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ABSTRACT

Using Gene Expression Profiles of Cancer Patients with
Image-Based Deep Learning Approach to Develop
Methods for Classfication and Prediction of Cancer

while Revealing Critical Genes

Büşra Nur DARENDEL̇I

Department of Bioengineering

Master of Science Thesis

Supervisor: Assist. Prof. Dr. Alper YILMAZ

Cancer is one of the malignant diseases worldwide. Difficulties in diagnosis and

treatment cannot prevent the progression of the disease and cause the death of

millions of people. The intra-tumor and inter-tumor heterogeneity characteristic of

tumor cells has resulted in cancer being a disease with individual characteristics. Since

each individual has a unique tumor and tumor microenvironment, general screening

methods make early detection of the disease difficult. Here, we aimed to provide new

perspective of cancer diagnosis using deep learning approach on gene expression data.

The training of gene expression data, in which the exact results of the changes in the

genome are seen, was carried out using the deep learning method. In addition, it

is aimed to identify critical genes that are effective in identifying tumor and normal

tissues, which deep learning has determined with high accuracy.

In this study, The Cancer Genome Atlas (TCGA) dataset with RNA-Seq data of

approximately 30 different types of cancer patients and GTEx RNA-seq data of normal

tissues were used. The input data for the training was transformed to RGB format and

the training was carried out with a Convolutional Neural Netowk (CNN). The trained

algorithm is able to predict cancer with 97.7% accuracy, based on gene expression

data. Moreover, we applied one-pixel attack on the trained model to determine

effective genes for prediction of the disease. As a result of the application of this

method, 13 critical genes that are effective on the prediction of the deep learning

model were determined.

xiii



As a result, with the developed deep learning model, a model that can distinguish

tumor and normal tissues based on gene expression data has been developed. By

examining the prediction mechanism of this model, genes that are candidates to be

biomarkers for cancer were determined. When the identified genes were searched in

the literature, their relationship with cancer was observed. These genes, which were

determined as a result of the study, can be used as a biomarker for cancer by supporting

experimental data. In line with the results obtained, it is shown that individual cancers

can be examined on the basis of genes, and that individual diagnoses and treatments

can also be applied.

Keywords:

cancer, TCGA, CNN, biomarker
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ÖZET

Kanser Hastalarının Gen İfade Verileri Kullanılarak
Kanserde Kritik Genlerin Tanımlanması, Kanser

Sınıflandırılması ve Tahmini için Görüntü-Tabanlı Derin
Öğrenme Yaklaşımı

Büşra Nur DARENDEL̇I

Biyomühendislik Anabilim Dalı

Yüksek Lisans Tezi

Danı̧sman: Dr. Öğr. Üyesi Alper YILMAZ

Kanser, dünya genelinde ölümcül hastalıkların başında yer almaktadır. Teşhis ve

tedavi aşamasındaki zorluklar hastalığın ilerleyi̧sini engelleyememekte milyonlarca

insanın ölümüne yol açmaktadır. Tümörlü hücrelerin sahip olduğu intra-tümor ve

inter-tümör heterojenite özelliği kanserin bireylere özgü özelliklere sahiip bir hastalık

olması sonucunu doğurmuştur. Her bireyin sahip olduğu tümör ve tümör mikroçevresi

kendisine özgü olması sebebi ile genel tarama yöntemleri hastalığın erken tespitini

zorlaştırmaktadır. Burada gen ekspresyon verileri üzerinde derin öğrenme yaklaşımı

kullanılarak kanser teşhisine yeni bir bakı̧s açısı kazandırmayı amaçladık. Genomdaki

deği̧sikliklerin birebir sonuçlarının görüldüğü gen ifade verilerinin derin öğrenme

yöntemi kullanılarak eğitimi gerçekleştirilmi̧stir. Ek olarak, derin öğrenmenin yüksek

doğrulukla belirlediği tümör ve normal dokuları belirlemede etkili olan kritik genlerin

belirlenmesi amaçlanmı̧stır.

Bu çalı̧smada, yaklaşık 30 farklı kanser hastasının RNA-Seq verileri ile Kanser Genom

Atlas (TCGA) veri seti ve normal dokuların GTEx RNA-seq verileri kullanılmı̧stır.

Eğitim için girdi verileri RGB formatına dönüştürülmüş ve eğitim bir Evri̧simsel Sinir

Ağı (CNN) ile gerçekleştirilmi̧stir. Eğitimli algoritma, gen ekspresyonu verilerine

dayanarak kanseri %97.7 doğrulukla tahmin edebilir. Ayrıca, hastalığın tahmini için

etkili genleri belirlemek için eğitilmi̧s modele bir-piksel saldırı uyguladık.Bu yöntemin

uygulanması sonucunda derin öğrenme modelinin tahmini üzerinde etkili olan 13
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kritik gen belirlenmi̧stir.

Sonuç olarak, geli̧stirilen derin öğrenme modeli ile tümör ve normal dokuları gen

ifade verilerine bağlı olarak ayırt edebilen bir model geli̧stirilmi̧stir. Bu modelin

tahmin mekanizması incelenerek kanser için biyobelirteç olmaya aday olan genler

belirlenmi̧stir. Belirlenen genlerin literatür araştırılması yapıldığında kanserle ili̧skileri

görülmüştür. Gerçekleştirilen çalı̧sma sonucu belirlenen bu genler deneysel verilerle

desteklenerek kanser için biyobelirteç olarak kullanılanılabilir. Elde edilen sonuçlar

doğrultusunda ki̧silere özgü kanserler gen bazında incelenerek, ki̧siye özgü tanı ve

tedavilerin de uygulanabileceği gösterilmektedir.

Anahtar Kelimeler: kanser, TCGA, CNN, biyobelirteç

YILDIZ TEKNİK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ
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1
INTRODUCTION

1.1 Literature Review

The deep learning approach has emerged by designing computer models that can

perform the learning process as a result of interconnected layers based on the human

brain, such as neurons. As a result of the development of data science and especially

the rapid increase in biological data in the last decade, the designed neural networks

have begun to play important roles in the interpretation of biological data for the

diagnosis and treatment of diseases [1]. Cancer, which is one of the biggest health

problems in the world, is one of the diseases in which deep learning approaches are

widely applied.

Since cancer is a disease with high genomic heterogeneity and phenotypic plasticity,

its diagnosis and treatment involve various difficulties [2]. By virtue of the developing

technology, many medical data of cancer patients are available. As a result of

the processing of these medical data with deep learning approaches, the stages of

diagnosis and treatment have improved.

Deep learning approaches used for cancer diagnosis and treatment can be examined

under two headings according to the inputs. These are generally image-processing

methods using image-based data such as CT, histopathology, radiology and gene

expression signature-based approaches using gene expression data as input. In both

approaches, the aim is to produce solutions that will facilitate the diagnosis and

treatment of cancer.

The gene expression signature-based approach has created a perspective that provides

more opportunities for personalized approaches in cancer diagnosis and treatment.

The use of data obtained as a result of next generation sequencing, which is

one of the developing molecular biology techniques, through machine learning

algorithms strengthens this approach. Estimation of disease progression and survival

time of cancer patients using gene expression data, generating solutions to various

1



cancer-specific classification problems (such as molecular cancer classification [3],
molecular subtype classification [4], specific cancer classification [5]) Solutions to

such problems were produced with a deep learning approach.

1.2 Objective of the Thesis

The increase in deaths due to cancer shows that studies that will improve the diagnosis

and treatment of cancer are important. Although there is a lot of unknown for

the aforementioned disease, data that can provide clues about the critical points

of the disease are also available thanks to the developing experimental methods.

There is also a developing artificial intelligence technology for the processing and

interpretation of this data.

In this study, by combining these possibilities, it is aimed to enable the machine

to distinguish between tumor and normal tissue, and then to find genes that may

be effective in cancer by examining how it makes this distinction. In this way, it

is aimed to perform the cancer biomarker determination process in a computerized

environment and to shorten the time-consuming and expensive experiment process.

1.3 Hypothesis

In this study, an algorithm that can separate tumor and normal tissues will be

implemented using publicly available datasets The Cancer Genome Atlas (TCGA)

and Genotype-Tissue Expression (GTEx) [6]. The TCGA includes RNA-seq data from

10,477 tumor and normal tissue, while the GTEx dataset includes RNA-seq data from

7429 healthy tissues. These two datasets will be converted into an image format

without any normalization in order not to lose the information they have in the gene

expression data, and will be trained with the Convolutional Neural Network (CNN)

model, which is created because it is thought that it can learn more information

from the input with feature extraction capability. If high success is achieved after the

training, it is aimed to determine the critical genes by applying the one-pixel attack

method to the images created using gene expression data.

2



2
CANCER

Cancer ranks second in the list of diseases that cause death in the world. According

to the World Health Organization (WHO) data that 9.6 million people have died from

cancer worldwide since 2018 have been shared. This disease, which causes a high

incidence, occurs as a result of changes in normal cells. It spreads as a result of

uncontrolled division of normal cells and invasion of other cells. In this section, cancer

mechanism and factors affecting this mechanism will be mentioned. Next, cancer

diagnosis techniques and gene expression based cancer diagnosis techniques will be

discussed.

2.1 Cancer and its mechanisms

Cancer is the name given to the types of diseases in which cells display the same

behavior in different tissues. No matter what tissue the cells are in, they tend to divide

uncontrolled and spread to the surrounding tissues, causing tumor development.

In a normal body cycle, cells have the characteristics of division. In fact, there is

a mechanism in which normal body cells are constantly dividing like tumor cells,

which is known as inflammation. In the case of inflammation, chemotactic factors in

cells organized in the epithelial tissue activate and stimulate the signal transduction

system required for the regeneration of the extracellular matrix. With the end of

the inflammation, the signal transmission decreases and the normal cycle is restored

(Figure 2.1.a). Tumor formation also follows a similar sequence to inflammation, but

as a result of genomic instability in cells during division, the signal transmission is lost

and the cells continue to divide and spread to different tissues (Figure 2.1.b) [7].

There are many biological mechanisms behind the proliferation mechanism of tumor

cells. These mechanisms that distinguish between normal cells and tumor cells can be

listed as follows:

• Continuity of proliferative signals; Tumor cells ensure the continuity of the

3



Figure 2.1 Inflammation vs Cancer [7]

signal production that occurs in normal tissues and supports cell growth, thus

ensuring the continuity of division processes.

• Avoiding growth suppressing signals; There are proteins such as RB (associated

with retinoblastoma) and TP53, which are naturally present in the body

mechanism and enable to suppress the proliferation of tumor cells. However,

tumor cells can eliminate factors that limit division by bypassing these

mechanisms.

• Avoiding the immune system; Although not in all types of cancer, it has been

observed that tumor cells have systems to escape from the immune response in

viral cancer types. The immune system seems to play a role in tumor formation

and progression in some non-viral cancer types.

• Immortality due to replication; Telomer sequences found in normal tissue cell

DNA shorten as a result of replication, leading to aging of the cell and death

after a stage. This is the opposite in tumor cells. They tend to maintain telomere

length to avoid aging and apoptotic effects. Thus, they can maintain their

unlimited reproductive abilities.

• Tumor development caused by inflammation; Although there are studies

showing that inflammation responses are tumor suppressing in the first studies,

it has been observed that the effects resulting from inflammation in the later

stages help tumor cells to gain distinctive features. [8–11]

• Invasion and metastasis; It has been observed that tumor cells can gain the
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ability to resist apoptasis and spread to surrounding tissues through the

epithelial-mesenchymal transition program. [12–16]

• Stimulate angiogenesis; Like normal tissue cells, tumor cells also show

vascularization due to their need for nutrients and oxygen and their need for

waste disposal.

• Genome instability & mutation; All the mentioned features arise as a result of

mutations in the genome of tumor cells. Apart from this, some features can also

occur with epigenetic changes.

• Cell death resistance; apoptosis is the most common mechanism for preventing

cancer development. Tumor cells have developed various strategies to limit and

prevent apoptosis.

• Disorganization of cellular energy ; Uncontrolled proliferation of tumor cells

also affects the amount of glucose needed. It has been observed that even

under aerobic conditions, tumor cells limit their energy production by glucose

metabolism and reprogram their energy metabolism. [17–19]

The 10 features mentioned above are the distinctive features of tumor cells (Figure

2.2) [20] In the light of all this information, the general mechanism can be determined

by the contribution of the tumor microenvironment to tumorigenesis as well as

transferring all tumor characteristics one by one.

Figure 2.2 Hallmarks of Cancer [20]
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Tumor Microenvironment The environment in which the numerous mechanisms

developed by tumor cells play an active role in the sustainability. The most

prominent feature of the tumor microenvironment is the rearrangement of metabolic

properties. This microenvironment, which consists of many cells with different

structures and characteristics (such as immune cells, macrophages, neutrophils,

dendritic cells, endothelial cells, fibroblasts, adipocytes, etc.) has heterogeneity due

to its diversity. [21–23]

The most effective roles in tumor formation are based on genomic instability as

mentioned before. It is known that all tumor cells originate from a single cell and

differentiate through multiple mutations (Figure 2.3). These differentiation may occur

in different parts of the same tissue (intra-tumor heterogeneity) as well as in different

tissues (inter-tumor heterogeneity) between different individuals. This is a result of

the high mutating ability of tumor cells.

