$$\sqrt{\frac{32}{15}} \frac{g}{R}$$

$$(e)\sqrt{\frac{32}{25}}\frac{g}{R}$$

Soru 18

Kütlesi M ve uzunluğu L olan düzgün bir kalasın bir ucu duvara yaslanmışken diğer ucu dairesel bir destek üzerindedir. Kalas ile duvar ve dairesel destek arası sürtünmelidir. Kalas dairesel desteğe teğetsel olarak değmektedir. Kalas hareketsizdir.





18) Kalasa dairesel destek tarafından uygulanan normal kuvveti bulunuz.

a) 2(N)

**b)** 8(N)

c) 3(N)

d) 4(N)

**e)** 6(N)

Sorular 19-20

0.5~kg kütleli bir parçacığın konumu, t saniye cinsinden olmak üzere;  $\vec{r}(t) = (1+40t)\hat{\imath} + (20t-5t^2)\hat{\jmath}$  (m) olarak verilmiştir. Aşağıdaki soruları SI birim sisteminde cevaplayınız.

**19)** t = 2s'de cisme etki eden torku  $\vec{\tau}$  orijine göre bulunuz.



**b)**  $405\hat{j} - 810\hat{k}$ 



d)  $-810\hat{k}$ 

e)  $810\hat{k}$ 

**20)** t = 2s'de cismin açısal momentumunu  $\vec{L}$  orijine göre bulunuz.

a) 
$$-400\hat{k}$$

**b)**  $400\hat{j} - 800\hat{k}$ 

c)  $400\hat{k}$ 

d)  $800\hat{k}$ 

e)  $-800\hat{k}$ 

# 2018-2019 Final SIMENT



m d'arine ethi eden leuvret d'onne distance diletir. Bu leuvet aqual momentumu degistirees bir tokke olestromaz.

$$\overline{Z} = 0 = d\overline{L} \Rightarrow \overline{L} = Sahit$$

Agual momentum leoruner.

$$\frac{1}{2}I_i^2 w_0^2 + mgh = \frac{1}{2}I_s w^2$$

$$\frac{1}{2}mn^2 w_0^2 + mgh = \frac{1}{8}mn^2 w^2$$

$$= \frac{1}{8} R^2 (4wo)^2 - \frac{1}{2} R^2 wo^2 = \frac{16}{8} R^2 wo^2 - \frac{4}{8} R^2 wo^2$$

$$gh = \frac{12}{8}e^2\omega^2 \Rightarrow h = \frac{12}{8}\frac{e^2\omega^2}{8} = \frac{3}{2}\frac{e^2\omega^2}{9}$$
 (a)





$$\pi (90-0) = m \left( \frac{4wo R/z}{R/2} \right)^2$$

$$n = \frac{8m\omega_0R}{\sin\theta}$$
 (e)

Cos(a+b) = Cos90° Cos0 + Smo Sino.

(4) 
$$tanp = -\frac{ui}{\pi i\omega} = \frac{4.5}{0.5.3\pi} = \frac{4.5}{0.5.3\pi} = \frac{9}{0.5.3\pi} \approx \frac{9}{3} = 1$$

$$\phi = \pi/4 \quad (a)$$

(5) 
$$\chi(t) = A Gos(3\pi t + \pi/4)$$
  
 $t = 0 i2in$   
 $\chi_i = A Gos(\pi/4)$   
 $0,5 = A \sqrt{2} \implies A = \frac{2 \cdot 0.5}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \sqrt{2} m.$  (d)

$$(G) \quad \chi(t) = \frac{1}{\sqrt{2}} \quad Gos(3\pi t + \pi/a)$$

$$(J = \frac{d\chi}{dt} = -\frac{3\pi}{\sqrt{2}}) \quad Sin(3\pi t + \pi/a) \quad \text{Lemax} = \frac{3\pi}{\sqrt{2}} = \frac{g}{\sqrt{2}} \quad \text{m/s}.$$

$$V_{max}$$

$$a = \frac{d\omega}{dt} = -\frac{g_{H^{2}}}{\sqrt{z}} cos(3\pi t + \pi l_{a})$$

$$cos(3\pi t + \pi l_{a})$$

$$\mathcal{F}$$
  $E = \frac{1}{2} L A^2 = \frac{1}{2} 500 \left(\frac{1}{V_2}\right)^2 = \frac{500}{4} = 125 J.$  (b)

