

Sorular 1-3

m kütleli bir parçacık, konik cismin simetri ekseni etrafında dönsün diye konik bir kasenin içine ω_{0} açısal hızı ile atılmıştır. Bu parçacık, konik cismin simetri ekseni etrafında dönerken aynı zamanda da așağı, koninin tabanına doğru öteleme hareketi yapmaktadır. Başlangıçta parçacık konik cismin simetri ekseninden R yarıçapı kadar uzaklıkta ise;

1) Yarıçap $R / 2^{\prime}$ de iken parçacığın açısal hızını bulunuz.

a) $2 \omega_{0}$
b) ω_{0}
(c) $4 \omega_{0}$
d) $\frac{1}{2} \omega_{0}$
e) $8 \omega_{0}$
2) Cisim ilk durumdan (R) son duruma $(R / 2)$ düşey yer değiştirmesi ne olur?
a) $\frac{3 \omega_{0}^{2} R^{2}}{2 g}$
b) $\frac{2 \omega_{0}^{2} R^{2}}{g}$
c) $\frac{\omega_{0}^{2} R^{2}}{2 g}$
d) $\frac{\omega_{o}^{2} R^{2}}{g}$
e) $\frac{\omega_{0}^{2} R^{2}}{4 g}$
3) Yarıçap $R / 2^{\prime}$ de iken parçacığın üzerine etki eden normal kuvveti nedir?

a) $\frac{4 m R \omega_{o}^{2}}{\sin \theta}$
b) $\frac{32 m R \omega_{o}^{2}}{\sin \theta}$
c) $\frac{m R \omega_{o}^{2}}{\sin \theta}$
d) $\frac{16 m R \omega_{0}^{2}}{\sin \theta}$
e) $\frac{8 m R \omega_{o}^{2}}{\sin \theta}$

Sorular 4-7

Yatay șekilde bir kütle-yay sistemi $\omega=3 \pi(\mathrm{rad} / \mathrm{s})$ açısal frekansına sahiptir. $t=0$ 'da iken kütle $x_{0}=0.5 \mathrm{~m}$ 'de ve ilk hızı $\vec{v}_{0}=-4.5 \hat{\imath}(\mathrm{~m} / \mathrm{s})^{\prime}$ dir.

4) Sistemin faz sabitini (ilk faz açısını) bulunuz.
a) $\frac{\pi}{4}$
b) 0
c) $\frac{\pi}{3}$
d) $\frac{\pi}{6}$
e) $\frac{\pi}{2}$
5) Hareketin genliğini bulunuz.

a) $\frac{2}{\sqrt{2}}(m)$
b) $\frac{1}{2}$ (m)
c) $\frac{3}{2}(\mathrm{~m})$
d) $\frac{1}{\sqrt{2}}(\mathrm{~m})$
e) $2(m)$
6) Sırasıyla, kütlenin maksimum hız ve maksimum ivmesi SI birim sisteminde așağıdakilerden hangisidir?
a) $\frac{9}{2} ; \frac{81}{2}$
b) $\frac{9}{\sqrt{2}} ; \frac{81}{\sqrt{2}}$
c) $\frac{3}{2} ; \frac{9}{2}$
d) $\frac{3}{\sqrt{2}} ; \frac{9}{\sqrt{2}}$
e) $\frac{7}{2} ; \frac{49}{2}$
7) Herhangi bir anda kütle-yay sisteminin enerjisi nedir? $k=500 \mathrm{~N} / \mathrm{m}$ alınız.
a) $\frac{125}{\sqrt{2}}(J)$
b) 125 (J)
c) $\frac{125}{2}(J)$
d) $\frac{250}{\sqrt{2}}(J)$
e) $\frac{500}{\sqrt{2}}(J)$