Figure 2.3 Evolution of Tumor Cell [24]

A tumor tissue has a heterogeneity by forming subclones within itself. This difference

occurring in the same tissue is called intra-tumor heterogeneity. Intratumor has

physical barriers or different microenvironments between different subclones in a

tissue where heterogeneity has occurred. These variations are aimed at increasing the

adaptation of the tumor to the microenvironment in which it is located. Differences

in inter- and intra-tumor heterogeneities are also reflected in gene expressions. By

virtue of the recently developed sequencing technologies (such as NGS), inter- and

intra-tumor heterogeneities have been detected and tumor characteristics can be
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determined. The complex clonal heterogeneity system and the evolution of the tumor

in heterogeneity were determined by sequencing technology (Figure 2.4) [25–29].

Figure 2.4 Clonal Heterogeneity [29]

2.2 Diagnosis Techniques

Countless methods have been developed for cancer diagnosis. These can be grouped

under 3 titles in general; including laboratory tests, imaging tests and biopsy.

Laboratory tests are generally based on tests performed on samples taken from tissue

or blood. Mutation-based techniques based on tumor markers will be discussed in

the molecular methods section. Techniques based on gene expression are included in

section 2.3. Imaging tests; It includes CT Scan, MRI, Bone Scan, PET Scan, Ultrasound

and X-ray methods. In the radiology section, diagnoses made using these methods are

explained in detail. Biopsy, on the other hand, is a method that provides diagnosis as

a result of applying various procedures to tissues taken from areas containing tumor

suspicion. Biopsy procedure can be summarized under 3 headings; by needle, by

operation, by endoscopy. It is classified according to the process of tissue removal

from the body.In this section, pathology, radiology and molecular methods used for

cancer diagnosis will be emphasized. In addition, it will be mentioned about the

studies where these methods facilitate the diagnosis phase through machine learning

methods using the technical data they have.

2.2.1 Pathology

Pathology techniques that enable the diagnosis to be made according to cell

morphology under microscopy by staining after the surgical removal of tissue from

the body. As mentioned before, many methods are available for cancer diagnosis
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from tissue. The most common of these and the most used method in the diagnosis

of the data obtained after the application process is the staining of the tissues with

hematoxylin & eosin dye, which is a histopathological method. After the process of

fixing the tissue section to the plate, the dye application allows the nuclei, cytoplasm

and extracellular matrix in the tissue to be painted in different colors. By means of

this procedure, the diagnosis process is performed according to the changes in cell

morphologies [30] (Figure 2.5)

Figure 2.5 Workflow of histopathology

With the development of the method specified in the later years, the term digital

pathology has emerged. Digital pathology is a sub-branch of pathology that enables

the processing of data in computer environment by digitizing the stained tissue slides.

Even if the process was facilitated by digital pathology, the time-consuming burden

of the diagnostic phase continued. Developing artificial intelligence technologies

enabled the processing and automatization of the acquired image data. Many patology

data using a learning algorithm after image processing have achieved results close to

clinicians in cancer diagnosis [31–34].

In this area, histopathology images have been widely used in tissue classification [35–

38], mitosis detection [39–41], grading detection [42, 43], segmentation [44–46].

In the study by Coudray et al [38], slide images of lung cancer tissues were trained
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using the CNN algorithm. A training dataset containing tissue images of two different

types of lung cancer (LUAD, LUSC) was used. The accuracy achieved after training

is 0.97. It has been shown that the algorithm gives results as nearly as accurate as a

pathologist (Figure 2.6).

Figure 2.6 Lung cancer prediction results using the CNN algorithm [38]

The problem of determining the grade groups present in prostate cancer has become

automatized with the help of deep learning algorithms. In prostate cancer, evaluation

of images according to cell differences and classification according to Gleason score

generally results in subjective results and the result may differ from expert to expert. In

order to standardize this situation, a deep learning algorithm was developed by Nagpal

et al [43] to determine biopsy samples according to Gleason score. According to the

results obtained from the algorithm, while the rate of experts in the Gleason score

was 94.7%, the results of the algorithm were almost the same and gave an accuracy

of 94.3%. There is a difficulty in Gleason scaling due to the fact that the tumor tissue

does not have a single grade, and the complexity created by this difficulty has been

tried to be eliminated by the algorithm. The grade detection accuracy of the algorithm

has been shown to be 94.3% (Figure 2.7).

Figure 2.7 Demonstration of deep learning-based Gleason classification to the
clinician [43]
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2.2.2 Radiology

Another widely used method for cancer diagnosis is radiology. Radiology is mainly

an area where medical imaging techniques are used. These imaging techniques;

computed tomography (CT) scanning, X-ray, ultrasound, mammogram, magnetic

resonance imaging (MRI). Imaging is performed by choosing one of the appropriate

medical imaging methods for patients with suspected cancer. The clinician diagnoses

the disease through the image obtained. The working mechanisms of the mentioned

techniques differ among themselves. X ray; It provides image formation by

bombarding the tungsten target of electron beams in an x-ray tube [47]. CT; By using

a 360 degree rotation angle, it obtains a cross-sectional view of the body with x-ray

transmission measurements. Mathematically transfers the obtained x-ray images to

the computer environment [48]. Ultrasound; It enables the image to be taken by

converting electrical energy into high frequency sound energy that will pass through

the patient tissue [49]. MR; It enables the production of images by using magnetic

fields and radio waves [50].

All imaging techniques used generate data for clinicians. Diagnoses about diseases

are made by making sense of the data produced. The biggest problem encountered in

interpreting radiology images is that there are not enough professionals to make sense

of the data produced [51]. Especially, these increasing data put a lot of workload on

radiologists. Due to the workload they have, they cause overlooked situations during

the diagnosis stage [52, 53]. Overlooked situations or errors in diagnosis lead to fatal

consequences for patients [53].

Deep learning approaches have been used in order to overcome these situations that

cause fatal consequences [54]. In the field of radiology, deep learning algorithms are

used in cancer diagnosis [55], image processing [56] and data mining [57].

Many competitions have been organized regarding the active use of deep learning

applications in the field of radiology [58, 59]. Apart from these competitions,

many radiology data are shared as open source data for the application of deep

learning algorithms [60]. Using the Wisconsin Breast Cancer dataset, a deep learning

application was carried out with 98% success in classifying breast cancer [61]. The

aforementioned studies have proven that deep learning methods are an application

that helps to eliminate many difficulties encountered in the field of radiology. It has

been observed that many processes that create a workload for doctors can be mitigated

by using deep learning methods.
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2.2.3 Molecular methods

Genome alterations are the major underlying cause of cancer occurrence. These

changes in the genome cause an increase or decrease in the expression of proteins

necessary for the cell [62]. In this case, the cell loses many of its previous features. It

begins to give different responses, such as uncontrolled proliferation, an increase in

angiogenesis [20]. These mutations in the genetic material have an important power

in cancer progression.Mutations, which lead to the occurrence of cancer, emerge

during human life occuring normal cell division and become capable of causing disease

by changing over time Figure 2.8 [63].

Figure 2.8 The process of mutations that occur in the division phase of a normal cell
to evolve a cell into a cancer cell. [63]

Existence mutations cause tumor formation in the cell over time. Cancers caused by

certain mutations (such as KRAS, EGFR, BRCA 1-2) are known. By identifying these

mutations, it is possible to determine the cancer the patient has. Generally, there are

certain types of mutations that occur in the cancerous cell. These; Single Nucleotide

Variants(SNVs) are events such as small duplications, deletions or insertions that occur,

changes in gene copy number or exon, and finally translocation on the chromosome

called Structural Variants(SVs). PCR methods [64], Sanger sequencing methods

[65], Fluorescence In Situ Hybridization (FISH) [66] and next generation sequencing

techniques (NGS) [67] are used to identify such mutations [68]. NGS and gene

expression based methods will be mentioned in section 2.3. In this section, tests on

mutation-based approaches will be explained.

2.2.3.1 PCR Methods

It has been mentioned many times that cancer has a progressive disease because

of arising the mutations. Based on this knowledge, most tests required for cancer

diagnosis are focused on diagnosis by performing mutation analysis from tumor tissue.
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Polymerase Chain Reactions (PCR) are among the most used methods for mutation

analysis tests.

PCR was used for the first time in 1983 to identify in vitro amplification of genetic

material [69]. By designing primers specific to the regions to be replicated in the

genome, DNA amplification with unlimited copies is achieved. Generally, the basic

principle of the Polymerase Chain Reaction is to create an unlimited copy of the

desired region in the genome. It includes 3 steps on the basis of the reaction to

accomplish this. These are respectively; denaturation, annealing, and elongation. In

order to amplify the desired region in the genome, the double helix of DNA must be

opened. This step is performed during the denaturation process. Heating is performed

above the melting point of the target DNA to separate the double strand from each

other. The DNA strands separated from each other by this heating process become

open for the joining of the desired regions and the complementary primers. In the

second step, called annealing, the temperature is lowered so that primers designed to

reproduce the desired area can cling to the target areas. In the last step, the Extension

step, the temperature is raised again and the regions of the DNA Polymerase enzyme

established between the primer and the target DNA are completed with nucleotides.

This process is defined as a cycle in every Polymerase Chain Reaction. These processes

are repeated for the specified number of cycles, allowing the number of amplified DNA

to be doubled Figure 2.9 [70].

Figure 2.9 Working principle of Polymerase Chain Reaction [70]
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This is the general working principle of Polymerase Chain Reactions (PCR). In most

cancer studies, different PCR techniques are used depending on the developing PCR

technologies. Real-Time PCR and Allele-Specific PCR are examples of these PCR

techniques.

Real-Time PCR

Real-Time PCR is one of the PCR techniques used for cancer diagnosis. Real-Time

PCR differs from PCR in that the resulting PCR products can be observed instantly

via a computer [71]. Apart from that, Real Time PCR technique can be classified

according to the use of different reporter depending on the imaging process. These

can be arranged as Fluorescence-based Real Time PCR, DNA probe-based Real Time

PCR, Taqman probe Real Time PCR. Fluorescence probes used in fluorescence-based

Real Time PCR method bind non-specifically to double stranded DNA. Thus, as the

amount of PCR product double stranded DNA increases, the fluorescence irradiance

intensity increases [72]. It is the most commonly used reporter fluorescence dye in

Real Time PCR method, but there are methods using Free Taqman dye and Quencher

dye Figure 2.10 [73].

Figure 2.10 Working principle of Real Time PCR and the probes used [73]

Mutations affecting oral cancer [74], breast cancer [75], colorectal cancer [76], lung

cancer [77], pancreatic cancer [78], lymphoma [79] and ovarian cancer [80] were

examined using the Real Time PCR method.
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Allele-Specific PCR

Allele Specific Polymerase Chain Reaction is a method used to detect single nucleotide

polymorphisms (SNP) that occur as a result of single mutation changes. With this

method, genetic diseases and molecular diagnostic analysis can be done [81].

The Allele-Specific PCR (AS-PCR) method developed by Yang et al. [82] for the

detection of the BRAF V600E mutation has shown that it is sensitive enough to identify

the allele in a single copy. In the study, it was aimed to eliminate the weaknesses

of traditional Allele-Specific PCR (tAS-PCR). These vulnerabilities are low replication

of the particular mutation and low mutation selectivity. To eliminate this situation,

three different allele-specific primers have been designed. The designed primers

are competitive external alelle-specific controller (cAS-PCR), traditional allele-specific

PCR (tAS-PCR) and referenced internal positive controller (rcAS-PCR) in the cAS-PCR.

Plasmids named competitive allele specific controller (CEAC) were used in cAS-pCR

containing the same sequence as primers targeting the human BRAF V600E MT-allele.

With the help of these plasmids, it is aimed to eliminate non-specific binding. The

working principles of allele-specific PCR specific to 3 primers designed in Figure 2.11

are shown.

Figure 2.11 The working principles of tAS-PCR, cAS-PCR and rcAS-PCR are shown
respectively [82] [73]

According to Figure 2.11, there is a single primer traditionally targeting BRAF V600E in

tAS-PCR. Figure 2.11 shows the working principle of cAS-PCR. Accordingly, there are

primers originating from CEAC plasmids in addition to tAS-PCR. In Figure 2.11, there

is a primer targeting the leptin gene in addition to rAS-PCR. As a result of the study, it

was observed that the designed rAS-PCR and crAS-PCR methods have higher mutation

selectivity compared to the tAS-PCR method. By means of this method, even cancer

individuals with low levels of BRAF V600E gene mutation can be detected. Allele

Specific PCR has clearly demonstrated the importance of cancer diagnosis. Increasing

the sensitivity of these methods gives hope that the challenges encountered during the

diagnosis phase can be eliminated.
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2.2.3.2 Sanger Sequencing

The Sanger Sequencing method was developed by Frederick Sanger in 1977 [83]. This

method is also called chain-termination PCR. In addition to the materials required for

PCR in Sanger sequencing, there are dideoxyribonucleotides (ddNTPs) that do not

contain 3’-OH groups. It is found in lesser amounts than deoxyribonucleotides (dNTP).

When DNA polymereases add ddNTPs to the sequence in the extension stage in the

PCR method, chain extension is terminated. ddNTPs are also labeled with fluorescent

probes. After the chain-termination PCR process is completed, the PCR products

obtained using gel electrophoresis method are separated according to their sizes. In

the last stage, the results obtained with the help of laser excitation or sequencing

devices are interpreted. Figure 2.12.

