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ABSTRACT

X-Band Isoflux Microstrip Patch Antenna Array Design
for Low Earth Orbit Satellites

Elif ALPAGU

Department of Electronics and Communications Engineering

Master of Science Thesis

Advisor: Prof. Dr. Ahmet KIZILAY

The Low Earth Orbit (LEO) levels are used by different satellite types such
as communication satellites, earth monitoring satellites, scientific satellites and
observation satellites. The orbiting time of satellites is restricted due to their limited
energy. For this reason, the loads located on satellite should be designed to have low

mass and they should consume the limited energy efficiently.

The antennas are basic loads on LEO satellites. Various antenna types are used in space
applications such as parabolic, helical and array antennas. However, antennas with
specialized specifications are needed within the increase in technology. The main ones
are the small size for satellites and the desired beam forming. The microstrip patch
antennas can be used for the small size feature. The microstrip patch antennas are

simple to design, easy to construct and fabricate, cheap and have low mass and height.

Agility in beam forming is achieved by antennas operate with different patterns.
These are the directional beam, the multi-directional beams and the wide-angle beams
commonly known as isoflux. The goal of the isoflux pattern of the antenna is to
compansate the distance variation from the satellite to the ground along the surface
curvature of the earth to provide constant power density over the ground covered by

the antenna radiation pattern.

In this work, a microstrip patch antenna array with isoflux radiation pattern is
presented for LEO satellites. The proposed antenna is designed to be used in X-Band.

The feeding network for the array antenna is designed. The antenna array is simulated

xii



by the CST Microwave Studio 2018.

Keywords: Isoflux radiation pattern, Microstrip patch aray, LEO satellite, X band,
Antenna array
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OZET

Alcak Yoriinge Uydular icin X-Bant Es Akili Mikroserit
Anten Tasarimi

Elif ALPAGU

Elektronik ve Haberlesme Miihendisligi Bolimii

Yiiksek Lisans Tezi

Danisman: Prof. Dr. Ahmet KIZILAY

Alcak yoriinge (LEO) katmanlari; iletisim uydulari, diinya izleme uydulari, bilimsel
uydular ve gozlem uydular gibi farkli uydu tipleri tarafindan kullanilir. Uydularin
sinirli enerjilerinden dolay1 yoriingede kalma siireleri azdir. Bu sebeple, uydu iizerinde
bulunan yiikler diistik kiitleli olacak sekilde dizayn edilmeli ve sinirli enerjiyi verimli
bir sekilde kullanmalidirlar.

Antenler, LEO uydularinda bulunan temel yiiklerdir. Uzay uygulamalarinda parabolik,
helis ve dizi antenler gibi cesitli anten tipleri kullanilmaktadir. Bununla beraber,
teknolojinin artmasi ile 6zel tekniklere sahip antenlere ihtiya¢c duyulmaktadir. Baslica
bu antenler, kii¢iik boyutlu uydularin gelistirilmesi icin kii¢iik boyutlu ve istenilen
1s1ma Oriintiisii olusturmasi beklenen antenlerdir. Kiiciik boyut dizayni icin mikroserit
antenler kullanilabilir. Mikroserit yama antenlerin tasarimi basit, yapimi ve iiretimi

kolay, ucuz ve diisiik kiitle ve yiikseklige sahiptirler.

Istenilen 151ma oriintiisii olusturabilmek , yonlii 151ma, cok-yonlii 151ma ve es akili
olarak bilinen genis-acili 1s1ma gibi farkli 1s1ma oOriintiisii olusturabilen antenler
ile saglanabilir. Es akili 1s1ma Oriintiisiine sahip antenin amaci, diinyanin yiizey
egiminden kaynakli uydunun yeryiiziine olan degisken mesafesi ile orantili olarak

kapsama alan1 boyunca gii¢ yogunlugunu esitleyerek saglamaktir.

Bu calismada LEO uydulari icim es akili is1ma oriintiisiine sahip mikroserit yama anten
dizisi sunulmustur. Onerilen anten, X-Band’inda kullanilmak iizere tasarlanmistir.

Anten dizisine ait besleme hatt1 tasarlanmistir. Anten dizisi CST Mikrodalga Studio

Xiv



2018 tarafindan simiile edilmistir.

Anahtar Kelimeler: Es akili yayilim paterni, mikroserit anten, LEO uydu, X-Band,
Dizi Anten

YILDIZ TEKNIK UNIVERSITESI
FEN BILIMLERI ENSTITUSU
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1

Introduction

1.1 Literature Review

In space applications, many studies are carried out for using limited energy efficiently.
The isoflux pattern has wide coverage pattern. The purpose of this pattern is to
compensate the gain that changes according to the antenna’s elevation angle when
the satellite’s elevation angle increases. In this context, many studies are focused
on isoflux pattern. To provide wide coverage pattern and to form isoflux pattern
some studies are focused on only one antenna . The choke ring, the microstrip
antenna with cavity, the compact antenna with parasitic elements,helix antenna and
the metasurface antenna were performed in these studies [1-5]. On the other hand,
array antenna studies are performed to form isoflux pattern [6-10]. The L-probe-fed
U-slotted microstrip antenna array and reflect-array are studied in the literature [6,
7]. In some studies, optimization studies were performed and suitable array antenna
sequences have been proposed. The particle swarm optimization, harmony search

optimization, genetic algorithm were performed in these studies [8-10].

1.2 Objective of the Thesis

The objective of the thesis to design, simulate and fabricate a microstrip patch antenna
array with isoflux radiation for LEO satellites. Circular polarization is preferred
to minimize antenna losses. Since it is a satellite antenna, circular polarization is
preferred and an array antenna is used to create an Isoflux pattern. It is aimed
to select an antenna that works in X-band and makes circular polarization. An
appropriate antenna feeding technique is selected to improve bandwith and avoid
parasitic radiation. To create an isoflux pattern by minimizing the number of antenna

is planned in this thesis.