Soru 8

R yarıçaplı ve M kütleli bir diskin, kenarından $\frac{2}{5} R$ uzaklıkta küçük bir delik açılmıștır. Disk duvara, üzerindeki bu küçük delikten geçirilen bir iğne yardımı ile asılmıștır. Bu sistem bir sarkaç olarak düşünülürse, denge konumundan küçük bir θ açısı kadar ayrılması durumunda sistemin açısal frekansını bulunuz?
$I_{k m}=\frac{1}{2} M R^{2}$

a) $\sqrt{\frac{30}{33} \frac{g}{R}}$
b) $\sqrt{\frac{20}{43} \frac{g}{R}}$
c) $\sqrt{\frac{20}{33} \frac{g}{R}}$
d) $\sqrt{\frac{33}{43} \frac{g}{R}}$
(e) $\sqrt{\frac{30}{43} \frac{g}{R}}$

Sorular 9-12

M kütleli ve R yarıçaplı düzgün bir disk, sürtünmesiz bir masa üzerinde $2 M$ kütleli ve R yarıçaplı başka bir düzgün diske doğru hareket etmektedir. Birinci diskin kütle merkezinin ilk hızı v_{0} olup ω_{0} açısal hızı ile dönerken, ikinci disk başlangıçta durgun durumdadır. Birinci disk, ikinciye dokunduğunda (anlık bir çarpışma) gösterildiği gibi ikinci disk durgun durumdadır. Birinci disk ikinciye dokunduğunda hemen birbirlerine yapıșmakta ve tek bir cisim olarak hareket etmektedirler.
$I_{k m}=\frac{1}{2} M R^{2}$
9) Disklerin kontak noktasına göre yeni kütle merkezinin yerini bulunuz.

a) $\frac{1}{3} R$
b) $-\frac{2}{3} R$
c) $-\frac{1}{3} R$
d) R
e) $\frac{2}{3} R$
10) Çarpışmadan sonra birleşen sistemin yeni kütle merkezinin hızını bulunuz.
a) $\frac{1}{3} v_{0}$
b) $\frac{1}{3} R \omega_{0}$
c) $\frac{2}{3} v_{0}$
d) $\frac{2}{3} R \omega_{0}$
e) $R \omega_{0}$
11) Birleșen sistemin yeni kütle merkezine göre eylemsizlik momentini bulunuz.
a) $\frac{3}{2} M R^{2}$
b) $\frac{43}{9} M R^{2}$
c) $\frac{43}{18} M R^{2}$
d) $\frac{25}{6} M R^{2}$
e) $\frac{65}{18} M R^{2}$
12) Çarpışmadan sonra birleșen sistemin açısal hızını bulunuz.
a) $\frac{3}{25} \omega_{0}+\frac{8}{25} \frac{v_{0}}{R}$
b) $-\frac{5}{43} \omega_{0}$
c) $\frac{3}{43} \omega_{0}+\frac{8}{43} \frac{v_{0}}{R}$
d) $\frac{11}{43} \omega_{0}$
e) $\frac{3}{25} \omega_{0}-\frac{8}{25} \frac{v_{0}}{R}$

Soru 13

Boyutları aymı, kütleleri farklı $\left(m_{A}>m_{B}>m_{C}\right)$ üç silindir (A, B ve C), bir eğik düzlemin tepesindeki aynı noktadan ve aynı anda serbest birakllyor.
13) Hangi silindirin așağı ilk ulașacağımı bulunuz.
a) A
b) B
c) C
d) hepsi aynı anda
e) yeterli bilgi verilmemiştir

Soru 14

Bir parçacık şekildeki gibi $x-y$ düzleminde $+x$ yönünde sabit hız ile hareket etmektedir. Parçacığın orijine göre açısal momentumu,
a) azalır sonra artar
b) artar sonra azalır
c) sabittir
d) sıfirdır çünkü bu dairesel hareket değildir
e) hiçbiri

