

Optimal Design of Grid-connected Photovoltaic (PV) Power Plants using Optimisation Algorithms

by

TEKAI EDDINE KHALIL ZIDANE (1840912727)

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Faculty of Electrical Engineering Technology UNIVERSITI MALAYSIA PERLIS

2021

UNIVERSITI MALAYSIA PERLIS

	DECLA	ARATION OF THESIS	
Author's Full Name		EDDINE KHALIL ZIDANE	
Title		AL DESIGN OF GRID-CONNECTED VOLTAIC (PV) POWER PLANTS USING ISATION ALGORITHMS	
Date of Birth	: 28 SEPT	TEMBER 1989	
Academic Session	: 2020/20	21	
		nes the property of Universiti Malaysia Perlis (UniMAP) MAP. This thesis is classified as:	
CONFIDE	NTIAL	(Contains confidential information under the Official Secret Act 1997)*	
RESTRI	CTED	(Contains restricted information as specified by the organization where research was done)*	
✓ OPEN AC	CCESS	I agree that my thesis to be published as online open access (Full Text)	
I, the author, give permission to reproduce this thesis in whole or in part for the purpose of research or academic exchange only (except during the period of years, if so requested above)			
	,	Certified by:	
2	jidane		
		Mohskafi	
SIGNATURE		SIGNATURE OF SUPERVISOR	
16690240	6	DR. MOHD RAFI BIN ADZMAN	
(NEW IC NO. /P.	ASSPORT N	NO.) NAME OF SUPERVISOR	
Date: 26 April 202	21	Date: 26 April 2021	

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with the period and reasons for confidentiality or restriction

ACKNOWLEDGMENT

First and foremost, I am grateful to ALLAH, who helped and supported me to accomplish this PhD work. I would like to express my heartfelt thanks to my supervisor, Dr. Mohd Rafi Bin Adzman, for his academic and emotional support since day one. He assisted me at various stages of the thesis progress and guided me on the right track, especially where I had reached the 'crossroads'. During the most challenging times of writing this thesis, he provided me with moral support and gave me full freedom to pursue my research interest.

I would like to thank my co-supervisors, Dr. Mohammad Faridun Naim Tajuddin, Dr. Samila Mat Zali and Dr. Ali Durusu, for their constant support, availability and constructive suggestions, which were determinant for the accomplishment of the work presented in this thesis.

An exceptional thanks to my mother, to the memory of my father, who raised me with a love of science and supported me in all my pursuits. To my brothers and sister, thank you for all your support. Finally, I would like to thank my family for their everlasting love and unconditional support. I also want to sincerely express my gratitude and thanks to my friends, who have always been a major source of support when things started to get a little bit discouraging.

TABLE OF CONTENTS

		PAGE
DEC	LARATION OF THESIS	i
ACK	NOWLEDGMENT	ii
TAB	LE OF CONTENTS	iii
LIST	T OF TABLES	viii
LIST	T OF FIGURES	X
LIST	TOF ABBREVIATIONS	xiii
LIST	T OF SYMBOLS	xiv
ABS	TRAK	xix
ABS	TRACT	XX
СНА	PTER 1: INTRODUCTION	1
1.1	Overview	1
1.2	Problem statement	4
1.3	Research objectives	6
1.4	Research questions	7
1.5	Research scope	7
1.6	Research contributions	8
1.7	Thesis outlines	10
СНА	PTER 2 : LITERATURE REVIEW	12
2.1	Introduction	12
2.2	Main components of grid-connected PV power Plant	13
	2.2.1 PV modules	14

	2.2.2	Inverters	20		
	2.2.3	Transformers	22		
	2.2.4	Wiring	25		
	2.2.5	Junction Boxes	26		
2.3	Topol	ogies for large-scale PV power plant	27		
	2.3.1	Central topology	28		
	2.3.2	Master-slave topology	29		
	2.3.3	String topology	30		
	2.3.4	Team Concept topology	31		
	2.3.5	AC-module topology	32		
	2.3.6	Multi-string topology	33		
	2.3.7	Comparison between PV plant topologies	34		
2.4	PV pl	ant optimal design	38		
2.5	PV pl	PV plant inverter size optimisation			
2.6	PV module optimal tilt angle				
2.7	International standards for PV plant components 5				
2.8	Software tools for sizing a large scale PV power plant grid-connected 59				
2.9	Chapt	er summary	62		
CHA	PTER 3	B: METHODOLOGY	64		
3.1	Form	lation of the design problem	64		
	3.1.1	Objective function	65		
	3.1.2	Design variables	66		
	3.1.3	Constraints	67		
3.2	Syster	n description and meteorological data	68		
	3.2.1	System description	69		
	3.2.2	Selected sites	70		