In the PCR Methods section 2.2.3.1, a study was mentioned in which an AS-PCR

method was developed for the detection of the BRAF V600E mutation using the

Allele-Specific PCR method [82]. A study was conducted to compare the detection

sensitivity of BRAF V600E mutation from FFPE tissue using Sanger Sequencing

method, immunohistochemistry (IHC), droplet PCR and NGS [65]. In this study

performed by Cheng et al., the accuracy of detecting BRAF mutations of tissue samples

taken was compared. As a result of these comparisons, it has been shown that IHC

results produce false negative results, while other methods have high accuracy in

detecting mutations. They showed that Sanger Sequencing can be used as a rapid

identification method for the detection of variant allele-specific BRAF mutations.

2.3 Gene Expression Based Cancer Diagnosis

It is known that cancer is a disease with a mutation-based progression process [63].
For this reason, changes in the genome are analyzed to identify cancer and many

other mutation-based diseases. The most important of these are sequencing methods.

After the sequencing method developed by Frederick Sanger in 1977, studies were

carried out to eliminate the difficulties (time-consuming, high-cost etc.) of sequencing

studies. The first of these studies is the work developed by Martin et al. [85],
which prevents the loss of time by automating the repetitive processes of Sanger

sequencing. By virtue of this work, the time for a complete sequencing procedure

has been reduced to 45 minutes. This has largely eliminated the time-consuming part

of the sequencing process. Although this process solved the time-consuming problems

of the sequencing process, it could not meet the needs of increasing knowledge about

the nature and biology of diseases and sequencing the whole genome for new analyzes

[86]. This has led to the development of many groundbreaking methods in the field

of sequencing [87]. These methods are generally called Next Generation Sequencing
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Figure 2.12 The stages of the Sanger Sequencing method [84]
16



(NGS) methods.

NGS methods are classified as short-read sequencing and long-read sequencing.

Short-read sequencing is also known as the second generation sequencing method.

This method is the first development in the field of sequencing after the Sanger

sequencing method. It is generally used for sequencing short base sequences (about

750 – 800 kb). They are also called parallel sequencing because more than one array

is processed at the same time [88]. The short-read sequencing method has 3 stages in

itself. These; library preparation for sequencing, sequencing and data analysis. These

steps are repeated for different types of samples to be sequenced.

Figure 2.13 Overview of short-read sequencing methods. a. emulsion PCR, b.
solid-phase bridge amplification, c. solid-phase template walking, d. DNA nanoball

[89].

Figure 2.13 shows an overview of short-reading sequencing methods. Figure 2.13.a
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shows the Emulsion-PCR method. This method basically converts each of the

duplicated DNA sequences into magnetic beads. DNA molecules transformed into

magnetic beads are stained with the help of fluorescence probes and measured using

flow cytometry. In this way, counting of DNA molecules containing the variant

can be performed [90]. Figure 2.13.b shows the solid-phase bridge amplification

method developed by Illumina. According to this method; the primers are fixed

to the developed plate. Fragmented DNAs are linked to fixed primers to form

double-stranded DNA. Figure 2.13.c shows the solid-phase template walking method

developed by Thermo Fisher. In this method, similar to the method developed by

Illumina, primers fixed to the solid surface were used. However, unlike solid-phase

bridge amplification, the double-stranded templates are partially denatured, allowing

them to bind to different primer sequences. Thus, reverse primers are formed. These

primers create templates that can bind to a new primer. Figure 2.13.d shows DNA

nanoballs. In this method, adapter arrays are created. The cleaved DNA sequences

bind to the first of the adapter sequence and amplification occurs. Then it is divided

with the help of endonuclease and a second set of adapters is added and the process

is repeated. These resulting DNA nanoballs are then analyzed using flow cytometry

[89].

Third generation sequencing methods are also known as long-read sequencing.

Long-read sequencing has emerged as a result of the fact that short-read sequencing

does not meet the needs, based on the knowledge that the complex structure of

the genome and the relationship of diseases with the genome. With this method,

sequences larger than 10 kb can be generated from the DNA sequence [91].

Figure 2.14 shows two methods as examples of long-read sequencing. Pyrosequencing

(Figure 2.14.a) uses single nucleotides to synthesize complementary chains.

Pyrophosphate (PPi) is released into the environment for each complementary

compound. PPi is then converted with the aid of enzyme-catalyzed reactions to

determine the number of successful couplings. Thus, the DNA sequence is obtained

[92]. In the Ion Torrent method (Figure 2.14.b) developed by Thermo Fisher, the

hydrogen ion release (H+) is measured by a metal oxide semiconductor (CMOS) and

an ion sensitive field effect transistor (ISFET). After each nucleotide addition, washing

is done to remove unmatched nucleotides and sequencing is performed by adding the

next [93].

In addition to all these methods, there are also lower cost methods (microarray, qPCR

etc.). This section will focus mainly on Microarray and RNA-seq method.
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Figure 2.14 Overview of long-read sequencing techniques. a. pyrosequencing, b.
Ion Torrent [89].
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2.3.1 Methods for Gene Expression Quantification

In this section, the gene expression quantification methods Microarray and RNA-Seq

will be discussed. The applications of these methods in cancer studies will be reviewed.

2.3.1.1 Microarray

Microarray technologies have a technology that allows sequencing long genome

sequences in prompt [94]. It has been proven with the development of sequencing

technologies that the information obtained through the genome is much more

beneficial in terms of the process to be followed in the diagnosis and treatment of

diseases. However, genome sequencing was a time-consuming process, as in the

example of Sanger sequencing, and only certain regions of the genome could be

sequenced. Based on this need, DNA microchips were developed, in which the entire

genome can be sequenced at once. These glass chips were called spots. Each spot

contained gene-specific probes fixed to its surface. In this way, after an isolated mRNA

sample is converted into complementary DNA, it is placed in these spots and the gene

sequences present in the sample are detected by fluorescence [95] (Figure 2.15).

Figure 2.15 Overview of Microarray [96]

In cDNA microarrays, mRNAs were stained with two different fluorescent dyes (Cy3

and Cy5), making it possible to perform sequencing from 2 different cell or tissue

samples at the same time. In high-density oligonucleotide arrays, oligonucleotide

sequences are selected from the reference mRNA sequence of each gene and

oligonucleotide syntheses specific to these regions are performed. In the transcription
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step, cRNAs are created using biotin-labeled nucleotides. The bindings that take place

are detected by fluorescent dyes coupled with streptavidin. The signal intensity from

the dyes gives information about the mRNA density for the genes in the sequence

under investigation [97].The fact that the change in products resulting from a change

in a single gene such as cancer affects the course of the disease has led to the

development of new microarray strategies. A gene product whose expression is

increased by a gene present in tumor cells provides a lot of information about cancer

biology. This approach has allowed the development of tissue microarrays. Many

tumor markers have been detected through microarray analysis [98, 99].

By virtue of these developed features of microarray technology, tumor microarrays

have started to be used a lot in the field of cancer to obtain information about

biomarkers and the cancer process. Hickey et al. (2021), examining the androgen

receptor as a biomarker for ER+ breast cancer, using tumor microarray, it was proven

that the androgen receptor is a tumor suppressor. They also performed a tumor

microarray experiment to determine the stages of breast cancer [100].

Microarray experiment does not only consist of in vitro steps. There are many genes

on the spot used in the experiment phase, and as a result of the experiment, data

belonging to these genes occur. Meta-analysis methods are used to make sense of this

dense data. These methods will be described in section 2.3.2.

2.3.1.2 RNA-Seq

With the development of next-generation sequencing (NGS) techniques, there have

been many improvements in transcriptome profiling, that is in the analysis of gene

expression data. The most important of these is RNA sequencing (RNA-seq). The

difference of RNA-seq from microarray is that it performs direct sequencing after

converting RNAs to cDNA. The cost of this process, which was very expensive in the

beginning, started to decrease over time, so it became a candidate to be used instead

of microarray [101, 102].

In the RNA-seq experiment (Figure 2.16); long sequences are converted into cDNA

fragments by RNA or DNA fragmentation. Sequencing adapters are added to each

cDNA fragment, the read sequences are aligned with the reference genome or

transcriptome. In some cases, there is no reference genome or transcriptome. In such

experiments, it is aimed to find similar genomes by de novo genome assembly. After

alignment with the reference genome or transcriptome, sequencing reads are aligned

to profile expression. As a result of this process, the expression profile of the genes in

the sequenced cell or tissue is created [101].
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Figure 2.16 Common RNA-seq experiment [101].
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Although RNA-seq seems to have many advantages over microarray, many researchers

have preferred to examine RNA-seq and microarray comparatively. In some cases,

microarray experiments have even been performed to validate RNA-seq results [103,

104].RNA-seq microarray comparison experiments performed on cancer have shown

that RNA-seq is superior to the detection of differentially expressed genes (DEGs)

compared to microarray [105].

Xu et al. (2013) [105], the detection of changes in gene expression values using

by RNA-seq and microarray in the treatment of HT-29 colon cancer with 5-Aza was

investigated. First, its sensitivity in detecting these changes on its two platforms

was investigated. As a result, RNA-seq was found to be more successful in detecting

genes with low expression levels. It was also observed that RNA-seq was superior in

the comparison of RNA-seq and microarray programs used to identify differentially

expressed genes. These results prove that RNA-seq gives more sensitive results

than microarray. RNA-seq method also has many advantages such as identifying

biomarkers in cancer and providing information about genes that are effective in

cancer progression.

The data obtained as a result of the RNA-seq process goes through an analysis process

as it is microarrayed. These analysis methods will be described in section 2.3.2.

2.3.2 Meta-analysis

Meta-analysis is an approach that provides a holistic conclusion by analyzing the

results of independent but interrelated studies [106]. Many medical data were

processed using meta-analysis method and inferences were obtained [107]. Many

inferences were obtained by using meta-analysis methods for cancer. Determination

of circular RNAs that can be used as a biomarker in cancer by compiling the results

of the research carried out, [108], the cancer prevention feature of statins, which is

a cholesterol-lowering drug [109], the effect of obesity on pancreatic cancer [110].
The data of the studies conducted were interpreted using meta-analysis methods

and a conclusion was reached. The gene expression quantification methods (such

as Microarray and RNA-seq) mentioned in Section 2.3.1 also generate a lot of data

that can be analyzed by meta-analysis methods. In particular, meta-analysis methods

are used to extract cancer-based gene expression signatures [111].

In this section, differentially expressed genes (DEGs) and network-based approaches,

which are meta-analysis methods of data obtained as a result of gene expression

quantification techniques such as microarray and RNA-seq, will be discussed.
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2.3.2.1 Diferentially Expressed Genes (DEGs)

The most important step in the diagnosis and treatment of cancer is the identification

of mutated genes. These genes, which are called biomarkers, can be easily identified

by the development of sequencing technologies and the analysis of gene expression

data [112]. Differentially expressed genes (DEGs) include various statistical methods

used to identify genes whose expression varies significantly in diseases with genomic

instability such as cancer [113]. By determining the DEGs of the cancer type under

examination, biomarkers specific to that cancer types are determined.

In general, DEGs are obtained as a result of analysis of microarray and RNA-seq

experiments. Obtaining the expression of thousands of genes simultaneously, such

as microarray, causes the analysis of experimental results to be very time-consuming.

Therefore, there is a need to separate the genes that are important from the gene

expression results obtained. For this purpose, genes showing a change in expression

are selected and ranked by using statistical methods [114–116].

Using gene expression profiles produced for cancer, identification of critical genes and

pathways effective in colorectal cancer [117], determination of biomarkers for gastric

cancers [118] and testicular cancer [119] in many areas of cancer biology, diagnosis

and the information needed for its treatment was obtained. This information obtained

is generally obtained from microarray test results or statistical analysis of publicly

shared microarray test data.

Determination of DEGs is not only possible by statistical analysis of experimental

results. Through the advancements in bioinformatics, deep learning techniques are

also used to find the genes responsible for cancer over experimental data. The

time-consuming process in the interpretation and analysis of data obtained using deep

learning methods has been shortened and effective results can be obtained [120].

2.3.2.2 Network Based Approaches

In diseases of high heterogeneity and complexity, such as cancer, the analysis of the

influence of genes on the occurrence or course of the disease poses great challenges.

Network concepts are used to overcome this existing complexity and analyze the

relationship between genes [121].

Network-based approaches have been used to identify biomarker genes for breast

cancer [122], colorectal cancer [123] and thyroid cancer [124]. In addition to these,

it is seen to be used in approaches such as [125] in determining the relationships of

cancers with other diseases that may be related, and in determining biomarkers for
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drug therapy that can be used effectively in cancer types [126].

Hossain et al. (2021), in the study conducted by [127], they found that the effect

of risk factors that cause colorectal cancer formation on survival time may occur as a

result of changes in the gene expression of cells. Starting from this hypothesis, they

used a network-based approach, using machine learning techniques to explain the

molecular mechanism. As a result of this study, they identified seven critical genes

that act on patient survival.

Figure 2.17 Network of genes involved in colorectal cancer formation [127].

The figure 2.17 shows the DEG network of 8 risk factors causing colorectal cancer.

By using machine learning and statistical analyzes on microarray data, critical

genes showing activity in survival time on colorectal cancer were determined by

network-based approach.

These and similar methods, especially by combining machine learning - deep learning
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methods, help to illuminate the complex structures of diseases such as cancer and to

provide treatment opportunities.
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3
DEEP LEARNING AND CANCER

Deep learning is a branch of artificial intelligence technologies. With the developing

technologies, the improvements in neural networks have also accelerated and the

layers used to increase the success of training in machine learning have been increased.