1.3 Hypothesis

The numbers of satellites needed for covering all the points in the coverage area on
the Earth are minimized by exploiting isoflux antennas [7]. Although there are many
studies on isoflux patern antennas, studies on isoflux microstrip patch antenna array

is not common.



2

General Technical Information

2.1 What Is an Antenna?

There are several definitions of what the antenna is and what it is used for. Antenna
is generally metallic device and it can radiate or receive radio waves. The other
definition of the antenna is a device between space and device. This device can be
coaxial cable or waveguide. It can transmit electromagnetic waves from the source
to the antenna or it can receive electromagnetic waves from the receiver to the
antenna. Generally, antenna can be defined as device that converts electrical signals

to electromagnetic waves, or vice versa as shown in Figure 2.1 [11].
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Figure 2.1 An example an Antenna Structure

An example an antenna structure can be observed in Figure 2.1. Antenna transmitting

mode is represented by a Thevenin equivalent circuit as shown in Figure 2.2.

In Figure 2.2, the source is represented by an ideal generator, the transmission line is
represented by a transmission line which has characteristic impedance Z, and antenna
is represented by a load Z,;

Zy=(R,+R,+jX,) 2.1



Rload

—{ Zgenerator

Rradiation

)
\/generatorby

== —{uopelpeix]

k
N P - A
Source Transmission Line Antenna

Figure 2.2 Thevenin Equivalent Circuit of Antenna

The dielectric and conduction losses are represented by the load R;. When an antenna
radiates, it is represented by the radiation resistance R, and imaginary radiation

resistance is X,.

2.2 Antenna Fundamentals

In antenna applications, some undesirable problems can occur. If the impedance
matching between the transmission line and the antenna cannot be achieved, a certain
part of the power may be reflected to the antenna. Losses may occur when the
appropriate polarized antenna is not selected for the applications. To avoid similar
problems, the basic antenna parameters should be known. In this section, important

antenna parameters will be mentioned.

2.2.1 Radiation Pattern

The other name of the radiation pattern is "antenna pattern”. It indicates how well the
antenna transmits or receives in a specific direction. This direction will be simulated
as a function of space coordinates which are azimuth angle (horizontal diagram) and
elevation angle or zenith angle (vertical diagram) in Figure2.3. Azimuth angle and

elevation anglere are presented by ¢ and 0 respectively [12].

In figure 2.3 an antenna is placed at the origin of the three-dimensional space
coordinates which are spherical coordinates. Parts of the radiation pattern are called
as lobes. They are major (main), minor, side and back lobes which are indicated in
Figure 2.4 [11].

The maximum radiation’s direction is called as major lobe. The major lobe is called
as main lobe. The other lobes are called minor lobe. The side lobe and back lobes are
undesirable radiation. The radiation intensity of these lobes are less than main lobe.

The back lobe occurs behind the beam of an antenna [12].



Elevation plane

Azimuth plane

Figure 2.3 Three-dimensional coordinate system

Figure 2.4 Radiation lobes



2.2.2 Beamwidth

The beamwidth is the angle between two points of maximum pattern on the opposite
sides. There are lots of beamwidth on the antenna. The most important is Half-Power
Beamwidth which is known as HPBW. HPBW can be defined as an angle which is half
power intensity of the maximum radiated pattern. The other important beamwidth
is First Null Beam Width which is known as FNBW. FNBW is an angle between two
points which are first nulls of the pattern on main lobe [11].The beamwidth is shown

as in Figure 2.5.

Irst null beamwldih
(FNBW)

all=power beamwldih
(HPBW)

al f=power palnt
(left) (right)

Figure 2.5 FNBW and HPBW

2.2.3 Directivity

The directivity is the ratio of the maximum radiation intensity in a constant direction
to the average radiation intensity in all directions [11]. The other definition is the
ratio of the power intensity in the direction of antenna’s maximum radiation to the
power intensity of an isotropic antenna with the same power and in the same distance.

Directivity is also called as gain, if antenna is lossless [13].

U
D=—"= 2.2
T (2.2)

ave



The directivity is represented by D in Equation (2.1) and it is dimensionless. U,
is maximum radiation intensity and its unit is W/unit solid angle. U,,. is average

radiation intensity and its unit is W/unit solid angle.

2.2.4 Antenna Efficiency

The antenna efficiency is also known as radiation efficiency. It is the ratio of the

radiated power of the antenna to the electrical power given to the antenna.

e=— (2.3)

Antenna efficiency is represented by e and it is dimensionless. P is the power radiated

by antenna. P;, is input power [13].

2.2.5 Gain

The antenna gain indicates that how well an antenna radiate or receive a signal in the
specified direction. The gain is related to directivity and efficiency.

G=e.D (2.4)

Generally, the relative gain is used to calculate the gain. To determine relative gain a
reference antenna should be used. The gain of the selected antenna must be known
or recalculated. The reference antenna can be chosen as a horn, dipole, isotropic or

any other antennas. In general isotropic antenna is preferred.

2.2.6 Bandwidth

The bandwidth can be defined as a frequency range which is include important
fundamentals of the antenna in acceptable range. These parameters don’t change in
this bandwidth and provide desires features. The acceptable range will be determined
by user’s intended purpose. Generally the parameter S,; is used for this purpose. The
parameter S;; is known as the reflection coefficient or return loss and it shows that how
much power is reflected from the antenna. The acceptable range for the parameter S;;
is generally determined as value of the below -10dB [11]. -14dB S;; value is chosen
as the acceptable range in this project for the unit element because it is a satellite

antenna. The bandwith is shown as in Figure 2.6.
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Figure 2.6 The Bandwidth

2.2.7 Polarization

The wave that is radiated from the antenna has electrical and magnetic field
components. These two components are perpendicular to each other. Polarization
is defined by the electrical field components’s the direction. The polarization depends
on the position of the antenna. In Figure 2.7, the direction of the electrical
field components varies according to the position of the antenna, so the antenna

polarization also changes according to the position of the antenna [11, 13].