Sorular 15-17
$M=3 m$ kütleli bir bobin, ağırlıksız bir ip ile sarılmış olup yatay pürüzlü bir yüzey üzerinde durgun haldedir. R bobinin dış yarıçapı olmak üzere kendi kütle merkezinden geçen eksene göre eylemsizlik momenti $I_{k m}=M R^{2}$ olarak verilmiştir. Sarılan ip tabakasının yarıçapı $R / 2^{\prime}$ e eșit olup ipin diğer ucu şekildeki gibi m kütleli bir bloğa, düşey olarak sabitlenmiștir. Sistem durgun halden serbest bırakılmaktadır.
15) Bobinin açısal ivmesini bulunuz.
a) $\frac{1}{17} \frac{g}{R}$
b) $\frac{1}{15} \frac{g}{R}$
c) $\frac{1}{13} \frac{g}{R}$
d) $\frac{1}{12} \frac{g}{R}$
(e) $\frac{2}{25} \frac{g}{R}$
16) İpteki gerilmeyi bulunuz.
a) $\frac{12}{15} \mathrm{mg}$
b) $\frac{24}{25} \mathrm{mg}$
c) $\frac{23}{24} m g$
d) $\frac{12}{13} m g$
e) $\frac{12}{17} m g$
17) Kütle, $h=4 R$ kadar düştükten sonra bobinin açısal hızı nedir?
a) $\sqrt{\frac{32}{17} \frac{g}{R}}$
b) $\sqrt{\frac{32}{13} \frac{g}{R}}$
c) $\sqrt{\frac{32}{24} \frac{g}{R}}$
d) $\sqrt{\frac{32}{15} \frac{g}{R}}$
(e) $\sqrt{\frac{32}{25} \frac{g}{R}}$

Soru 18

Kütlesi M ve uzunluğu L olan düzgün bir kalasın bir ucu duvara yaslanmışen diğer ucu dairesel bir destek üzerindedir. Kalas ile duvar ve dairesel destek arası sürtünmelidir. Kalas dairesel desteğe teğetsel olarak değmektedir. Kalas hareketsizdir.

18) Kalasa dairesel destek tarafindan uygulanan normal kuvveti bulunuz.
a) $2(\mathrm{~N})$
b) $8(N)$
c) $3(N)$
d) $4(N)$
e) $6(N)$

Sorular 19-20

0.5 kg kütleli bir parçacığın konumu, t saniye cinsinden olmak üzere; $\vec{r}(t)=(1+40 t) \hat{\imath}+\left(20 t-5 t^{2}\right) \hat{\jmath}$ (m) olarak verilmiştir. Aşağıdaki soruları SI birim sisteminde cevaplayınız.
19) $t=2 s^{\prime}$ de cisme etki eden torku $\vec{\tau}$ orijine göre bulunuz.
a) $405 \hat{k}$
b) $405 \hat{\jmath}-810 \hat{k}$
c) $-405 \hat{k}$
d) $-810 \hat{k}$
e) $810 \hat{k}$
20) $t=2 s^{\prime}$ de cismin açısal momentumunu \vec{L} orijine göre bulunuz.
a) $-400 \hat{k}$
b) $400 \hat{\jmath}-800 \hat{k}$
c) $400 \hat{k}$
d) $800 \hat{k}$
e) $-800 \hat{k}$

2018-2019 Final Sinav
(1)

In u'zeric ethi eden lesuvet dorme divlomire diktir. BU kuvet acizal momentumu degistirea, bir tok le olusturmazz.

$$
\vec{Z}=0=\frac{d \vec{L}}{d t} \quad \Rightarrow \vec{L}=\text { sahit }
$$

Asual mumantum korumer.

$$
L_{i}=L_{s}
$$

$$
L_{i}=I_{i} W_{0}, \quad L_{s}=I_{s} \omega
$$

$$
I_{i}=m R^{2}, \quad I_{s}=m\left(\frac{R}{2}\right)^{2}=\frac{1}{4} M R^{2}
$$

$$
\begin{equation*}
m R^{2} \omega_{0}=\frac{1}{4} m R^{2} \omega \Rightarrow \quad \omega=4 \omega_{0} \tag{C}
\end{equation*}
$$