In this section, the general architecture and learning algorithms of multi-layer deep

learning techniques from single-layer machine learning techniques will be discussed.

In the last part, deep learning examples used in cancer diagnosis will be mentioned.

3.1 History and Basics

1950

1956 1960

1988

1997 2005

2011

2016 2017

2018

2020

The Turing
Test by Alan 
Turing

First AI Chatbot

First use of the
term artificial
intelligence by
John
McCarthy

IBM’s Deep Blue 
beats Garry 
Kasparov

The Perceptron

Autonomous car 
succesful

Apple launches
Siri

AlphaGo beats 
Lee Sedol

Elon Musk 
launches 
Neuralink

AlphaFold
predict truly 
protein 
structure in 
CASP.

AlphaFold v2
prevailed
again in CASP.

Figure 3.1 Timeline of AI

Deep learning can basically qualify as one of the sub-branches of artificial intelligence

(AI). AI is a phenomenon that humanity has been curious about and wanted to realize

since ancient times. "Can machines think?" by Alan Turing for the first time in history

in 1950. Based on the question, the concept of AI came into being. He developed

the Turing Test to prove this theorem. In the Turing Test, answers given to various
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questions are transmitted to an interrogator and the interrogator tries to distinguish

whether these are human or machine answers. According to Turing’s hypothesis, he

argued that if the questioner cannot distinguish the answers given by the machine

from the human responses, it can be seen as evidence that machines can think, and

he succeeded. The Turing test is one of the methods used to distinguish machines

from humans even today. It is seen that intelligence is evaluated in connection with

linguistics in the Turing test. The perception and response capacity of the machine is

related to its linguistic functionality [128].

Following Turing’s study, the term AI was first used by John McCarthy in the Dartmouth

Conference in 1956 and was described as the birth of AI. [129, 130]

In 1960, the Perceptron entered the history of AI as the first supervised algorithm

designed. This single layer binary algorithm was originally designed as a device. This

device for image recognition has an array of 400 photocells and electric motors that

perform weight updates during learning (Figure 3.2).

Figure 3.2 MARK I Perceptron [131]

This approach, which is the first learning algorithm in history, has become

dysfunctional over time as it has difficulty in detecting tasks that require multi-layer

algorithms. This failure in the Perceptron has caused stagnation in the history of AI

for many years [132].

In 1988, the first AI-based chatbot was launched by Jabberwacky company, and some

transactions were gradually automated [133].
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In 1997, with the developing computer technology, there was a period when games

were also used. AI has found a place in this field. Deep Blue, an algorithm developed

by IBM for chess, defeated world chess champion Gary Kasparov and gave a strong

answer to the question of whether machines can think [134].

Developed by Stanford University, Stanley was successful by driving 132 m in

driverless car races in 2005, which was conducted by the Defense Advanced Research

Project Agency of the US Department of Defense, based on the production of

technology for use by the US military [135].

In 2011, another AI with linguistic competence was launched. Apple’s Siri application

has come to the fore as a voice assistant with an AI algorithm [136].

In 2016, an algorithm developed for Go, another strategy game similar to chess,

defeated the human world Go champion. In the fight between AlphaGo and Go world

champion Lee Sedol, developed by Google’s DeepMind team, the algorithm succeeded

by taking 3 out of 5 matches [137].

In 2017, the project that made a big repercussion and gave the impression of science

fiction for the solution of diseases, was put into the brains of people with diseases such

as Alzheimer’s and Parkinson’s, and the project was announced by Elon Musk. With

this project called Neuralink, it is aimed that individuals with diseases that cannot

fulfill their vital functions can overcome these deficiencies [138].

Finally, if we come to the present from the history of artificial intelligence, it is seen

that AI technologies produce solutions on biological problems and are successful.

In the competition held by The Critical Assessment of Protein Structure Prediction

in 2018, algorithms that can predict the closest protein folding by comparison with

the experimental results competed. In these competitions held in 2018 and 2020,

AlphaFold, which was developed by Google’s DeepMind team, was successful as the

algorithm with the closest predictive values [139].
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3.2 Deep Neural Networks

Developed in 1960 for single-layer binary classification, the Perceptron formed the

basis of neural networks [132]. Deep learning is based on AI, learning algorithms

with multi-layered neural networks (Figure 3.3).

Figure 3.3 The relation between AI and deep learning
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Neural networks are based on the Perceptron algorithm, which consists of a single

neural network. This single-layered neural network is generally called a linear

Perceptron. It has already been mentioned that it does binary classification. In this

context, it is necessary to have a linear distribution for the data to which Linear

Perceptron can be applied. If the dataset in question has a distribution as in Figure

3.4, it is not possible for the linear perceptron to classify these data [140].

Figure 3.4 Possibility of Complex Distribution [140]

Deep learning comes into play here. Said linear perceptrons can be perceived as a

single neuron. But for such a complex system, more than one neuron is needed.

The connection between the Neuron and Perceptron is shown in Figure 3.5. Each

neuron can represent different models depending on the function it has, and this

model may contain different classification algorithms. But the perceptron is only one

of the model’s algorithms. While the linear perceptron is limited by its algorithm,

neurons may differ on the basis of their models.
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Figure 3.5 Relation between Neuron and Perceptron

More than one neurons are needed for the learning process, which has complex inputs,

to take place. Neurons combine to form layers, and the human brain is known to have

6 layers when it is taken as an example of the human brain [141].

In the light of this information, various deep learning algorithms with different layers

and different features have been developed. In this section, first of all, the Multilayer

Perceptron network, which is the first of multiple layers, will be mentioned and then

Convolutional Neural Network and Recurrent Neural Networks will be detailed.

3.2.1 Multi Layer Perceptron (MLP)

The transition to the multilayer algorithm has been with multilayer perceptrons.

Multilayer perceptron basically contains an input layer, a hidden layer and an output

layer. Nodes other than input nodes in the algorithm have a nonlinear activation

function, and use a backpropagation algorithm to reduce errors during training. MLP

can be used to separate datasets that are not linearly distributed [142].

A neural network structure with a single hidden layer is shown in Figure 3.6. It has

been mentioned before that nonlinear data are difficult to solve with Perceptrons.

For the learning phase of non-linear data, 3 different neurons are used in the MLP

approach.
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Figure 3.6 Architecture of MLP

• Sigmoid Neuron

It is used in the classification of values between 0 and 1, the closer the data is to zero,

the smaller, the closer to 1, the greater the meaning. (Figure 3.7)

Figure 3.7 Sigmoid Neuron
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• Tanh Neuron

Tanh neuron is used for data in the range of -1 to 1. (Figure 3.8)

Figure 3.8 Tanh Neuron

• Restricted Linear Unit (ReLU) Neuron

The ReLU function is the most preferred layer in nonlinear distributions. performs

operations according to the equation 3.1.

f (x) = max(0, x) (3.1)

Figure 3.9 ReLU
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3.2.2 Convolutional Neural Network (CNN)

One of the deep learning neural networks is the Convolutional Neural Network. The

CNN algorithm takes the images as input data and performs the training process by

extracting features from them.

The CNN algorithm is most commonly used in image recognition, but is also suitable

for input data of different sizes, such as signals and sequences (1D), images and sound

spectrograms (2D) and color images in RGB format (3D). The architecture of the

algorithm is shown in Figure 3.10.

Figure 3.10 CNN Architecture [143]
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Each layer has a specific task (ReLU, pool etc.). Through these tasks, the algorithm

is able to make feature extraction from the input data, thereby demonstrating high

learning properties [144].

Generally, a picture is needed as an input for convolution neural networks.

convolution options are determined in accordance with the dimensions of these

pictures and the convolution process is performed first, then the pool and the

convolution and pool layers can be added once more if desired, according to the

data we have. The number of layers is determined according to the data. In the

last layer, the output is obtained by transforming these 3-dimensional layers into a

one-dimensional and fully connected layer (Figure 3.11) [145]

Figure 3.11 Schematize of CNN [146]
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3.2.3 Recurrent Neural Networks (RNN)

Sequential information flow is used in a recursive neural network. In a general neural

network, all inputs and outputs are assumed to be independent from each other. RNNs

are called repeatedly, they do the same task for each element of an array. The output

depends on previous calculations. Another definition of RNNs is that they have a

memory that collects information about what has been calculated so far. In theory,

RNNs can use information in arbitrarily long strings, but in practice they can only

look back a few steps.

Figure 3.12 RNN Architecture

Figure 3.12 shows an RNN opened to a full network. For example, if the predicted

sequence is a 5 word sentence, the neural network creates a 5-layer neural network

for each word, each layer expressing one word.

Creates long time gradients for consecutive long sequences. Therefore, there are

density losses. For this, it is tried to find a solution to this problem by expanding it as

Long Short Term Memory (LSTM) cell. The main idea is to initiate another process

that controls the LSTM cell that controls the flow of information throughout the array

[145] .

3.2.4 Vulnerability of Deep Learning Techniques: One-Pixel Attack

Deep learning methods have been actively used to solve complex problems with the

help of deep neural networks. It has been seen that, deep learning algorithms used in

every field have large security vulnerabilities. Attacks against these vulnerabilities are

examined in two classes. The first one is a exploratory attack to gather information

about the attacker’s machine learning which under attack, and the other one is an

evasion attack directly aimed at the algorithm’s decision mechanism, which causes it

to give wrong results [147].
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The most well-known examples of these attacks on deep learning methods are the

algorithm predicting the picture as a gibbon as a result of the attack on the panda

picture in the GoogLeNet dataset [148]. It has been proven that the final decision of

the algorithm can be changed by performing a onee pixel attack with the differential

evolution method on the image data in the CIFAR-10 and ImageNet datasets, which

is another example of security limitations in machine learning algorithms. [149].

All the studies carried out include problems arising from security constraints in deep

learning algorithms, misleading the prediction mechanism of the algorithm or stealing

sensitive content about the algorithm. This adverse situation can be turned into

an advantage in making sense of biological data that is difficult to understand and

analyze.

In this study, transforming the gene expression data into images in RGB format without

any loss on the data and training it with the CNN algorithm provides an algorithm

that can be the target of these attacks. The one-pixel attack method developed by

Su et al. [149], when applied to an image containing completely gene expression

data and causes a change in the decision mechanism, raises the possibility of giving

information about the effect of the gene contained in the relevant pixel on cancer. The

attack mechanism, which has a high disadvantage for the generally used deep learning

algorithms, can become advantageous when evaluated on biological data.

3.3 Deep Learning Approach for Cancer Diagnosis

The increase in studies on neural networks and the fact that deep learning techniques

produce meaningful results have enabled the data produced in the field of health to

be interpreted by using deep learning methods. It is aimed to reduce the workload

by automating many diagnostic processes that are time-consuming for clinicians,

especially in the field of diagnosis of diseases. For this purpose, CT and histopathology

data of cancer patients are used to facilitate diagnosis. In these diagnostic approaches,

which are generally based on image processing, convolutional neural networks are

preferred in the processing of image data. By using CNN, the diagnosis stage of many

cancer types such as breast cancer [150–153], prostate cancer [154–158], lung cancer

[159–161], head and neck cancer [162], skin cancer [1, 163] is performed.

CNN algorithm developed by Couture et al. (2018) [153]; makes predictions about

breast cancer stage of patients, ER-positive/HER-2 negative results determined with

the help of genomic tests, basal-like or non-basal-like status using breast cancer

histopathology data.
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Figure 3.13 Estimation of cancer stage and molecular properties from the H&E
image of breast cancer [153]

Figure 3.13 shows the prediction obtained by CNN algorithm on a section of tissue

from a breast cancer patient stained with hematoxylin and eosin (H&E) dye. Based

on the results obtained by staining the cancerous tissue, the analysis of the situation

examined by many different tests such as the cancer stage of the person, the ER status,

which is one of the molecular genetic features of the cancer, and the classification of

tumor-specific conditions (such as ductal, basal) were performed. In addition to being

able to perform many analyzes, it also provides the detection of heterogeneity, which

makes the diagnosis of cancer difficult. Figure 3.13 is H&E stained images of four

different nuclei from the same patient. According to the estimation results, three of

these four different images are ER negative and basal-like intrinsic subtype, while the

fourth one is predicted as ER negative non-basal-like, which also indicates intra-tumor

heterogeneity between nuclei. This and similar studies not only enable clinicians to

overcome time-consuming situations they encounter during diagnosis, but also make

it easier to understand the diagnosis stage and biology of cancer by making inferences

from images.

In addition to image-based approaches, biological data is also used extensively in

cancer diagnosis [Jiao2020, 164] and even treatment [165, 166].Gene expression

data and deep learning approaches are integrated to tackle various challenges such

as estimation of survival times of individuals with cancer [167] ,determination of

biomarker genes [168], determination of effective therapeutics for cancer treatment

[169],classification of cancer subtypes [170–172].Ahn et al. developed a deep

39



learning algorithm using publicly available gene expression databases to classify the

samples as normal or tumor and high predictive scores were obtained.
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4
METHODS

4.1 Datasets

Raw expression data was retrieved from UCSC Toil [173]which integrates The Cancer

Genome Atlas (TCGA) and Genotype-Tissue Expresssion (GTEx) projects [6]. TCGA

contains gene expression data for thousands of cancer patients and GTEx harbors

gene expression data for normal tissues. Differential gene expression information for

matching TCGA signatures of differentially expressed genes for tumors were collected

from Harmonizome knowledge base [174].