The polarization is expressed as the rotation in the direction of propagation and axial
ratio parameters. The rotation in the direction of the propagation is traced in clockwise
and counterclockwise which are shown in Figure 2.8. The axial ratio (AR) is ratio of

the major axis to minor axis.

Polarization can be divided into three categories; linear, circular and elliptical.
They are indicated in Figure 2.9. If the polarization of the transmitter antenna
is not the same as the receiver antenna, an efficient communication may not be
achieved. Circular or either vertical and horizontal polarization are used in many
applications. To maximize system performance of the applications, the difference

between polarization should be known.

The instantaneous electric field of a wave that has a propagation in the negative z

direction is;

E)(z; t)="d £ (z; t)+?y§y(z;t) (2.5)

The instantaneous & is counterpart of the complex field E and it is time harmonic

variations of the e/"t. The instantaneous electric field can be written as



Figure 2.7 The antenna polarization according to antenna position

Figure 2.8 Right-hand and left-hand polarization



/

E%;’q

Figure 2.9 Linear, circular and elliptical polarization

Ex(2;) = Re[E, e/ 9] = Re[ E, e/ ¥+ )] (2.6)
= E,  cos(wt +kz+ ¢,) (2.7)
£, (z;t)= Re[E;ej(W”kZ)] = Re[E, e/ 9] (2.8)
=E cos(wt +kz+¢,) (2.9)

E,, is the the maximum magnitude of the x component and E,, is the maximum

magnitude of the y component.

2.2.7.1 Linear Polarization

The polarization equation must include only one component or phase difference

between two orthogonal components must be multiples of 180 degrees [11].

Ap=¢,—p,=nn, n=0,1,2,.. (2.10)

2.2.7.2 Circular Polarization

In circular polarization, the electric field propagates in the direction of the x-y axes

and it is perpendicular to the direction of the z axes. The polarization equation must

10



include two components. These two components must have same magnitude and
phase difference between them must be 90 degrees [11]. The axial ratio of the circular

polarization is 1.

| gx |:| gy |: ExO = EyO (211)

+(% +2n)m,n=0.1.2,... forCW

(2.12)
—(3+2n)m,n=0.1.2,... for CCW

A¢:¢y_¢x:

2.2.7.3 Elliptical Polarization

The polarization equation must include two components. These two components must
have different magnitude and phase difference between them must be 90 degrees or

not equal to 90 degrees [11]. The axial ratio of the circular polarization is 1 < AR <

oQ.
|6 118, 1= Evo # Eyo (2.13)
+(3 +2n)m,n=0.1.2,... for CW
Ap=¢,~¢. =1 ° @14
—(53+2n)7,n=0.1.2,... for CCW
or
n |>0 forCwW
Ap=¢,—P, FE-m (2.15)
2 |<0 forccw

2.3 Microstrip Antennas

Nowadays, small, light, economic antenna types are needed for the advanced
technologies such as satellite, spacecraft, etc [11]. The microstrip antennas can be
chosen for this purpose. Due to the fact that it is planar configuration, simple to
design, suitable integration and small, this antenna has been subjected to research
and investigation. Basically, a microstrip antenna has a dielectric layer that is covered

with metal. The one side of the dielectric substrate is grounded and the other side has

11



a patch. The basic microstrip patch antenna structure is shown in Figure 2.10.

pateh

qullnq te

Uy

Figure 2.10 The basic microstrip antenna structure

The microstrip antenna is also called as patch antenna [11]. The patch allows the
antenna to radiate. The patch can different shapes. It can be rectangular, square,
circular, triangular, circular ring, elliptical. The shapes of patch are illustrated in Figure
2.11. In the figure, commonly used patches can be seen. The square patch was used
in this project.

The length of the patch is generally between the A/3 and A,/2. The height of patch is
much less than free space wavelength (t<A,). The height of the dielectric substrate
is much less than free space length (h<A,). It is generally between the 0.003A and
0.005A,. The dielectric constants of the dielectric (g,) are generally between the 2.2
and 12. The substrate is selected by deciding the properties such as cost, dielectric
constant and thickness. Thick substrate and lower dielectric constant are desirable
for the antennas which has larger element size. Because thick substrate and lower
dielectric constant provide larger bandwith and better efficiency for radiation. Thin
substrate and higher dielectric constant are preferred for the microwave applications

which have small element sizes. Because thin substrate and higher dielectric provide
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Figure 2.11 The patch shapes

tightly bound fields. In this way, undesired radiation and coupling are minimized.
Thin substrate and higher dielectric cause losses. For this reason, efficiency is reduced
and bandwith is relatively less [11].

2.3.1 Feeding Techniques

There are many methods to feed a microstrip antenna. In this section the most
common techniques will be mentioned. These are microstrip line, aperture coupling,
coaxial probe and proximity coupling [11]. The feeding techniques can be divided
in two parts; contact feeding and contactless feeding. In contact feeding techniques,
feed line is connected directly to the patch. An example of this is the microstrip line
and coaxial probe. In contactless feeding techniques, energy is transferred by the
electromagnetic coupling between the feed line and patch. An example of this is the
aperture and proximity coupling. Feeding technique that will be used depends on the

antenna structure and its intended use. Impedance matching must be provided.

2.3.1.1 Microstrip Line Feed
The microstrip line is located on the same substrate as the patch, so that the planar
structure is preserved [14]. According to other feeding techniques, this method is the

easiest to match, design and fabricate. The basic structure is shown in Figure 2.12.