(2) Enarginin horunumundan $E i=$ Es

$$
\begin{align*}
& \frac{1}{2} I_{i} \omega_{0}^{2}+m g h=\frac{1}{2} I_{5} \omega^{2} \\
& \frac{1}{2} m R^{2} \omega_{0}^{2}+m g h=\frac{1}{8} m R^{2} \omega^{2} \quad w_{i} \\
& g h=\frac{1}{8} R^{2} \omega^{2}-\frac{1}{2} R^{2} \omega_{0}^{2} \\
& =\frac{1}{8} R^{2}\left(4 \omega_{0}\right)^{2}-\frac{1}{2} k^{2} \omega_{0}^{2}=\frac{16 R^{2} \omega_{0}^{2}-\frac{4}{8} R^{2} \omega_{0}^{2}}{w_{0}} \tag{a}\\
& g h=\frac{12}{8} R^{2} \omega_{0}^{2} \Rightarrow h=\frac{12 R^{2} \omega_{0}^{2}}{8 g}=\frac{3 R^{2} \omega_{0}^{2}}{2 g} \quad(a) \tag{4}
\end{align*}
$$

(3)

$$
\begin{align*}
& c q F=m \frac{\theta^{2}}{r} \\
& n \cos (90-\theta)=m \frac{\left(4 \omega_{0} R / 2\right)^{2}}{R / 2} \\
& n \sin \theta=m \frac{16 \omega_{0} R^{2}}{4}, \frac{2}{R} \\
& n=\frac{8 m \omega_{0} R}{\sin \theta} \quad(e) \tag{e}
\end{align*}
$$

$$
\begin{aligned}
& \cos (90-\theta)=\sin \theta \\
& \cos (a+b)=\cos 90^{\circ} \cos \theta+\sin \theta \sin \theta
\end{aligned}
$$

(4)

$$
\begin{aligned}
& \tan \phi=-\frac{u_{i}}{x_{i} \omega}=\frac{4.5}{0,5 \cdot 3 \pi}=\frac{4.5}{0,5.3 \pi}=\frac{9}{3 \pi} \approx \frac{9}{9} \approx 1 \\
& \phi=\pi / 4 \quad \text { (a) }
\end{aligned}
$$

(5)

$$
\begin{aligned}
& x(t)=A \operatorname{Cos}(3 \pi t+\pi / 4) \\
& t=0 \text { ian } \\
& x_{i}=A \operatorname{Cos}(\pi / 4) \\
& 0,5=A \frac{\sqrt{2}}{2} \Rightarrow A=\frac{2-0,5}{\sqrt{2}}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \mathrm{~m} \cdot(\mathrm{~d})
\end{aligned}
$$

(6)

$$
\begin{aligned}
& x(t)=\frac{1}{\sqrt{2}} \cos (3 \pi t+\pi / n) \\
& V=\frac{d x}{d t}=\frac{-\frac{3 \pi}{\sqrt{2}}}{V_{\text {max }}} \sin (3 \pi t+\pi / 4) \quad U_{\text {max }}=\frac{3 \pi}{\sqrt{2}}=\frac{9}{\sqrt{2}} \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

$$
\begin{array}{r}
a=\frac{d v}{d t}=-\frac{9 \pi^{2}}{\sqrt{2}} \cos (3 r t+\pi / \mathrm{u}) \\
a_{\text {max }}=A \omega^{2}=\frac{81}{\sqrt{2}} \mathrm{~m} / \mathrm{s}^{2} \tag{b}
\end{array}
$$

(7) $E=\frac{1}{2} K A^{2}=\frac{1}{2} 500\left(\frac{1}{\sqrt{2}}\right)^{2}=\frac{500}{4}=125 \mathrm{~J}$.
(8)

$$
\begin{align*}
& I_{0}=I_{k M}+M d^{2} \\
&=\frac{1}{2} M R^{2}+M\left(\frac{3}{5} R\right)^{2} \\
&=\frac{1}{2} M R^{2}+\frac{9}{25} M R^{2}=\frac{43}{50} M R^{2} \\
& \frac{25}{2} \\
& W=\sqrt{\frac{M g \frac{3}{5} R}{\frac{43}{50} M R^{2}}}=\sqrt{\frac{33}{50}} M R^{2} \tag{e}\\
& \frac{50}{43} \frac{9}{R}=\sqrt{\frac{30}{43} \frac{9}{R}} \quad \text { (e) }
\end{align*}
$$