4.2 Selection of genes with highest DEG cases

Harmonizome data was processed to count DEG cases thoughtout the TCGA dataset

for each gene and then top 1024 genes were selected to be used in subsequent steps.

Expression data for selected 1024 genes were extracted from Toil dataset. Also,

sample labels (Tumor vs Normal) were extracted using phenotype data. Finally, a

gene expression matrix of 17,884 samples X 1024 genes were constructed.

4.3 Conversion of gene expression data into image

Gene expression matrix for 17,884 samples were split into Train (14,308 samples) and

Test (3,578 samples) with 80:20 ratio. Using Numpy [175], datasets were reshaped

into multidimensional array suitable for training with Tensorflow [176]. During

reshaping, gene expression values were mapped to RBG (red, green, blue) space.

Conversion was done by converting the gene expression value into 24 bit long binary

and then using first 8 bits for R (red), second 8 bits for G (green) and third 8 bits for

B (blue). Figure 4.1 summarizes the concept with an sample conversion.

After the conversion, 14,308 x 1,024 training data becomes [14,308 x 32 x 32 x 3]
Numpy array. Accordingly, test data becomes [3,578 x 32 x 32 x 3] Numpy array
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Figure 4.1 Illustration of mapping gene expression values to RGB space. Decimal
gene expression value is converted to 24 bits and then 8bits from beginning, middle

and end are converted back to decimal values, resulting in three integers each
smaller than 255. The color of the bottom row corresponds to mixture of individual

R,G,B values. #01FFE0 is hexadecimal representation of RGB(1,255,224).

suitable for batch processing by Tensorflow. Final layer represents R,G,B values, the

square 32x32 shape corresponds to 1,024 genes.
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Blue channel
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Figure 4.2 Illustration of Numpy 4D arrays. (a) For each sample, 1024 genes are
shaped as 32x32 pixels. Due to RGB mapping, 3 layers of color channels were used

per sample. (b) This shape was imposed on whole dataset
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4.4 Model Architecture used for Deep Learning Training

The convolutional neural network used for training contained 9 Convolution layers

having dropout layers in between and ReLU as activation function. Figure 4.3

summarizes the model visually and Table 4.1 lists each layer of the model.

32 32 96

conv2d

32 32 16 16 96

conv2d

16 16 8 19
2

conv2d
8 8 19

2

conv2d

8 8 19
2

Sigmoid

8 8 0 19
2

conv2d

8 8 19
2

Sigmoid

8 8 2

conv2d

2

GlobalAveragePool2d+Sigmoid

2 2

Figure 4.3 CNN Architecture

Table 4.1 Model architecture

Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 32, 32, 96) 2,688
dropout (Dropout) (None, 32, 32, 96) 0
conv2d_1 (Conv2D) (None, 32, 32, 96) 83,040
conv2d_2 (Conv2D) (None, 16, 16, 96) 83,040
dropout_1 (Dropout) (None, 16, 16, 96) 0
conv2d_3 (Conv2D) (None, 16, 16, 192) 166,080
conv2d_4 (Conv2D) (None, 16, 16, 192) 331,968
conv2d_5 (Conv2D) (None, 8, 8, 192) 331,968
dropout_2 (Dropout) (None, 8, 8, 192) 0
conv2d_6 (Conv2D) (None, 8, 8, 192) 331,968
activation (Activation) (None, 8, 8, 192) 0
dropout_3 (Dropout) (None, 8, 8, 192) 0
conv2d_7 (Conv2D) (None, 8, 8, 192) 37,056
activation_1 (Activation) (None, 8, 8, 192) 0
dropout_4 (Dropout) (None, 8, 8, 192) 0
conv2d_8 (Conv2D) (None, 8, 8, 2) 386
global_average_pooling2d (None, 2) 0
activation_2 (Activation) (None, 2) 0

Total params: 1,368,194

4.5 One pixel attack

One pixel attack algorithm was adopted from an earlier study [177] which utilizes

"differential evolution" algorithm from SciPy Python library and illustrated in Figure
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4.4. The attack algorithm picks random locations (x,y) where $ x < 32 and y < 32 $

and random RGB colors. Although blue and green values are picked within (0,255)

range, the red color was only picked within (0,2) range since gene expression values

are mostly below 196,607 corresponding to (2,255,255) RGB value.

One pixel attack provides pixel location, the new color value which causes label

to change in trained model (from Normal to Tumor or vice versa). Since attack is

random, we performed many attacks (10 times to be exact) to the test dataset. The

resulting attacks were filtered if the suggested pixel value is within lowest and highest

expression range of corresponding gene.

Figure 4.4 Illustration of Differential Evolution algorithm over Ackley function.
Taken from [178]
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5
RESULTS

5.1 Gene expression data as image

After conversion of gene expression data by RGB mapping, each sample was converted

into 32 x 32 2D array corresponding to 1024 genes. For each location in 2D array, three

values, [R,G,B] were available thus resulting in color image representation of each

sample. In Figure 5.1, sample images for Normal and Tumor samples were shown.

Figure 5.1 Color image representation of samples for 1024 genes. (a) shows gene
expression values of normal tissue samples converted to images , (b) shows gene

expression values of tumor tissue samples converted to images.

5.2 Model Training

Training data consisted of gene expression data for 14,308 samples and 1,024

genes. training data becomes [14,308 x 32 x 32 x 3] Numpy array after RGB
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mapping. Accordingly, test data becomes [3,578 x 32 x 32 x 3] Numpy array. These

multidimensional arrays were used for training.

After 40 epochs the training reached %97.7 accuracy. Loss and Accuracy plots for the

training process are shown in Figure 5.2. The plots indicate there’s no over-fitting.

Figure 5.2 Accuracy and Loss plots of the trained model after 40 epochs.

5.3 Performance Measurement

Using the test dataset the performance of the model Was evaluated. The evaluation

of the model was summarized in Table 5.1. In Figure 5.3, the ROC curve indicates

Figure 5.3 The ROC curve of designed CNN for tumor normal classification.

There are several different approaches which uses gene expression data to classify

tumor and normal samples ranging from simpler machine learning approaches to
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Table 5.1 Confusion Matrix

Summary of Statistics
Precision Recall F1-Score Support

Normal 0.98 0.97 0.98 1628
Tumor 0.98 0.98 0.98 1949

Accuracy 0.98 3577

Table 5.2 Comparison model with other studies. SVM; support vector machine,
t-SNE; t-distributed stochastic neighbor embedding.

Expression preprocessing Classification Method Accuracy Sensitivity Specificity Precision F-measure Resource

RBG mapping CNN 97,73% 97,66% 97,80% 98,00% 0,975 Our method
Normalization CNN 98,76% 91,43% 100,00% 100,00% 0,955 Elbashir et al.[179]
Normalization Stacked Denoising Autoencoder (SDAE) 94,78% 94,04% 97,50% 97,20% Danaee et al. [180]
Normalization AlexNet 96,69% 96,89% 94,12% 99,54% 0,955 Elbashir et al [179]
t-SNE SVM 95,87% 100,00% 51,00% 95,96% 0,97 Elbashir et al [179]

complex deep learning networks. These approaches usually start with pre-processing

the gene expression data with an irreversible manipulation and even mapping data

points to a different domain. Our method involves minimal and reversible change

to gene expression data. The RGB mapping is reversible and does not require

normalization or any dimensional reduction techniques. Table 5.2 compares our

approach with several different approaches both in pre-processing and classification

steps. Although Elbashir et al [179] study (Normalization + CNN) has highest

accuracy, our approach has better results in overall. Please note that Elbashir et al uses

smaller and unbalanced TCGA dataset. Their accuracy starts from 91% and reaches

98.7% and due to dominating number of tumor samples, their model has tendency

to pick “tumor” as label, explaining their lowest sensitivity and full precision. In our

case, our dataset is balanced (8156 Normal vs. 9750 Tumor) and our accuracy start

from 58% and reaches 97.7%.
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5.4 One-pixel Attack Results

As a result of the attacks, label changes took place in 240 different samples. These

results are shared in Appendix A, along with sample ID, ensemble ID, expression values

before and after the attack, and prediction values before and after the attack. When

the label changes as a result of the attacks were analyzed, it was seen that the changes

on 13 genes caused changes in the decision mechanism of the neural network. The

13 identified genes are shown in Table 5.3 along with their names and Ensemble IDs.

Table 5.3 Identified genes resulted from one-pixel attack

Gene Name Ensembl ID

TGFBR2
TGF-beta receptor type-2 ENSG00000163513

KIF1C
Kinesin-like protein KIF1C ENSG00000129250

DDX3X
ATP-dependent RNA helicase DDX3X ENSG00000215301

AGRN
Agrin ENSG00000188157

SLC39A8
Metal cation symporter ZIP8 ENSG00000138821

AHNAK
Neuroblast differentiation-associated protein AHNAK ENSG00000124942

ETS2
Protein C-ets-2 ENSG00000157557

CAVIN1
Caveolae-associated protein 1 ENSG00000177469

BHLHE41
Class E basic helix-loop-helix protein 41 ENSG00000123095

TSC22D3
TSC22 domain family protein 3 ENSG00000157514

CAT
Catalase ENSG00000121691

NCF2
Neutrophil cytosol factor 2 ENSG00000116701

SREBF2
Sterol regulatory element-binding protein 2 ENSG00000198911

According to the results obtained, the label change (from cancer to normal) in the

attack result of 26 samples was obtained by decreasing the expression value, while
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the expression value of 210 samples was obtained by increasing it. Cancer and stage

data of 26 samples whose expression has decreased and whose label has changed are

shown in Table 5.4.

Table 5.4 Cancers and stage information whose labels are changed by decreasing
expression values

Cancer Type Stage
Sample
Number

Lung Adenocarcinoma stage ib 3
stage iiia 2
stage ia 1

Lung Squamous Cell Carcinoma stage ia 2
Kidney Renal Clear Cell Carcinoma stage iii 1

stage i 1
Kidney Renal Papillary Cell Carcinoma stage i 4
Head and Neck Squamous Cell Carcinoma stage ii 2

stage iva 1
Thyroid Carcinoma stage iii 1
Bladder Urothelial Carcinoma stage iv 1
Mesothelioma stage ii 1
Stomach Adenocarcinoma stage ii 1
Breast Invasive Carcinoma stage iib 1
Cervical Squamous Cell Carcinoma and Endocer-
vical Adenocarcinoma

not reported 1

Esophageal Carcinoma not reported 1
Ovarian Serous Cystadenocarcinoma not reported 1

This situation, which changes in the label with the decrease of the expression value

in the prediction data of 26 different samples is controlled by the same gene. Agrin

(ENSG00000188157) was found to be the gene causing the change as a result of the

attack in all 26 samples. It has been observed that the first prediction of the Agrin

gene is tumour, not only when the expression value is decreased but also when the

expression value is increased, then it predicts normal.

While the initial estimate of all data was generally tumour, it was labeled as normal as

a result of the attack. While only 4 of the 240 results were labeled as normal, it was

observed that they turned into tumour as a result of the attack, and it was observed

that the gene causing this change was Agrin. The cancer and stage distribution of

these 4 samples are shown in Table 5.5.

Images of a sample where the Agrin gene returned from normal to tumour by

increasing its expression level in two different samples (Figure 5.4.a) and decreased

gene expression level from cancer to normal (Figure 5.4.b) shown in Figure 5.4. The
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Table 5.5 Cancer type and stage distribution of samples that turned into cancer as a
result of an attack when they were normal

Cancer Type Stage
Sample
Number

Prostate Adenocarcinoma not reported 2
Thyroid Carcinoma stage i 1
Breast Invasive Carcinoma stage iia 1

example shown in Figure 5.4.a illustrates the gene expression data of a sample taken

from the healthy tissue of a patient with has Prostate Adenocarcinome cancer type.

While the gene expression level of the Agrin gene was 3,342 in the tissue that did not

have this cancer type, the gene expression level was increased to 128,550 as a result

of the attack and it was marked as tumour. The example shown in Figure 5.4.b is an

image created from the gene expression data of a tissue with Lung Adenocarcinoma

cancer type. Agrin gene expression value in tissue with this cancer type is 49,770.

When this value was changed to 246 as a result of the attack, it was seen that it was

labeled as normal.
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Figure 5.4 Sample images obtained as a result of the attack.The first images show
the original images and the second images show the images obtained as a result of
the attack. a. Original and post attack images of gene expression data with sample
ID TCGA-HC-8259-11. The areas marked with a red circle show the changes in the
Agrin gene as a result of the attack. The gene expression value has been increased
for the TCGA-HC-8259 sample. As can be seen in the image, brighter pixels were
obtained by increasing the expression value. b. Original and post attack images of
gene expression data with sample ID TCGA-NJ-A4YI-01. The areas marked with a
red circle show the changes in the Agrin gene as a result of the attack. The gene

expression value for the TCGA-NJ-A4YI-01 sample has been reduced. As can be seen
in the image, while the expression value of the pixel is brighter in the original image,

it appears darker in the image resulting from the attack.
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5.5 Annotation of Attack Results Based on Real Cancer Patient Ex-

pression Levels

According to the data obtained in Section 5.4, Agrin (ENSG00000188157) was found

to be the most effective gene on attack results. Looking at the literature, it was seen

that the first study on the relationship between Agrin and cancer was carried out by

Rajkumar et al. [181] in 2011 to determine the genes that are effective on cervical

tumors. Other studies have shown that it has an effect on prognosis due to changes

in Agrin gene expression values [182]. The graph of expression data values of Agrin,

which is one of the most common genes as a result of an attack, for all cancer types is

shown in Figure 5.5.