(8) 
$$W = \sqrt{\frac{Mgod}{f}}$$
,  $d = R - \frac{2}{5}R = \frac{3}{5}R$ 

$$Io = D_{KM} + Md^{2}$$

$$= \frac{1}{2}MR^{2} + M\left(\frac{3}{5}R\right)^{2}$$

$$= \frac{1}{2}MR^{2} + \frac{9}{25}MR^{2} = \frac{43}{50}MR^{2}$$

$$Io = \frac{43}{5}MR^{2}$$

$$W = \sqrt{\frac{M9\frac{3}{5}R}{\frac{43}{50}MR^2}} = \sqrt{\frac{3}{50}\frac{9}{13}R} = \sqrt{\frac{30}{43}\frac{9}{R}}$$
 (e)

3 
$$\frac{1}{3}M$$
  $\frac{1}{3}M$   $\frac{1}{3}$ 

 $- \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{$ 

$$l_{s} = \frac{3}{27} l_{s} - \frac{8}{25} l_{e}$$
 (e)

mgh = IMR2W + Mem, Mgh = I MR REW HIMLERM 4gh = Ukum +2leum = 3leum = 2gh Um = \[ \frac{29h}{2} \, hottleden bapimon Hepsi ayn 1. anda (d) L=Fxp = m (FxF) dI = m (dr x ve) + m (rx die) = m (= xe) + m r'x die 3 I sabit did =0 di = 0 = i degismyor. sabit quen 7p = 1p d  $7p = MR^2 + MR^2 = 2MR^2$ 1. mg-m2 & = 12m2 & mg-T= man = mRd = T= mg - mRd

0 - 4

(8) 
$$T = 12mR \lambda = 12mR \frac{2g}{25R} = \frac{24}{25} mg$$

(b)  $T = 12mR \lambda = 12mR \frac{2g}{25R} = \frac{24}{25} mg$ 

(c)  $T = 12mR \lambda = 12mR \frac{2g}{25R} = \frac{24}{25} mg$ 

(d)  $T = 12mR \lambda = 12mR \frac{2g}{25R} = \frac{24}{25} mg$ 

(e)  $T = 12mR \lambda = 12mR \frac{2g}{25R} = \frac{24}{25} mg$ 

(e)  $T = 12mR \lambda = 12mR \frac{2g}{25R} = \frac{24}{25} mg^2$ 

(f)  $T = 12mR \lambda = 12mR \frac{2g}{25R} = \frac{24}{25} mg^2$ 

(g)  $T = 12mR \lambda = 12mR \frac{2g}{25} = \frac{24}{25} mg^2$ 

(g)  $T = 12mR \lambda = 12mR \frac{2g}{25} = \frac{24}{25} mg^2$ 

(g)  $T = 12mR \lambda = 12mR \frac{2g}{25} = \frac{24}{25} mg^2$ 

(g)  $T = 12mR \lambda = 12mR \frac{2g}{25} = \frac{24}{25} mg^2$ 

(g)  $T = 12mR \lambda = 12mR \frac{2g}{25} = \frac{24}{25} mg^2$ 

(g)  $T = 12mR \lambda = 12mR \frac{2g}{25} = \frac{24}{25} mg^2$ 

(g)  $T = 12mR \lambda = 12mR \frac{2g}{25} = \frac{24}{25} mg^2$ 

(g)  $T = 12mR \lambda = 12mR \frac{2g}{25} = \frac{24}{25} mg^2$ 

(g)  $T = 12mR \lambda = 12mR \frac{2g}{25} = \frac{24}{25} mg^2$ 

(g)  $T = 12mR \lambda = 12mR \frac{2g}{25} = \frac{24}{25} mg^2$ 

(g)  $T = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12mR \lambda = 12m$ 

 $S_{11530} = 0.8$   $I_{1} = \frac{1.10.018}{2}$   $I_{1} = 4 N$ 

(19) 
$$\vec{r}(t) = (1+40t)\vec{r} + (206-5t^2)\vec{j} \quad m \quad m=0.5 \text{ kg}$$

$$\vec{u} = d\vec{r} = 40 \vec{i} + (20-10t)\vec{j} \quad m/s$$

$$\vec{a} = d\vec{u} = -10\vec{j}$$

$$\vec{z}_0 = \vec{r} \times \vec{f} \qquad \vec{r} = m\vec{a} = -5\vec{j}$$

$$\vec{r}_{12} = 81\hat{1} + 20\hat{j}$$

$$\vec{z}_0 = \vec{r} \times \vec{f} = (81\hat{1} + 20\hat{j}) \times (-5\hat{1})$$

$$= -405 (7\hat{1}) = -405\hat{k}$$

$$\vec{l}_0 = (81\hat{1} + 20\hat{j}) \times (70\hat{1}) = 400 (\hat{j} \times \hat{1}) = -400 \hat{k}$$

$$\vec{l}_0 = (81\hat{1} + 20\hat{j}) \times (70\hat{1}) = 400 (\hat{j} \times \hat{1}) = -400 \hat{k}$$
(a)