Atıf Formatları
enetLTS: Robust and Sparse Methods for High Dimensional Linear, Binary, and Multinomial Regression
  • IEEE
  • ACM
  • APA
  • Chicago
  • MLA
  • Harvard
  • BibTeX

F. S. Kurnaz And P. Filzmoser, "enetLTS: Robust and Sparse Methods for High Dimensional Linear, Binary, and Multinomial Regression," The Journal of Open Source Software , vol.8, no.82, pp.1-8, 2023

Kurnaz, F. S. And Filzmoser, P. 2023. enetLTS: Robust and Sparse Methods for High Dimensional Linear, Binary, and Multinomial Regression. The Journal of Open Source Software , vol.8, no.82 , 1-8.

Kurnaz, F. S., & Filzmoser, P., (2023). enetLTS: Robust and Sparse Methods for High Dimensional Linear, Binary, and Multinomial Regression. The Journal of Open Source Software , vol.8, no.82, 1-8.

Kurnaz, Fatma, And Peter Filzmoser. "enetLTS: Robust and Sparse Methods for High Dimensional Linear, Binary, and Multinomial Regression," The Journal of Open Source Software , vol.8, no.82, 1-8, 2023

Kurnaz, Fatma S. And Filzmoser, Peter. "enetLTS: Robust and Sparse Methods for High Dimensional Linear, Binary, and Multinomial Regression." The Journal of Open Source Software , vol.8, no.82, pp.1-8, 2023

Kurnaz, F. S. And Filzmoser, P. (2023) . "enetLTS: Robust and Sparse Methods for High Dimensional Linear, Binary, and Multinomial Regression." The Journal of Open Source Software , vol.8, no.82, pp.1-8.

@article{article, author={Fatma Sevinç KURNAZ And author={Peter Filzmoser}, title={enetLTS: Robust and Sparse Methods for High Dimensional Linear, Binary, and Multinomial Regression}, journal={The Journal of Open Source Software}, year=2023, pages={1-8} }