As can be seen in Figure 5.5, as the expression values of the Agrin gene increase,

the probability of tumor tissue increases. This explains the prediction of tumor tissue

when the expression values of the Agirn gene are increased in normal tissue, and the

prediction of normal tissue when it is decreased in tumor tissue (Figure 5.4). Statistical

data of cancer types belonging to Agrin gene are shown in Appendix B, Table B. When

that table is examined, the log2 value of the tumor-normal ratio of Agrin varies. This

may indicate that the probability of being found with DEG is high.

One of the genes most likely to be found with DEG as a result of an attack is the

Catalase protein (ENSG00000121691) gene. When a literature search is conducted

on the relationship between catalase gene and cancer, it is seen that the first study was

carried out in 1950 by Appleman et al [183].According to the study, they observed that

catalase activity decreased in tumor cells. Many subsequent studies have shown that

catalase is an effective gene for cancer [184, 185].

When the gene expression values of the Catalase gene are examined according to the

cancer types (Figure 5.6), it is seen that there is no clear pattern in the cancer-specific

change as in Agrin. Statistical data are shared in Appendx B.2.

Kinesin-like Protein (ENSG00000129250) gene is the gene with the least data on the

relationship between the attack outcome and cancer in the literature. There are 2

studies on the relationship between this gene and cancer in the Pubmed database.

The first of these was carried out by Shah et al. [186] in 2009. The aim of the study

by Shah et al. was to sequence the lobular breast cancer genome. For this purpose, the

frequency of somatic mutations found in the primary tumor tissue of the same patient

9 years ago was measured and accordingly they observed that the KIF1C gene was at

low frequencies. Another study conducted by Zou et al. in 2014 is investigating the

effect of Kinesin family proteins on breast cancer. According to their findings, they

showed that the KIF1C gene was suppressed.
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Considering the change in gene expression values of the KIF1C gene according to

cancer types (Figure 5.7), it is seen that the gene expression value is higher in some

normal tissues compared to tumor tissue depending on the cancer type, while the

opposite is the case in some tissues. When the statistical data according to cancer

types in Appendix B.3 are examined, it is seen that there is no significant change in

the log2 value. This shows that it is a difficult gene to find with DEG.
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Figure 5.5 Gene expression values of Agrin gene according to cancer types [187].
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Figure 5.6 Gene expression values of Catalase gene according to cancer types [187].
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Figure 5.7 Gene expression values of Kinesin-like protein gene according to cancer types [187].
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6
RESULTS AND DISCUSSION

In this study, a neural network capable of distinguishing between normal and

tumor tissue was developed with the convolutional neural network model. It is

aimed to eliminate the difficulty of the diagnosis stage caused by the plasticity and

heterogeneity of tumor cells. In order to achieve this aim, RNA sequencing method

obtained directly from the genome of tumor biology was used as input for the neural

network. The most important difference of the created model from the existing models

is that did not apply any normalisation methods was performed on the RNA-seq data.

Existing models can perform normalization or various embedding process on RNA-seq

data, causing information loss on the data. In order to avoid this loss of information in

the created model, RNA-seq data was preserved as it was, and converted to 24-bit RGB

formats, and a 32x32 image was created for each sample in which these RGB values

were arranged. These obtained images are not trained as images. The training of the

model was carried out with 32x32x3 3D multidimensional arrays for each sample. As

a result of the training, a high accuracy rate was obtained from the training dataset,

which has a homogeneous data distribution.

The image samples of the data converted to RGB format for the input of the model are

indistinguishable from the tumor or normal sample when viewed with the human eye.

However, after the training, the model’s ability to distinguish these data with a high

accuracy rate, and the neural network model created due to the difference between

these images, has inspired the idea that it can be a guide in the determination of genes

that may be effective in defining the tumor.

Based on this hypothesis, the pixels that changed the prediction of the model were

determined by applying the one-pixel attack method to the tumor and normal sample

images obtained as input. Since each pixel value represents a gene, this information

includes gene information that may be associated with cancer. All samples were

attacked approximately 10 times using the one-pixel attack method. As a result of

the attacks, the attack value was filtered according to the highest gene expression

value of a gene, and as a result of these attacks, 240 attack results were obtained
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that were effective within the specified gene expression value range (See Appendix

A). By analysis of 240 attack results, 13 unique genes were found that were effective

in varying the predictive value. When general screening of these genes is performed,

in addition to the presence of known genes that use as biomarkers for cancer, some

rarely studied genes (such as KIF1C) have been found.

All these findings have shown that it can bring a new approach to diseases such as

cancer, which are complex to diagnose and treat, and which require more biomarker

genes for diagnosis. With the application of this method, individual results can be

obtained. Inter- and intra-tumor heterogeneity characteristics of tumor cells can be

determined. It can be used as an approach that makes it possible to make individual

cancer analysis by making it easier to find genes that differ from person to person.

The results obtained can be strengthened with experimental data to identify new

biomarkers for cancer.
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A
ONE-PIXEL ATTACK RESULTS

The gene expression values of the tissues in the TCGA and GTEx dataset were
converted to images as mentioned in Methods 4.3 and the training was carried out.
After the training, the one-pixel attack method was applied to these images, which
were obtained by estimating the neural network with an accuracy value of 97.7% (See
4.Methods). The results of the applied one-pixel attack method on the basis of all
samples are shared in Table A.
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Table A.1 One-pixel attack results applied to each sample

Sample ID Ensemble ID
Expression
Value

Expression Value
After Attack Prediction

Prediction
After Attack

TCGA-06-0646-01 ENSG00000163513 2381 65393 1 0
TCGA-13-0720-01 ENSG00000129250 3453 131040 1 0
TCGA-13-0906-01 ENSG00000129250 3459 131016 1 0
TCGA-2J-AABA-01 ENSG00000129250 12221 126643 1 0
TCGA-33-A4WN-01 ENSG00000129250 6974 130816 1 0
TCGA-3U-A98D-01 ENSG00000215301 14570 65378 1 0
TCGA-44-A47B-01 ENSG00000188157 50975 149 1 0
TCGA-50-5932-01 ENSG00000129250 8389 130816 1 0
TCGA-5U-AB0E-01 ENSG00000129250 3086 131024 1 0
TCGA-61-2110-01 ENSG00000129250 1862 130816 1 0
TCGA-67-6217-01 ENSG00000129250 10535 130816 1 0
TCGA-78-7540-01 ENSG00000188157 51134 4085 1 0
TCGA-78-7540-01 ENSG00000188157 51134 66455 1 0
TCGA-85-A513-01 ENSG00000188157 52754 255 1 0
TCGA-95-A4VK-01 ENSG00000129250 6224 130816 1 0
TCGA-96-8170-01 ENSG00000188157 35721 66976 1 0
TCGA-96-8170-01 ENSG00000188157 35721 67004 1 0
TCGA-97-7941-01 ENSG00000129250 9437 130820 1 0
TCGA-A1-A0SF-01 ENSG00000129250 4400 130816 1 0
TCGA-A2-A0D3-01 ENSG00000129250 4126 130816 1 0
TCGA-A2-A0EU-01 ENSG00000129250 3199 42457 1 0
TCGA-A2-A0EX-01 ENSG00000129250 6185 130816 1 0
TCGA-A2-A1FW-01 ENSG00000129250 1415 130816 1 0
TCGA-A4-8630-01 ENSG00000129250 14447 130816 1 0
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Table A.1 continued from previous page

Sample ID Ensemble ID
Expression
Value

Expression Value
After Attack Prediction

Prediction
After Attack

TCGA-A5-A2K7-01 ENSG00000138821 1220 131017 1 0
TCGA-A7-A425-01 ENSG00000138821 805 131071 1 0
TCGA-A8-A06T-01 ENSG00000129250 3295 130816 1 0
TCGA-A8-A07W-01 ENSG00000129250 5259 130816 1 0
TCGA-A8-A094-01 ENSG00000129250 6230 130816 1 0
TCGA-AB-2815-03 ENSG00000129250 961 52614 1 0
TCGA-AB-2956-03 ENSG00000129250 3655 125628 1 0
TCGA-AB-2979-03 ENSG00000129250 247 130933 1 0
TCGA-AB-2991-03 ENSG00000129250 930 130816 1 0
TCGA-AB-3005-03 ENSG00000129250 1413 130816 1 0
TCGA-AN-A0AR-01 ENSG00000124942 8027 131015 1 0
TCGA-AO-A0J8-01 ENSG00000129250 4195 130816 1 0
TCGA-AO-A12C-01 ENSG00000129250 2822 119809 1 0
TCGA-AQ-A04L-01 ENSG00000129250 2953 130816 1 0
TCGA-AR-A1AH-01 ENSG00000129250 5996 130893 1 0
TCGA-B0-5705-01 ENSG00000129250 6262 60613 1 0
TCGA-B6-A3ZX-01 ENSG00000129250 8750 130816 1 0
TCGA-B8-A8YJ-01 ENSG00000188157 36283 255 1 0
TCGA-B9-5155-01 ENSG00000129250 12296 130816 1 0
TCGA-BA-A4IG-01 ENSG00000129250 7327 130816 1 0
TCGA-BC-A3KG-01 ENSG00000129250 5396 130816 1 0
TCGA-BH-A0GY-01 ENSG00000129250 3815 130816 1 0
TCGA-BH-A0W3-01 ENSG00000129250 4587 130816 1 0
TCGA-BH-A18F-01 ENSG00000129250 3435 54397 1 0
TCGA-BH-AB28-01 ENSG00000129250 8074 57861 1 0
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Table A.1 continued from previous page

Sample ID Ensemble ID
Expression
Value

Expression Value
After Attack Prediction

Prediction
After Attack

TCGA-BH-AB28-01 ENSG00000138821 708 128689 1 0
TCGA-BK-A0CC-01 ENSG00000129250 5437 131030 1 0
TCGA-BL-A13I-01 ENSG00000215301 10894 65280 1 0
TCGA-BQ-5879-01 ENSG00000129250 5948 130574 1 0
TCGA-BQ-7060-01 ENSG00000188157 24585 962 1 0
TCGA-BT-A20T-01 ENSG00000129250 6856 130816 1 0
TCGA-C5-A1BL-01 ENSG00000129250 3718 119727 1 0
TCGA-C5-A3HF-01 ENSG00000129250 11144 130816 1 0
TCGA-CH-5762-01 ENSG00000129250 5959 130816 1 0
TCGA-CJ-4903-01 ENSG00000129250 5399 130816 1 0
TCGA-CN-4734-01 ENSG00000188157 33272 255 1 0
TCGA-CQ-A4CE-01 ENSG00000215301 22471 126049 1 0
TCGA-CV-7101-01 ENSG00000188157 27497 255 1 0
TCGA-CV-7409-01 ENSG00000129250 5941 130816 1 0
TCGA-CZ-4866-01 ENSG00000129250 6559 130905 1 0
TCGA-D3-A1QB-06 ENSG00000157557 1074 131026 1 0
TCGA-DB-5270-01 ENSG00000177469 1930 129660 1 0
TCGA-DB-5270-01 ENSG00000177469 1930 64636 1 0
TCGA-DB-A64V-01 ENSG00000215301 6446 59252 1 0
TCGA-DB-A64V-01 ENSG00000215301 6446 62565 1 0
TCGA-DD-AAE2-01 ENSG00000215301 12507 55729 1 0
TCGA-DU-7012-01 ENSG00000129250 5638 130816 1 0
TCGA-DX-AB2O-01 ENSG00000129250 6928 130816 1 0
TCGA-E2-A107-01 ENSG00000138821 1030 64504 1 0
TCGA-E2-A156-01 ENSG00000129250 2892 130904 1 0
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Table A.1 continued from previous page

Sample ID Ensemble ID
Expression
Value

Expression Value
After Attack Prediction

Prediction
After Attack

TCGA-E2-A15D-01 ENSG00000129250 4767 59214 1 0
TCGA-E2-A15P-01 ENSG00000129250 5233 131005 1 0
TCGA-E2-A1L9-01 ENSG00000129250 3397 130869 1 0
TCGA-EA-A3HQ-01 ENSG00000129250 4337 130816 1 0
TCGA-EB-A41A-01 ENSG00000129250 5024 130892 1 0
TCGA-EB-A42Z-01 ENSG00000129250 4377 130905 1 0
TCGA-EE-A29A-06 ENSG00000129250 3781 130816 1 0
TCGA-EE-A2M8-06 ENSG00000129250 7583 130816 1 0
TCGA-EJ-5494-01 ENSG00000129250 6308 130816 1 0
TCGA-EJ-5532-01 ENSG00000129250 7120 60950 1 0
TCGA-EJ-5532-01 ENSG00000129250 7120 61401 1 0
TCGA-EJ-7125-01 ENSG00000129250 15709 130816 1 0
TCGA-EJ-7218-01 ENSG00000129250 15510 130816 1 0
TCGA-EJ-7793-01 ENSG00000129250 10841 60788 1 0
TCGA-EJ-7793-01 ENSG00000129250 10841 63642 1 0
TCGA-EJ-A46B-01 ENSG00000129250 12339 110892 1 0
TCGA-EK-A2RC-01 ENSG00000123095 1162 131071 1 0
TCGA-EK-A2RE-01 ENSG00000129250 10806 130816 1 0
TCGA-EM-A2CU-01 ENSG00000188157 49681 255 1 0
TCGA-EV-5903-01 ENSG00000188157 48571 255 1 0
TCGA-EW-A1OX-01 ENSG00000163513 846 65535 1 0
TCGA-F4-6856-01 ENSG00000129250 12625 130816 1 0
TCGA-FD-A43U-01 ENSG00000188157 33708 255 1 0
TCGA-FJ-A871-01 ENSG00000129250 9592 131065 1 0
TCGA-FU-A3HY-01 ENSG00000129250 5352 130816 1 0
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Table A.1 continued from previous page