(9)

(10)

Lineer momontum leorunur. (oteleme nomentumu)

$$
a_{1} u_{0}=3 \mu u_{s} \quad \Rightarrow l_{s}=\frac{u_{0}}{3} \quad \text { (a) }
$$

(11)

$$
\begin{aligned}
I_{\text {si }} & =\frac{1}{2} M R^{2}+M\left(R+\frac{R}{3}\right)^{2}+\frac{1}{2}(2 M) R^{2}+2 M\left(\frac{2 R}{3}\right)^{2} \\
& =\frac{1}{2} M R^{2}+M\left(\frac{4}{3}\right)^{2} R^{2}+\frac{2 M}{2} R^{2}+2 M \frac{4}{9} R^{2} \\
& =\frac{1}{2} M R^{2}+\frac{16}{9} M R^{2}+M R^{2}+\frac{8}{9} M R^{2} \\
& =\left(\frac{1}{2}+\frac{16}{9}+1+\frac{8}{9}\right) M R^{2} \\
& =\left(\frac{9+32+18+16}{18}\right) M R^{2}=\frac{75}{18} M R^{2} \\
& =\frac{25}{6} M R^{2}(d)
\end{aligned}
$$

(12)

$$
\frac{4}{3} R
$$

$$
\begin{align*}
&-M U_{0} \frac{4}{3} R+\frac{1}{2} M R^{2} \omega_{0}=A_{\text {sin }} \omega_{5} \\
&=\frac{25}{6} M R^{2} \omega_{5} \\
&-M U_{0} \frac{4}{2} R+\frac{1}{2} M R^{2} \omega_{0} \\
& \omega_{S}=\frac{1}{2} R^{2} \omega_{0} \cdot \frac{6}{25 R^{2}}-\frac{4}{5} R U_{0} \cdot \frac{6}{25 R^{2}} \tag{e}\\
& \omega_{5}=\frac{3}{25} \omega_{0}-\frac{8}{25} \frac{U_{0}}{R} \quad \text { (e) }
\end{align*}
$$

(13)

$m_{A}>m_{B}>m_{C}$
Hepur aynl andal (d)
(14)

$$
\begin{aligned}
& \vec{L}=\vec{r} \times \vec{p}=m(\vec{r} \times \overrightarrow{\vec{v}}) \\
& \begin{aligned}
\frac{d \vec{L}}{d t} & =m\left(\frac{d \vec{r}}{d t} \times \overrightarrow{b^{2}}\right)+m\left(\vec{r} \times \frac{d \vec{l}}{d t}\right) \\
& =m(\vec{l} \times \vec{v})+m \vec{r} \times \frac{d \vec{l}}{d t}
\end{aligned}
\end{aligned}
$$

$$
\Rightarrow \vec{v} \text { sabit } \frac{d \vec{v}}{d t}=0
$$

$$
\begin{equation*}
\frac{d \vec{l}}{d t}=0 \Rightarrow \vec{L} \text { deģsmijor sabst } \tag{c}
\end{equation*}
$$