The width of the feed line is smaller than the width of the patch. By increasing
dielectric substrate thickness, the surface waves and parasitic radiation increases. So,
the bandwidth is narrow [15].
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Figure 2.12 Microstrip line feed

2.3.1.2 Coaxial Probe Feed

The coaxial cable is fed by connecting the coaxial cable’s inner conductor to the patch
and outer conductor is attached to the ground. To make this structure, a hole is opened
on the ground plane and dielectric substrate. The inner conductor of the coaxial
cable is passed through this hole and connected to the patch. The outer conductor
is connected to the ground without passing through this hole [15]. The basic coaxial
probe feed is in Figure 2.13.

Patch
Substrate

Ground

Coaxial connector

Figure 2.13 Coaxial probe feed

Impedance matching can be achieved with the alignment probe to the desired location
inside the patch. It is easy to design and manufacture this structure with less dielectric
substrate thickness. Since the length of probe is longer in thicker structures, the input

impedance becomes inductive and the impedance matching problems occur. For this
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reason, design and manufacture of this structure becomes difficult. Although this

method causes narrow bandwidth, the parasitic radiation is low [15].

2.3.1.3 Aperture-coupled feed

In this method, the feed line and the ground plane are located between two dielectric
substrates, respectively. The patch is placed on the dielectric substrate. An aperture
is used on the ground plane. The energy of the feed line is coupled to the patch from

this aperture [11]. The basic structure is in Figure 2.14.

Figure 2.14 Aperture-coupled feed

The patch and feed line are separated by ground plane, so the parasitic radiation is
minimized. Generally, to optimize radiation from patch, a high dielectric substrate
is used for the bottom substrate and a low dielectric substrate is used for the
top substrate. In this feeding technique, the multiple layers increase the antenna

thickness. For this reason, manufacture of this design is difficult.

2.3.1.4 Proximity-coupled feed

The proximity-coupled feed is also known as electromagnetic coupling scheme. In this
method, the feed line is placed between two dielectric substrates. The patch is on the
top of the upper substrate and ground is below of the bottom substrate. The patch and
feed line are separated by dielectric substrate, so the parasitic radiation is minimized.
The two dielectric layers must be combined properly. For this reason, manufacture of
this design is difficult. The basic proximity-coupled feed structure is shown in Figure
2.15.
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Figure 2.15 Proximity-coupled feed

2.3.2 Advantages and Disadvantages
2.3.2.1 Advantages of Microstrip Antennas

Microstrip antennas have various advantages compared to other microwave antennas.

The advantages of microstrip antennas are listed as below [14]

e They have small volume and lightweight structure.

e They have low production cost.

e They are very useful due to their planar structure.

e They have low radar cross-section.

e They can be used for multiple frequency bands (dual,triple frequency) project.
e Various types of patches can be etched easily.

e They do not disrupt the aerodynamics structure of spacecraft because they can

be designed very thin.

e They are suitable for mobile communication.

2.3.2.2 Disadvantages of Microstrip Antennas

The disadvantages of patch antennas are listed as below.

e They have narrow bandwidth.

e They have lower gain.
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e They radiate from junction points.
e They have low power-handling capability.

e They have lower gain.

2.4 Antennas Array

The high antennas are needed in the long distance communication applications. To
achieve this, the electrical size of the single-element is increased. Increasing the
dimension of the antenna leads to more directional antenna with higher directivity
thus long distance communication can be achieved. The other method to increase the
antenna’s dimension with no changing a single-element dimension is to combine more
than one antenna in order. This antenna type is called as array. Generally, array’s unit
elements are selected as identical. Because, it is more sufficient and practical. The
unit elements can be selected as wires, microstrip, dipole etc. The triangular array of
dipoles is shown in the Figure 2.16.

Figure 2.16 Triangular array of dipoles [11]

Assuming the coupling is neglected and the current in each unit element is same as
the isolated element, the field of the array is vector addition of the fields which are
radiated by the unit elements individually. The fields radiated from the unit elements
are added with each other in the desired direction, and they absorb each other in the
undesired direction.

The performance of an array can be determined by five design factors. These are listed
as follows [11].

e The geometric shape of the antenna array. This shape can be linear, circular,
rectangular, spherical etc.
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The distance between unit elements in the array.

The excitation amplitude of the unit elements.

The excitation phase of the unit elements.

The excitation radiation pattern of the unit elements.

2.4.1 The Principles of Pattern Multiplication

To understand the effect of individual antennas on array, let’s examine the two

antennas in Figure 2.17.

AZ

d\2

Figure 2.17 Dipole antennas

These two antennas are infinitesimal horizontal dipoles and they are located at the

z-axis. The fields radiated by the dipole 1 and 2 are given by

kIl e itkri—=(B/2)]
Ey = agjn——{ cos 6, }
4 r

kI,l { eI lkra—(B/2)]

E,=ayjn yy . cos 6,}
1

The total field radiated by the two dipoles is given by

Kyl e Tkr=(6/2)] e—iTkrs—(6/2)]
E,=E,+E,=ayjn { cos§; + ——— cos 6,}
4 r ry
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where k is the propagation number, 1) is the medium’s intrinsic impedance of and f3
is the difference in phase excitation between the antennas. The excitation magnitude

of the unit elements is identical. For far-field acceptances are given by

0,~6,~0 (2.19)
d
r o T—ECOSQ (2.20)
d
ry~T1+ ) cos 0 (2.21)
r~ry~r (2.22)

with these acceptances equation 2.9 reduces to

kI le_jkr +j(kd cos 6+, —j(kd cos 6+
E,=ayjn—>——cosH[e T (2.23)
4nr
Eular’s Formula A A
IV e
cos b = MRy (2.24)
2
By using Euler’s Formula equation 2.14 reduces to
kI le Ik 1
E, :a9]n4— cos 9{2cos[£(kd cos6 + )]} (2.25)
r

Equation 2.16 shows that multiplying the field of an unit element by a factor gives
the total field of array. This factor is called as array factor. Array factor for two-dipole

array is given by

AF = 2 cos %(kd cos6 +f3) (2.26)

The array’s total field is adjusted by changing the d and 8 between the antennas. The
total field radiated by the 2 antennas is given by

E(total) = [E(unit element at reference point)] x [array factor] (2.27)

This is called as pattern multiplication. The principles of pattern multiplication are

used to find the total field radiated by array antenna. For this reason, an identical
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single element of array is multiplied by array factor.