	3.2.3	Meteorological Data	70	
3.3	PV power plant modeling			
	3.3.1	Irradiance model		
	3.3.2	PV module power		
	3.3.3	Area calculation model		
	3.3.4	Components arrangement		
	3.3.5	Cable calculation		
	3.3.6	Mounting structure 8		
	3.3.7	Shaded surface on PV modules		
	3.3.8	PV plant total energy		
	3.3.9	PV plant total cost 9		
3.4	Case s	Case studies 98		
	3.4.1	Case 1: Optimal configuration of PV power plant using sing optimisation: a comparative analysis considering CdTe and c-Si I modules	-	
			98 98	
			.01	
			.01	
			.07	
		3.4.1.5 Implementation of the proposed algorithms for PV plant desiproblem 110	lgn	
	3.4.2	Case 2: Optimal design of PV power plant using hybrid optimisation 1	11	
		3.4.2.1 PV modules and inverters 1	12	
		3.4.2.2 Hourly and semi-hourly meteorological data 1	13	
		3.4.2.3 Sine Cosine Algorithm (SCA)	15	
		3.4.2.4 Hybrid grey wolf optimiser-sine cosine algorith (HGWOSCA)	hm 17	

v

	3.4.3	Case 3: 0	Cost-effective topology for PV power plants using	optimisation
		design: c	entral structure versus string structure	120
		3.4.3.1	PV modules and inverters	121
		3.4.3.2	Particle swarm optimisation (PSO)	122
		3.4.3.3	PV plant rated power	124
	3.4.4	Case 4: A	Assessing the impact of key factors on the optimis	ed design of
		PV power plants 12		
		3.4.4.1	Location	126
		3.4.4.2	Meteorological data	127
		3.4.4.3	Available land	129
		3.4.4.4	PV modules and inverters	130
		3.4.4.5	Objective function	132
		3.4.4.6	Optimisation techniques	134
		3.4.4.7	Step time of meteorological data	135
3.5	Chapt	er summar	У	136
CHA	PTER 4	: RESU	ULTS & DISCUSSION	137
4.1	Introd	uction		137
4.2	Result	s of case	e 1: Optimal configuration of PV power plant	using single
	optimisation: a comparative analysis considering CdTe and c-Si PV module			
	4.2.1	Scenario	(1)	138
	4.2.2	Scenario	(2)	140
	4.2.3	Compari	son between scenario (1) and scenario (2)	142
4.3	Result	s of case 2	2: Optimal design of PV power plant using hybrid	optimisation
				144
	4.3.1	Effect of	PV module reduction coefficient	152
4.4	Result	s of case 3	: Cost-effective topology for PV power plants using	optimisation
	design	: central s	tructure versus string structure	154

	4.4.1	Impact of inverter efficiency	156	
4.5	Results of case 4: Assessing the impact of key factors on the optimised design			
	PV power plants			
	4.5.1	Location effect	158	
	4.5.2	Meteorological data effect	165	
		4.5.2.1 Solar irradiation	165	
		4.5.2.2 Ambient temperature	166	
		4.5.2.3 Wind speed	167	
	4.5.3	Available land effect	168	
	4.5.4	PV modules and inverters effect	169	
	4.5.5	Objective function effect	171	
	4.5.6	Optimisation techniques effect	172	
4.6	Chapt	er conclusion	174	
CHA	PTER (5: CONCLUSIONS AND FUTURE WORKS	179	
5.1	Concl	usions	179	
5.2	Future	e Works	181	
REF	ERENC	ES	182	
LIST	OF PU	BLICATIONS	209	