(15)

$$
\begin{aligned}
& r_{p}=I_{p} \alpha \quad I_{p}=M R^{2}+M R^{2}=i m R^{2} \\
& T \cdot \frac{R}{2}=2 M R^{2} \alpha \\
& T=4 M R \alpha=12 m R \alpha \\
& \left\{\begin{array}{l}
m g-m R \alpha=12 m R \alpha \\
2 m g-m R \alpha=24 m R \alpha \\
2 m g=25 m R \alpha \Rightarrow \alpha=\frac{29}{25 R}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& m g-T=m a_{1}=\frac{m R}{2} \alpha \Rightarrow T=m g-\frac{m R \alpha}{2} \alpha \\
& a_{1}=\frac{e_{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& M g h=\frac{1}{4} M R^{2} \omega^{2}+\frac{1}{2} M V_{\mathrm{km}} \text {, } \\
& \omega_{k m}=W R \Rightarrow \omega=\frac{e_{\text {kas }}}{R}
\end{aligned}
$$

$$
\begin{aligned}
& 4 g h=\mathrm{Kmm}^{2}+2 \mathrm{ukm}^{2} \Rightarrow \quad 3 u_{\mathrm{em}}^{2}=2 g h \\
& u_{k m}=\sqrt{\frac{2 g h}{3}} \text {, liottleden bapinsn. }
\end{aligned}
$$

(16) $T=12 m R \alpha=12 m R \frac{2 g}{25 R}=\frac{24}{25} \mathrm{mg}$

$$
u_{\mathrm{kM}}=\omega R
$$

$$
\begin{aligned}
& \text { Enarginin Korunuminden } \\
& 4 m g R=\frac{1}{2} m\left(\frac{\omega R}{2}\right)^{2}+\frac{1}{2} 3 m(R \omega)^{2}+\frac{1}{2} I \omega^{2} \\
(8) x \rightarrow & 4 m g R=
\end{aligned}
$$

$$
\begin{aligned}
32 g R= & R^{2} \omega^{2}+12 R^{2} \omega^{2}+12 R^{2} \omega^{2} \\
& =25 R^{2} \omega^{2}
\end{aligned}
$$

$$
\begin{equation*}
w=\sqrt{\frac{329}{25 R}} \tag{e}
\end{equation*}
$$

$$
M R^{2}=3 m R^{2}
$$

$$
32 g R=25 R^{2} w^{2}
$$

A noktasina gore tork

$$
\begin{gathered}
Z_{A}=n_{1} L-M g \frac{L}{2} \sin \theta=\theta \\
n_{1} L=M g \frac{L}{2} \sin \theta \\
n_{1}=\frac{1 \cdot 10 \cdot 0.8}{2} \\
n_{1}=4 \mathrm{~N} \quad \text { (d) }
\end{gathered}
$$

(19)

$$
\begin{aligned}
& \vec{r}(t)=(1+40 t) \hat{\jmath}+\left(20 t-5 t^{2}\right) \hat{\jmath} \quad m \quad m=0,5 \mathrm{kq} \\
& \vec{b}=\frac{d \vec{r}}{d t}=40 \hat{\jmath}+(20-10 t) \jmath \mathrm{m} / \mathrm{s} \\
& \vec{a}=\frac{d u}{d t}=-10 \hat{\jmath} \\
& \vec{z}_{0}=\vec{r} \times \vec{f} \quad \vec{F}=m \vec{a}=-5 \hat{\jmath} \\
& \left.\vec{r}\right|_{t=2}=81 \hat{\imath}+20 \hat{\jmath} \\
& \vec{z}_{0}=\vec{r} \times \vec{F}=(81 \hat{\imath}+20 \hat{\jmath}) \times(-5 \hat{\jmath}) \hat{(c)} \\
& =-405\left(\frac{1}{k}\right)=-405 \hat{k} \quad(c)
\end{aligned}
$$

(20)

$$
\begin{align*}
& \vec{L}_{0}=\vec{r} \times \vec{p},\left.\quad \vec{Q}\right|_{t=2}=40 \hat{\imath} \quad \vec{p}=m \overrightarrow{\vec{v}}=20 \hat{\imath} \\
& \vec{L}_{0}=(81 \hat{\imath}+20 \hat{\jmath}) \times(20 \hat{\imath})=400(\hat{\jmath} \times \hat{\imath})=-400 \hat{k} \quad \text { (a) } \tag{a}
\end{align*}
$$