2.5 Feed Network

The array feed network can be series-feed network, corporate-feed network and

parallel-series feed network [11, 13]. These networks are illustrated in Figure 2.18.

enes feed

S Parallel-series feed

Parallel (Corporate) feed

Figure 2.18 The array feed networks

The other name of the corporate-feed network is parallel feed. As the distance to each
unit element is equal, a symmetric network and mutual coupling effects are formed.
Thanks to this structure, each unit element can be fed with equal phase and amplitude.
Also, the corporate-feed network can be used as power divider as shown in Figure 2.19.
Although the series-feed network is a simple structure, it has some disadvantages that
caused loss and complex structure. The series-parallel network is also called as hybrid
feed and it is usually used [11, 13].

50 Q
input

Figure 2.19 Tapered lines and A/4 transformers
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2.6 Satellite Orbits

The orbits are defined as paths which are travelled by satellites. The shape of these
paths are elliptical. The farthest point from the earth is called as apogee and the closest
point to the earth is called as perigee. The orbits can be divided into three categories
[16].

e Orientation of the orbital plane
e Eccentricity

e Distance from Earth

2.6.1 Orientation of the Orbital Plane

The type of the satellite’s orbital plane varies by angle between the satellite’s orbital
plane and equatorial plane of Earth. Orientation of the orbital plane is divided into
three which are equatorial orbit, inclined orbit and polar orbit. These are shown in
Figure 2.20. If the angle between satellite’s orbital plane and and equatorial plane of
Earth is zero, this satellite orbit type is equatorial orbit. If the angle between satellite’s
orbital plane and and equatorial plane of Earth is 90°, this satellite orbit is polar orbit.
If the angle between satellite’s orbital plane and and equatorial plane of Earth is 0° ~
180°, this satellite orbit is inclined orbit.

(a) Equatorial Orbit (b) Polar Orbit

(¢) Inclined Orbit

Figure 2.20 Orientation of the Orbital Plane [16]
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2.6.2 Eccentricity of the Orbit

The eccentricity of orbital classification includes two types of orbits, elliptical and
circular. If the orbit eccentricity is between O and 1, the eccentricity of the orbit is
elliptical. If the orbit eccentricity is zero, the eccentricity is the circular. These are

shown in Figure 2.21.

(a) Elliptical Orbit (b) Circular Orbit

Figure 2.21 Eccentricity of the Orbit [16]

2.6.3 Distance from Earth

Satellite orbits can be defined according to distance from Earth. These are Low Earth
Orbit (LEO), Medium Earth Orbit (MEO) and Geostationary Orbit (GEO). That are
illustrated in Figure 2.22.

Figure 2.22 Satellite’s position relative to the distance from Earth’s [16]

2.6.3.1 Low Earth Orbit (LEO)

LEO is used for spaceflight,for collecting weather data, making observations and

military purposes. In addition, the International Space Station is also located in LEO.
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The altitude of the LEO from the Earth’s surface is around 160 to 2000 km. Satellites of
LEO are closer to the Earth, so they have shorter orbital periods. Their orbital periods
are approximately 1,5 hours. They have small signal propagation delays, so they are
good at communication applications. The path of orbit is less, so the power needed by

satellite is also less. Thus, the size of the materials used is smaller and cheaper [16].

There are some disadvantages of the LEO. Being so close to the Earth surface causes
atmospheric drag. As a result, the speed of the satellite may decrease and its orbit
may decay. The other disadvantage of LEO is being so fast. Since the satellites on the

LEO are moving very fast, they spend very short time on any part of the Earth [16].

2.6.3.2 Medium Earth Orbit (MEO)

MEO is used for communication and navigation. The altitude of the MEO from the
Earth’s surface is around 10 000km to 20 000km. Satellites of MEO are far from the
world, they have long orbital periods.Their orbital periods are approximately 6 to 12

hours. There are more propagation delays than LEO satellites.

2.6.3.3 Geostationary Orbit (GEO)

Due to the covering most of area by GEO satellites consistently, GEO are preferable
for communication, collecting weather data, TV broadcast and military. The altitude
of the GEO from the Earth’s surface is around 36 000km. Their orbital period is

approximately 24 hours.

2.7 Isoflux Pattern

As the elevation angle of the satellite increases from the horizon, the communication
range increases. Thus, free space loss also increases. The isoflux radiation pattern
is used to compensate the free space loss with the gain that varies with the antenna
elevation angle. The goal of the isoflux pattern is to provide constant power density
over the ground along the surface curvature of the earth covered by the antenna
radiation pattern[17]. Isoflux is sometimes named as saddle-shaped, M-shaped or

bowl-shaped [7]. The isoflux is shown as in Figure 2.23.

The distance from the earth and to the satellite can be expressed as R(6). Due to the
distance varies by surface curvature of the earth, R depends on the 6 variable. The
angle of 0 is the angle between distance R and the observation point on the ground at
the edge of the coverage (EOC). If the observation point on the ground at the EOC is

located at the sub-satellite (nadir direction), the distance between Earth and satellite
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Satellite

Earth

Figure 2.23 The isoflux radiation pattern for the earth coverage

is minimum and angle of the 0 is 0°. The minimum distance is indicated by H = R(0)
with 6 = 0° and is shown as in Figure2.24 [17].