Sample ID Ensemble ID
Expression
Value

Expression Value
After Attack Prediction

Prediction
After Attack

TCGA-FU-A3WB-01 ENSG00000129250 7102 130816 1 0
TCGA-FX-A2QS-01 ENSG00000129250 6684 130816 1 0
TCGA-HC-7211-01 ENSG00000129250 6075 106745 1 0
TCGA-HC-7211-01 ENSG00000177469 4106 117632 1 0
TCGA-HC-7821-01 ENSG00000157557 2276 130858 1 0
TCGA-HC-8259-11 ENSG00000188157 3342 128550 0 1
TCGA-HC-8262-01 ENSG00000129250 7803 64173 1 0
TCGA-HT-7474-01 ENSG00000177469 1657 129424 1 0
TCGA-HT-7693-01 ENSG00000177469 1869 131071 1 0
TCGA-HW-7489-01 ENSG00000177469 1110 126849 1 0
TCGA-J7-6720-01 ENSG00000129250 8173 130816 1 0
TCGA-JY-A6FB-01 ENSG00000129250 16257 130816 1 0
TCGA-KK-A8IA-01 ENSG00000129250 3410 130816 1 0
TCGA-KL-8323-01 ENSG00000129250 5726 130648 1 0
TCGA-KL-8341-01 ENSG00000129250 6768 130816 1 0
TCGA-KO-8417-01 ENSG00000157557 2367 128082 1 0
TCGA-KS-A41I-11 ENSG00000188157 9357 63880 0 1
TCGA-L5-A43M-01 ENSG00000188157 46968 255 1 0
TCGA-L5-A4OM-01 ENSG00000129250 8826 130816 1 0
TCGA-NJ-A4YI-01 ENSG00000188157 49770 246 1 0
TCGA-NQ-A638-01 ENSG00000188157 46174 7332 1 0
TCGA-O1-A52J-01 ENSG00000188157 44171 1266 1 0
TCGA-OR-A5L5-01 ENSG00000215301 11024 65366 1 0
TCGA-P4-A5EA-01 ENSG00000129250 6731 130816 1 0
TCGA-Q1-A5R2-01 ENSG00000129250 6674 131018 1 0
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Table A.1 continued from previous page

Sample ID Ensemble ID
Expression
Value

Expression Value
After Attack Prediction

Prediction
After Attack

TCGA-QQ-A5VA-01 ENSG00000129250 5217 130816 1 0
TCGA-R5-A7ZI-01 ENSG00000123095 182 130816 1 0
TCGA-S7-A7X2-01 ENSG00000163513 1259 130828 1 0
TCGA-S8-A6BV-01 ENSG00000129250 7389 130874 1 0
TCGA-S9-A6TY-01 ENSG00000163513 592 130816 1 0
TCGA-TT-A6YO-01 ENSG00000215301 20327 61963 1 0
TCGA-UB-AA0U-01 ENSG00000163597 4115 61999 1 0
TCGA-UZ-A9PJ-01 ENSG00000188157 43394 255 1 0
TCGA-UZ-A9PP-01 ENSG00000188157 40637 65564 1 0
TCGA-V1-A9O5-01 ENSG00000123095 367 131056 1 0
TCGA-V1-A9ZR-01 ENSG00000138821 521 116813 1 0
TCGA-VQ-A91V-01 ENSG00000129250 5404 131055 1 0
TCGA-VS-A8EG-01 ENSG00000129250 10647 130054 1 0
TCGA-W2-A7HD-01 ENSG00000129250 605 130737 1 0
TCGA-W2-A7UY-01 ENSG00000129250 1495 130937 1 0
TCGA-XV-A9VZ-01 ENSG00000129250 5591 130816 1 0
TCGA-Z4-AAPG-01 ENSG00000129250 4441 130816 1 0
TCGA-ZH-A8Y2-01 ENSG00000129250 8672 130229 1 0
TCGA-ZH-A8Y2-01 ENSG00000129250 8672 63399 1 0
TCGA-10-0926-01 ENSG00000188157 53176 255 1 0
TCGA-2L-AAQM-01 ENSG00000157557 4465 62184 1 0
TCGA-50-5932-01 ENSG00000215301 10715 126312 1 0
TCGA-AB-2955-03 ENSG00000157514 3845 129101 1 0
TCGA-AN-A0FS-01 ENSG00000121691 4569 60547 1 0
TCGA-AO-A0JL-01 ENSG00000215301 9397 65280 1 0
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Table A.1 continued from previous page

Sample ID Ensemble ID
Expression
Value

Expression Value
After Attack Prediction

Prediction
After Attack

TCGA-AQ-A04L-01 ENSG00000129250 2953 130816 1 0
TCGA-BH-A0DE-01 ENSG00000116701 613 41600 1 0
TCGA-BR-6707-01 ENSG00000157514 608 63675 1 0
TCGA-CD-5798-01 ENSG00000188157 36067 255 1 0
TCGA-CV-5966-01 ENSG00000188157 51590 255 1 0
TCGA-DJ-A2Q0-01 ENSG00000157557 1844 124125 1 0
TCGA-DX-A6BE-01 ENSG00000121691 3852 130816 1 0
TCGA-ET-A40S-01 ENSG00000215301 12494 65280 1 0
TCGA-FG-A87N-01 ENSG00000157514 2120 131071 1 0
TCGA-G9-6351-01 ENSG00000215301 8439 124557 1 0
TCGA-J4-A83L-01 ENSG00000215301 11183 112019 1 0
TCGA-KC-A4BL-01 ENSG00000215301 14256 53561 1 0
TCGA-KL-8336-01 ENSG00000215301 8658 122131 1 0
TCGA-KO-8417-01 ENSG00000215301 9231 62181 1 0
TCGA-V1-A9OA-01 ENSG00000138821 533 129315 1 0
TCGA-WB-A81G-01 ENSG00000157557 4375 130816 1 0
TCGA-ZH-A8Y2-01 ENSG00000138821 213 130816 1 0
TCGA-2G-AAGZ-01 ENSG00000215301 7385 56885 1 0
TCGA-2L-AAQM-01 ENSG00000177469 5404 120549 1 0
TCGA-4A-A93W-01 ENSG00000188157 40826 255 1 0
TCGA-78-7540-01 ENSG00000188157 51134 255 1 0
TCGA-A7-A0CH-11 ENSG00000188157 8074 120732 0 1
TCGA-B0-4827-01 ENSG00000188157 39326 148 1 0
TCGA-BH-A18F-01 ENSG00000215301 10719 112517 1 0
TCGA-DB-5270-01 ENSG00000177469 1930 130811 1 0
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Table A.1 continued from previous page

Sample ID Ensemble ID
Expression
Value

Expression Value
After Attack Prediction

Prediction
After Attack

TCGA-DS-A5RQ-01 ENSG00000215301 19258 123418 1 0
TCGA-EM-A2CN-01 ENSG00000188157 36828 66176 1 0
TCGA-G9-6351-01 ENSG00000215301 8439 120452 1 0
TCGA-HU-A4H0-01 ENSG00000188157 37986 255 1 0
TCGA-09-0367-01 ENSG00000198911 10408 65359 1 0
TCGA-09-1662-01 ENSG00000129250 5514 130816 1 0
TCGA-2Z-A9JT-01 ENSG00000215301 2091 105495 1 0
TCGA-A2-A1FW-01 ENSG00000129250 1415 130816 1 0
TCGA-A2-A3XW-01 ENSG00000188157 36255 255 1 0
TCGA-A7-A425-01 ENSG00000138821 805 131071 1 0
TCGA-A8-A07W-01 ENSG00000129250 5259 130816 1 0
TCGA-AB-2889-03 ENSG00000129250 558 123910 1 0
TCGA-B3-3925-01 ENSG00000129250 9464 126426 1 0
TCGA-BA-A4IG-01 ENSG00000129250 7327 130816 1 0
TCGA-BH-A1FB-01 ENSG00000129250 3977 64565 1 0
TCGA-BH-AB28-01 ENSG00000138821 708 129362 1 0
TCGA-BP-5192-01 ENSG00000138821 3127 129504 1 0
TCGA-C5-A7CG-01 ENSG00000215301 11934 59902 1 0
TCGA-CV-7409-01 ENSG00000129250 5941 130816 1 0
TCGA-D8-A27I-01 ENSG00000129250 5949 128407 1 0
TCGA-DX-A3UD-01 ENSG00000215301 8891 126774 1 0
TCGA-EE-A3AD-06 ENSG00000129250 3712 130816 1 0
TCGA-EJ-7125-11 ENSG00000188157 1287 130285 0 1
TCGA-EK-A2RE-01 ENSG00000129250 10806 130907 1 0
TCGA-EM-A2CU-01 ENSG00000188157 49681 66722 1 0

85



Table A.1 continued from previous page

Sample ID Ensemble ID
Expression
Value

Expression Value
After Attack Prediction

Prediction
After Attack

TCGA-EX-A1H5-01 ENSG00000138821 343 127576 1 0
TCGA-HM-A4S6-01 ENSG00000188157 39038 255 1 0
TCGA-K4-A4AB-01 ENSG00000215301 17126 125925 1 0
TCGA-KL-8341-01 ENSG00000215301 8609 64178 1 0
TCGA-LI-A9QH-01 ENSG00000215301 7111 118693 1 0
TCGA-QR-A6H0-01 ENSG00000129250 7058 65104 1 0
TCGA-RL-AAAS-01 ENSG00000215301 12649 124783 1 0
TCGA-RN-AAAQ-01 ENSG00000138821 244 130919 1 0
TCGA-TM-A84G-01 ENSG00000215301 8974 124761 1 0
TCGA-X7-A8M6-01 ENSG00000215301 2778 65056 1 0
TCGA-ZP-A9CY-01 ENSG00000215301 8080 64613 1 0
TCGA-25-2404-01 ENSG00000129250 5181 130816 1 0
TCGA-2G-AAGZ-01 ENSG00000215301 7385 61365 1 0
TCGA-85-A513-01 ENSG00000188157 52754 255 1 0
TCGA-A4-7584-01 ENSG00000215301 9715 52718 1 0
TCGA-B6-A0I9-01 ENSG00000138821 665 130996 1 0
TCGA-BC-A3KG-01 ENSG00000215301 11642 63574 1 0
TCGA-BH-A0AZ-01 ENSG00000129250 4581 130816 1 0
TCGA-BH-A0DV-01 ENSG00000121691 7409 129279 1 0
TCGA-BH-A1FL-01 ENSG00000215301 13228 126204 1 0
TCGA-BH-A204-01 ENSG00000129250 716 130816 1 0
TCGA-BK-A0CC-01 ENSG00000138821 483 131071 1 0
TCGA-DK-A3X2-01 ENSG00000129250 4498 130816 1 0
TCGA-DK-A6B0-01 ENSG00000215301 9967 59006 1 0
TCGA-E2-A156-01 ENSG00000215301 10569 65400 1 0
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Table A.1 continued from previous page

Sample ID Ensemble ID
Expression
Value

Expression Value
After Attack Prediction

Prediction
After Attack

TCGA-EM-A4FH-01 ENSG00000157557 2931 130750 1 0
TCGA-EX-A1H5-01 ENSG00000138821 343 125364 1 0
TCGA-FG-7641-01 ENSG00000215301 12547 122417 1 0
TCGA-G4-6294-01 ENSG00000215301 18214 123355 1 0
TCGA-HC-A6AQ-01 ENSG00000215301 4434 123856 1 0
TCGA-HT-8105-01 ENSG00000215301 11003 64510 1 0
TCGA-HW-7489-01 ENSG00000177469 1110 130947 1 0
TCGA-KL-8339-01 ENSG00000215301 9972 120787 1 0
TCGA-L5-A8NG-01 ENSG00000138821 793 63201 1 0
TCGA-MQ-A6BS-01 ENSG00000215301 11981 62466 1 0
TCGA-NJ-A4YI-01 ENSG00000188157 49770 255 1 0
TCGA-OR-A5L9-01 ENSG00000215301 9404 125923 1 0
TCGA-PE-A5DC-01 ENSG00000129250 3086 130816 1 0
TCGA-VP-A87B-01 ENSG00000215301 5596 50151 1 0
TCGA-WB-A817-01 ENSG00000215301 8520 121014 1 0
TCGA-ZH-A8Y2-01 ENSG00000138821 213 130911 1 0
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B
STATISTICAL DATA OF GENE EXPRESSION VALUES OF

AGRIN, CATALASE AND KINESIN-LIKE PROTEIN GENES
ACCORDING TO CANCER TYPES

As a result of the applied one-pixel attack, 13 critical genes that are crucial in
predicting whether the neural network is tumor or normal were determined. Among
these 13 genes determined, the gene with the highest availability (CAT) with the DEG
method, the gene with the most effect as a result of the one-pixel attack (AGRN), and
the analysis of the expression data of the DEG method and the rarely encountered
genes (KIF1C) in the literature are Shared in Table B.2, Table B.1, Table B.3.
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Table B.1 canSAR Black expression analyis of AGRN gene. For various cancer stuides, distribution of KIF1C expression in Normal and
Tumor samples is summarized. Distribution of expression is summarized with maximum, minimum and median values per sample.