Satellite
Earth @{ T R(e)\\%\\\\\
H=R(0)
Figure 2.24 The geometry of the earth-satellite
The P(0) is radiation intensity and S(6) radiation power density;
P(0) =R%S(9) (2.28)
If 6 =0°
S(0)=S(6=0) (2.29)
The equation 2.28 can be rewritten as
P(0) =R*S(6 =0) (2.30)
P(0)
S(6=0)= 2.31
(6=0)= 200y (2:31)
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P(6=0) P(6)

ROE ~ RO} (2.32)
P(6=0) P(6)

T ROP (2.33)

P(O) _R(OY (2.34)

P(6=0) H2

So, the antenna pattern without considering atmospheric attenuation is as follows

(2.35)

Rg))}2

P(O) ~ {—

If the atmospheric attenuation is not neglected, the antenna pattern is as follows

P(O)~ {}%} A(9) (2.36)

For determining the atmospheric attenuation, we solve the problem in Figure 2.25
with Cosine Rule

Satellite

Atmosphere

Figure 2.25 The atmospheric path

L, is the path length of the earth’s atmosphere.
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Ly=+/(R,+H,)? +R>—2R,(R, + Ha)cosa

2

L= HAl®R/H 4172+ Ry — o e 4 (Beyeosa
a a e a Ha Ha2 Ha

L,=HA|1 4(_R§ + —)sin?(a/2)
+
a B 3 sin” (a

a a

If we considere R,/H,> 1

R? )
e .
o2 sin® (a/2)

a

La%Ha\Jl+4

R,+H
a:90°—¢—sin_1{(Re+H )sin@}

R=/R2+ (R, +H)*—2R,(R, +H)cos

R=H+/1+4[(R,/H)?+R,/H]sin2(5/2)

which is f =90°—6—¢, and

¢ =cos '[(1+H/R,)sin0]

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

If the equation 2.44 is rearranged, the edge of the coverage can formed as shown

below.

0 =sin'[R,cos ¢,/(R, + H)]

(2.45)

As seen in equation 2.45,the satellite altitude is inversely proportional to edge of

the coverage 6,. When the satellite altitude decreases, the edge of the coverage 6,

increases. ¢, is the minimum satellite elevation. It is generally less than 20° for
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satellite applications. If we consider the altitude of the LEO from the Earth’s surface
is around 160 to 2000 km with radius of the earth as R, = 6378 km and the minimum

satellite elevation as 15°, the edge of the coverage can be calculated;

for 160 km;
0 =sin'[R,cos ¢,/(R, + H)] = 70.4° (2.46)

for 2000 km;
0 =sin"'[R,cos ¢,/(R, + H)] = 47.3° (2.47)

So, the edge of the coverage for the LEO should be between 47.3° and 70.4°
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3

Design and Implementation of the Isoflux Microstrip

Patch Antenna Array and Implementation

3.1 Design of the Isoflux Microstrip Patch Antenna Array and Feed
Network

3.1.1 Design of the Unit Element

The antenna shown in the Figure 3.1 was used as an unit element. The square patch
is used in design, so the width and length of the patch are 7.65 mm. The dimension

of the unit element is as shown in Figure 3.1 (c).

o

(a) Top view of the Unit (b) Isometric view of the Unit  (¢) Isometric view of the Unit
Element Element Element

L.

Figure 3.1 The unit element

The RO3003 is used as dielectric substrate. The dielectric constant (e€,) is 3. The
dissipation factor (tan ) is 0.0010 mm. The thickness of the top and bottom copper

cladding is 0.035 mm. These copper claddings are used as ground and feed network.

The opposite sides of the patch are bent to create circular polarization. The inverse
axial ratio is 0 dB in theoretical for circular polarization, but in practice it can be
between 0 and -10 dB.The inverse axial ratio of the array antenna for the ¢ values of
90°, 22.5° and 0° are shown in Figure 3.4, Figure 3.5 and Figure 3.6 respectively. The
proximity-coupled feed technique is selected for the antenna feeding technique. For

the 8 GHz and 8.4 GHz frequency range, S;; should be below -14 dB for microstrip
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patch antenna in Figure 3.2.

S-Parameters [Magnitude in dB]

—S11

dB

/

74

7.6 7.8

\/

Frequency / GHz

8.4 8.6 8.8

Figure 3.2 The S parameter of the unit element
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Figure 3.3 The 3D Radiation Patterns of the Unit Element
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Farfield Inverse Axial Ratio (Phi=90)
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Figure 3.4 The Inverse Axial Ratios of the Unit Element (¢=90°)
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Figure 3.5 The Inverse Axial Ratios of the Unit Element (¢=22.5°)
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3.1.2 Design of the 8-16 Antenna Array

The 8-16 Antenna Array is shown in Figure 3.7 and the dimension of the array is shown

in Figure 3.8.

fyr
S==p x

(a) Top view of the 8-16 (b) Isometric view of the 8-16
Antenna Array Antenna Array

Figure 3.7 8x16 Antenna Array

Figure 3.8 The dimension of the 8-16 Antenna Array

The following steps were taken to create the 8-16 microstrip patch antenna array.

e In this design 8 (eight) microstrip patch antennas for the first ring and 16

(sixteen) microstrip patch antennas for the second ring are used.

e To create the best isoflux pattern that shown in Figure 3.9, the radius of the first
ring and the second ring are simulated as 21 mm and 42 mm respectively. The
patch antennas are equally spaced by 22.5° (180°/8) in the first ring and 11.25°
(180°/16) in the second ring as shown in Figure 3.8. The patch antennas and
feed lines in the first and second row rings are arranged in opposite directions
as shown in Figure 3.8 so that the feeding network can be designed easily. The

amplitude of the first ring and second ring are 1 (one) and 0.5 (zero point five)
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respectively. The phase shift of the first ring and second ring are O (zero), so the
phase difference between the first and second ring are 180° because of the feed

line arrangement.

The targeted inverse axial ratio to create circular polarization is between 0 and
-10 dB. The inverse axial ratio of the array antenna for the ¢ values of 90°, 22.5°

and 0° are shown in Figure 3.10, Figure 3.11 and Figure 3.12 respectively.

In order to use the satellite antenna in LEO, the edge of the coverage for the
LEO should be between 47.3° and 70.4° . So, the targeted minimum of the
theta value is between —47.3° and 47.3°. The targeted maximum of the theta
value is between —70.4° and 70.4°.

The Cartesian Radiation Pattern for the ¢ values of 90°, 22.5° and 0° are shown

in Figure 3.13, Figure 3.14 and Figure 3.15 respectively.

(e) 8.4 GHz

Figure 3.9 The 3D Radiation Patterns of 8-16 Antenna Array
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Figure 3.14 The Cartesian Radiation Patterns of 8-16 Antenna Array (¢=22.5°)

39



Farfield Directivity Abs (Phi=0)

0 ™\ o
VNN

farfield (=8) [Simulation_1]

v \/ \/ A
30
g 40
-50
-60
-70
Frequency = 8 GHz
-80 Main lobe magnitude = 7.75 dBi
50 Main lobe direction = 42.0 deg.
-200 -150 -100 -50 0 50 100 150 200  Angular width (3dB) = 24.0 deg.
Theta / Degree Side lobe level = -8.4 dB
(a) 8 GHz
Farfield Directivity Abs (Phi=0)
10
”‘\ /‘\ farfield (f=8.1) [Simulatio...
0
o V2
20 7\ / \ JavA)
VN7 AVARR
-30
o 40
-50
-60
70
Frequency = 8.1 GHz
-80 Main lobe magnitude = 8.09 dBi
%0 Main lobe direction = -41.0 deg.
-200 -150 -100 -50 0 50 100 150 200  Angular width (3dB) = 23.3 deg.
Theta / Degree Side lobe level = -8.6 dB
(b) 8.1 GHz
Farfield Directivity Abs (Phi=0)
10
’\ /\ farfield (f=8.2) [Simulatio...
0
0 . \VAVAYS N
A VA A
ViV AVARRY
30
)
-50
-60
70
Frequency = 8.2 GHz
-80 Main lobe magnitude = 8.4 dBi
%0 Main lobe direction = -40.0 deg.
-200 -150 -100 -50 0 50 100 150 200 Angular width (3dB) = 22.8 deg.
Theta / Degree Side lobe level = -8.9 dB
(c) 8.2 GHz
Farfield Directivity Abs (Phi=0)
10
’\ /\ farfield (f=8.3) [Simulatio...
0
o \VAVAYERE I
AV ~ N N
20
Vv Vo
-30
B 40
-50
-60
70
Frequency = 8.3 GHz
-80 Main lobe magnitude = 8.54 dBi
%0 Main lobe direction = -40.0 deg.
-200 -150 -100 -50 0 50 100 150 200  Angular width (3 dB) = 22.3 deg.
Theta / Degree Side lobe level = 9.0 dB
(d) 8.3 GHz
Farfield Directivity Abs (Phi=0)
10
/'\ /\ farfield (f=8.4) [Simulatio...
0
" / \ / N\
N AV: VA
ViV ViV
-30
_ 40
g
-50
-60
70
e Frequency = 8.4 GHz
%0 Main lobe magnitude = .59 dBi
-100 Main lobe direction = -39.0 deg.
-200 -150 -100 -50 0 50 100 150 200  Angular width (3dB) = 21.9 deg.
Theta / Degree Side lobe level = -9.1 dB

(e) 8.4 GHz

Figure 3.15 The Cartesian Radiation Patterns of 8-16 Antenna Array (¢=0°)
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3.1.3 Design of the 4-8 Antenna Array without Feed Network

The 4-8 Antenna Array is shown in Figure 3.16 and the dimension of the array is shown

in Figure 3.17.

(a) Top view of the 4-8 (b) Isometric view of the 4-8
Antenna Array Antenna Array

Figure 3.16 4-8 Antenna Array

Figure 3.17 The dimension of the 4-8 Antenna Array

The following steps were taken to create the 4x8 microstrip patch antenna array.

e In this design 4 (four) microstrip patch antennas for the first ring and 8 (eight)

microstrip patch antennas for the second ring are used.

e To create the isoflux pattern that shown in Figure 3.18, the radius of the first
ring and the second ring are simulated as 21 mm and 42 mm respectively. The
patch antennas are equally spaced by 45° (180°/4) in the first ring and 22.5°
(180°/8) in the second ring as shown in Figure 3.17. The patch antennas and
feed lines in the first and second row rings are arranged in opposite directions
as shown in Figure 3.17 so that the feeding network can be designed easily. The
amplitude of the first ring and second ring are 1 (one) and 0.5 (zero point five)
respectively. The phase shift of the first ring and second ring are O (zero), so the
phase difference between the first and second ring are 180° because of the feed

line arrangement.
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e The targeted inverse axial ratio to create circular polarization is between 0 and
-10 dB. The inverse axial ratio of the array antenna for the ¢ values of 90°, 22.5°
and 0° are shown in Figure 3.19, Figure 3.20 and Figure 3.21 respectively.

e In order to use the satellite antenna in LEO, the edge of the coverage for the
LEO should be between 47.3° and 70.4° . So, targeted the minimum of the

theta value is between —47.3° and 47.3°. The targeted maximum of the theta
value is between —70.4° and 70.4°.

e The Cartesian Radiation Patterns for the ¢ values of 90°, 22.5° and 0° are shown
in Figure 3.22, Figure 3.23 and Figure 3.24 respectively.
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Figure 3.18 The 3D Radiation Patterns of 4-8 Antenna Array
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Figure 3.22 The Cartesian Radiation Patterns of 4-8 Antenna Array (¢p=90°)
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Figure 3.23 The Cartesian Radiation Patterns of 4-8 Antenna Array (¢ =22.5°)
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Figure 3.24 The Cartesian Radiation Patterns of 4-8 Antenna Array (¢=0°)
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3.1.4 Design Feed Network for the 4-8 Antenna Array

Due to the size constraint of the RO3003, the paths of the feed network were designed
as short as possible. However, the path connected to the power divider of ports 2, 3
and ports 4,5 and the path connected to the power divider of ports 6,7 and ports
8,9 in the Figure 3.26 were designed longer because of the coupling. Also, the path
connected to the inner ring from the port 1 power divider were designed long because
of the coupling.