Study
Tumor
Samples Max Median Min

Normal
Samples Max Median Min

Log2
(Tvs N)

Thymoma (THYM) 117 8.52 5.32 2.33 337 2.68 -2.24 -0.04 7.56
B-cell lymphoma (DLBC) 41 4.28 2.41 1.21 337 2.68 -2.24 -0.04 4.66
Ovarian (OV) 419 9.90 6.90 -9.97 88 4.64 3.22 1.58 3.68
Glioblastoma (GBM) 159 7.78 5.90 1.99 216 6.47 2.83 -0.27 3.07
Glioma (LGG) 509 8.02 5.80 3.80 216 6.47 2.83 -0.27 2.97
Pheochromocytoma & Paraganglioma (PCPG) 167 6.80 4.37 0.42 128 3.79 2.00 -9.97 2.38
Esophageal (ESCA) 158 8.99 6.98 2.26 271 6.40 4.66 -9.97 2.32
Uterine endometrial (UCEC) 180 8.82 6.61 3.40 78 5.96 4.34 2.21 2.27
Uterine carcinosarcoma (UCS) 57 8.35 6.49 3.90 78 5.96 4.34 2.21 2.16
Stomach (STAD) 389 8.71 5.94 2.16 174 5.88 3.89 -9.97 2.05
Pancreatic (PAAD) 175 8.72 6.29 2.48 167 6.78 4.36 -9.97 1.93
Cervical (CESC) 297 8.51 6.42 2.87 10 6.15 4.67 2.85 1.74
Papillary kidney (KIRP) 258 9.70 7.08 3.33 28 7.99 5.68 -9.97 1.40
Head and neck (HNSC) 443 8.66 6.47 3.37 55 6.47 5.13 2.90 1.34
Melanoma (SKCM) 414 8.68 5.90 1.74 323 5.65 4.66 2.49 1.24
Colon (COAD) 276 7.31 5.26 1.07 167 5.17 4.04 -9.97 1.22
Rectal (READ) 82 6.62 5.13 2.83 141 5.32 4.01 -9.97 1.12
Lung adenocarcinoma (LUAD) 505 8.58 6.33 1.16 288 6.79 5.41 -9.97 0.92
Clear cell kidney (KIRC) 527 8.65 6.55 1.54 28 7.99 5.68 -9.97 0.87
Liver (LIHC) 345 9.24 4.56 1.10 110 7.42 3.70 1.84 0.85
Breast (BRCA) 1067 7.88 5.65 -0.78 179 7.16 4.84 1.31 0.81
Bladder (BLCA) 405 8.95 6.57 2.78 9 7.17 5.88 2.57 0.69
Lung squamous (LUSC) 494 9.44 6.01 2.17 288 6.79 5.41 -9.97 0.61
Adrenocortical (ACC) 75 7.93 2.51 -0.20 128 3.79 2.00 -9.97 0.51
Thyroid (THCA) 502 8.20 6.66 3.47 279 7.50 6.35 -9.97 0.30
Prostate (PRAD) 495 7.18 5.07 1.58 100 7.11 5.04 2.36 0.03
Cholangiocarcinoma (CHOL) 36 8.82 7.06 2.58 0
Mesothelioma (MESO) 87 9.90 7.11 4.36 0
Sarcoma (SARC) 205 8.27 4.62 2.07 0
Uveal melanoma (UVM) 78 7.42 5.52 3.48 0
Chromophobe renal cell (KICH) 66 7.74 4.56 2.75 28 7.99 5.68 -9.97 -1.12
Testicular (TGCT) 125 7.20 3.85 0.86 165 6.63 5.12 3.71 -1.27
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Table B.2 canSAR Black expression analyis of CAT gene. For various cancer stuides, distribution of KIF1C expression in Normal and Tumor
samples is summarized. Distribution of expression is summarized with maximum, minimum and median values per sample.

Study
Tumor
Samples Max Median Min

Normal
Samples Max Median Min

Log2
(T vs N)

Glioblastoma (GBM) 159 6.39 5.51 2.81 216 4.60 3.24 -9.97 2.27
Glioma (LGG) 509 7.25 5.28 2.08 216 4.60 3.24 -9.97 2.03
Chromophobe renal cell (KICH) 66 9.35 7.27 4.29 28 7.63 6.06 -9.97 1.21
Esophageal (ESCA) 158 7.34 5.21 3.59 271 6.17 4.46 -9.97 0.75
Pancreatic (PAAD) 175 7.21 5.36 2.33 167 5.87 4.91 -9.97 0.45
Clear cell kidney (KIRC) 527 9.12 6.51 2.74 28 7.63 6.06 -9.97 0.44
Thymoma (THYM) 117 7.53 5.85 2.56 337 7.93 5.44 1.65 0.42
Stomach (STAD) 389 7.78 5.60 1.94 174 6.56 5.40 -9.97 0.20
Prostate (PRAD) 495 7.00 5.80 3.10 100 6.73 5.63 4.31 0.17
Thyroid (THCA) 502 8.72 7.00 3.08 279 8.55 6.91 -9.97 0.08
Rectal (READ) 82 6.71 5.65 3.55 141 8.00 5.64 -9.97 0.01
Cholangiocarcinoma (CHOL) 36 7.91 5.72 4.23 0
Mesothelioma (MESO) 87 6.28 4.54 2.21 0
Sarcoma (SARC) 205 8.61 5.19 2.44 0
Uveal melanoma (UVM) 78 5.51 3.82 1.15 0
Papillary kidney (KIRP) 258 8.53 5.98 3.43 28 7.63 6.06 -9.97 -0.09
Ovarian (OV) 419 7.45 5.33 -9.97 88 6.28 5.44 4.14 -0.11
Colon (COAD) 276 7.29 5.61 2.45 167 6.71 5.80 -9.97 -0.19
Testicular (TGCT) 125 5.64 3.62 1.28 165 6.15 3.86 2.46 -0.24
Liver (LIHC) 345 9.31 7.25 3.75 110 8.93 7.50 2.88 -0.25
B-cell lymphoma (DLBC) 41 6.07 4.72 3.55 337 7.93 5.44 1.65 -0.71
Uterine endometrial (UCEC) 180 7.80 5.17 2.30 78 6.56 5.93 4.26 -0.76
Lung adenocarcinoma (LUAD) 505 7.78 5.53 2.89 288 7.64 6.45 -9.97 -0.92
Uterine carcinosarcoma (UCS) 57 7.98 4.95 2.88 78 6.56 5.93 4.26 -0.98
Head and neck (HNSC) 443 7.65 4.57 0.55 55 6.84 5.58 4.34 -1.01
Lung squamous (LUSC) 494 7.27 5.14 1.88 288 7.64 6.45 -9.97 -1.31
Melanoma (SKCM) 414 7.75 4.88 1.26 323 7.24 6.23 3.19 -1.34
Breast (BRCA) 1067 8.87 5.55 -0.41 179 8.54 6.97 4.79 -1.42
Bladder (BLCA) 405 8.08 5.17 2.61 9 7.14 6.65 5.27 -1.49
Cervical (CESC) 297 7.08 4.51 0.90 10 6.81 6.18 4.58 -1.68
Adrenocortical (ACC) 75 7.19 5.03 -0.13 128 7.69 6.70 -9.97 -1.68
Pheochromocytoma & Paraganglioma (PCPG) 167 6.60 3.61 -0.45 128 7.69 6.70 -9.97 -3.09
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Table B.3 canSAR Black expression analyis of KIF1C gene. For various cancer stuides, distribution of KIF1C expression in Normal and
Tumor samples is summarized. Distribution of expression is summarized with maximum, minimum and median values per sample.

Study
Tumor
Samples Max Median Min

Normal
Samples Max Median Min

Log2
(T vs N)

Thymoma (THYM) 117 6.11 4.31 0.28 337 4.61 1.89 -0.04 2.42
B-cell lymphoma (DLBC) 41 5.84 3.97 1.63 337 4.61 1.89 -0.04 2.07
Glioma (LGG) 509 7.85 5.96 2.51 216 6.92 5.10 -9.97 0.86
Papillary kidney (KIRP) 258 7.91 6.08 1.78 28 6.17 5.28 -9.97 0.81
Pancreatic (PAAD) 175 6.68 5.30 2.84 167 5.52 4.64 -9.97 0.66
Stomach (STAD) 389 7.82 5.83 2.80 174 8.12 5.39 -9.97 0.44
Liver (LIHC) 345 6.92 4.89 1.91 110 6.37 4.67 1.90 0.22
Head and neck (HNSC) 443 8.11 5.71 2.34 55 7.03 5.61 4.49 0.10
Glioblastoma (GBM) 159 6.98 5.16 1.05 216 6.92 5.10 -9.97 0.05
Cholangiocarcinoma (CHOL) 36 6.70 5.62 3.11 0
Mesothelioma (MESO) 87 6.83 5.43 3.32 0
Sarcoma (SARC) 205 7.77 5.35 2.91 0
Uveal melanoma (UVM) 78 7.18 5.87 3.87 0
Chromophobe renal cell (KICH) 66 6.68 5.27 1.81 28 6.17 5.28 -9.97 -0.00
Prostate (PRAD) 495 7.57 5.75 2.83 100 7.32 5.75 4.56 -0.01
Testicular (TGCT) 125 7.52 5.56 1.51 165 6.25 5.71 4.09 -0.16
Clear cell kidney (KIRC) 527 7.03 5.04 1.56 28 6.17 5.28 -9.97 -0.23
Thyroid (THCA) 502 7.04 5.74 3.26 279 7.21 6.07 -9.97 -0.33
Breast (BRCA) 1067 7.64 5.20 0.03 179 7.14 5.58 3.82 -0.38
Esophageal (ESCA) 158 7.40 5.76 3.56 271 7.34 6.20 -9.97 -0.44
Ovarian (OV) 419 6.76 4.58 -9.97 88 6.75 5.12 3.65 -0.55
Colon (COAD) 276 6.87 5.47 1.27 167 8.17 6.02 -9.97 -0.55
Melanoma (SKCM) 414 7.52 5.53 2.46 323 8.72 6.16 4.78 -0.64
Cervical (CESC) 297 7.00 5.08 2.07 10 6.27 5.78 5.43 -0.69
Rectal (READ) 82 6.85 5.37 2.74 141 7.81 6.29 -9.97 -0.93
Uterine endometrial (UCEC) 180 6.70 4.80 2.27 78 7.32 5.90 4.75 -1.10
Uterine carcinosarcoma (UCS) 57 6.37 4.75 2.56 78 7.32 5.90 4.75 -1.15
Adrenocortical (ACC) 75 6.35 3.51 0.03 128 5.67 4.69 -9.97 -1.17
Lung adenocarcinoma (LUAD) 505 6.87 4.98 1.02 288 7.67 6.37 -9.97 -1.39
Bladder (BLCA) 405 7.15 5.05 1.49 9 7.67 6.50 5.24 -1.44
Lung squamous (LUSC) 494 7.45 4.79 1.82 288 7.67 6.37 -9.97 -1.58
Pheochromocytoma &
Paraganglioma (PCPG) 167 4.86 2.83 -0.55 128 5.67 4.69 -9.97 -1.86
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Kanser Teşhisinde Derin Öğrenme ile Sınıflandırma

2. The International Conference on Advanced Engineering, Technology and
Applications (ICAETA-2021)
July 09-10, 2021, Istanbul, Turkey
Convolutional Neural Network Approach to Distinguish and Characterize Tumor
Samples Using Gene Expression Data

Awards
1. Best Poster Award 3rd Place

1.Temel Onkoloji Sempozyumu
May 09-11, 2018, Izmir, Turkey
Kanser Teşhisinde Derin Öğrenme ile Sınıflandırma

92


	LIST OF ABBREVIATIONS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	ÖZET
	INTRODUCTION
	Literature Review
	Objective of the Thesis
	Hypothesis

	CANCER
	Cancer and its mechanisms
	Diagnosis Techniques
	Pathology
	Radiology
	Molecular methods

	Gene Expression Based Cancer Diagnosis
	Methods for Gene Expression Quantification
	Meta-analysis


	DEEP LEARNING AND CANCER
	History and Basics
	Deep Neural Networks
	Multi Layer Perceptron (MLP) 
	Convolutional Neural Network (CNN)
	Recurrent Neural Networks (RNN) 
	Vulnerability of Deep Learning Techniques: One-Pixel Attack

	Deep Learning Approach for Cancer Diagnosis

	METHODS
	Datasets
	Selection of genes with highest DEG cases
	Conversion of gene expression data into image
	Model Architecture used for Deep Learning Training
	One pixel attack

	RESULTS
	Gene expression data as image
	Model Training
	Performance Measurement
	One-pixel Attack Results
	Annotation of Attack Results Based on Real Cancer Patient Expression Levels

	RESULTS AND DISCUSSION
	REFERENCES
	ONE-PIXEL ATTACK RESULTS
	STATISTICAL DATA OF GENE EXPRESSION VALUES OF AGRIN, CATALASE AND KINESIN-LIKE PROTEIN GENES ACCORDING TO CANCER TYPES 
	PUBLICATIONS FROM THESIS