Figure 3.26 Isometric view of Feed Network

The phase difference between patches on the inner ring and outer ring should be 0
(zero). For this reason, the paths from patches on the inner ring to the port 1 power
divider and the path from the patches on the outer ring to the port 1 power divider
are adjusted as same. The phase difference between the patches is shown as in Figure
3.27.
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Figure 3.27 S parameter of the inner and outer patch antennas (Phase in Degrees)

The amplitude of the patches on the inner ring 1 (one) and the outer ring should
be 0.5 (zero point five). For this reason, difference between inner and outer patches

magnitude is approximately -3 dB as shown in Figure 3.28.
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Figure 3.28 S parameter of the inner and outer patch antennas (Magnitude in dB)

The main purpose of the feed network is to adjust the magnitude and phase difference
among the patch antennas and feed them one port. Therefore, the S parameter of the
feed network shown in the Figure 3.29 is adjusted with the patch antennas.
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Figure 3.29 S parameter of the 4x8 Feed Network

50



3.1.5 Design of the 4-8 Antenna Array with Feed Network

For understanding the structure well, the 4-8 Antenna Array with Feed Network is
shown in Figure 3.30 without the second dielectric layer between the patch antennas
and feed network. By design of the feed network, the antenna is fed from a single

port. The S parameter of the structure is shown in Figure3.31

= X
Figure 3.30 4x8 Antenna Array with Feed Network
S-Parameters [Magnitude in dB]
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Figure 3.31 S parameter of the 4-8 Antenna Array with Feed Network
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The isoflux pattern is distorted in some region due to the feed network and coupling as
shown in Figure 3.32. The inverse axial ratios of the array antenna for the ¢ values of
90°, 22.5° and 0° are shown in Figure 3.33, Figure 3.34 and Figure 3.35 respectively.
In order to use the satellite antenna in LEO, the edge of the coverage for the LEO
should be between 47.3° and 70.4° . So, targeted the minimum of the theta value
is between —47.3° and 47.3°. The targeted maximum of the theta value is between
—70.4° and 70.4°.The Cartesian Radiation Patterns for the ¢ values of 90°, 22.5° and
0° are shown in Figure 3.36, Figure 3.37 and Figure 3.38 respectively.
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Farfield Inverse Axial Ratio (Phi=22.5)
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Figure 3.37 The Cartesian Radiation Patterns of 4-8 Antenna Array with Feed
Network (¢=22.5°)
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Figure 3.38 The Cartesian Radiation Patterns of 4-8 Antenna Array with Feed
Network (¢=0°)
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3.2 Simulated and Measured Result

The patch and feed network were produced individually as shown in Figure 3.42. After
that, they were combined by the double-sided tape. The prototype 4x8 microstrip
patch antenna array was produced and the results of the simulation and the measured
values were compared. The radiation patterns and S;; parameter are measured
at Laboratory of the RF-Microwave R&D [Yildiz Technical University RF LAB]. The
measurements are obtained by the test arrangement as shown in Figure 3.39. By
connecting SMA connector to the antenna as shown in Figure 3.40, the S,; parameter
and radiation patterns were measured by spectrum analyzer which is illustrated in
Figure 3.40. The reference antenna with linear polarization was used during the test.
Therefore, our circular polarizing tested antenna has been tested like a linear antenna.
Since our antenna array is a circular antenna array, therefore the measurement results
were compared to the Ludwig 3 Horizontal and Ludwig 3 Vertical results found in
the CST software in Figure 3.43 and Figure 3.44. The measured S-parameter has
some differences according to the simulated S-parameter shown in Figure 3.41. The
production and measurement errors can be the reason of these differences. They
can also caused by the errors that occurred during the combining of the two layers.
The path and feed network are on the different layers. Therefore there can be minor

manufacturing errors when the two dielectric layers are combined.

(a1 (b) 2

Figure 3.39 The test arrangement
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(a) The 509 SMA connector (b) The spectrum analyzer and reference antenna

Figure 3.40 The materials for the test equipment
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Figure 3.41 Comparison of the measurement and simulated S parameter
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(a) Top view of the Patch and Feed Network

(b) Bottom view of the Patch and Feed Network

(e) Top view of the Feed Network (f) Bottom view of the Feed Network

Figure 3.42 The Patch and Feed Network
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Figure 3.43 The Ludwig 3 Horizontal
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4

Conclusion and Discussions

The main purpose of this thesis is to provide an isoflux pattern operating at X-Band
frequency. The antenna array design has been made by considering antenna
parameters such as return loss, bandwidth, gain and polarization. The RO3003 is
used as dielectric substrate for the wide bandwidth. In this project, the proposed
array antenna is designed to operate in the 8 - 8.32 GHz band and can be used in
LEO. The antenna array is designed as 8-16 and thus the isoflux radiation pattern is

created. The following steps were taken to create the Isoflux pattern.

e The amplitude of the patches on the inner ring and the outer ring are designed
to be 1 (one) and 0.5 (zero point five) respectively. For this reason, difference

between inner and outer patches magnitude is approximately -3 dB.

e The phase difference between patches on the inner ring and outer ring are
designed to be 0 (zero).

e The inverse axial ratio to create circular polarization is designed to be between
0 and -10 dB.

e In order to use the satellite antenna in LEO, the edge of the coverage for the LEO
should be between 47.3° and 70.4° . Therefore, theta values are designed to be
between —47.3° and 47.3°.

After forming the desired radiation pattern, the design of the 4-8 antenna array and
its feed network are made for the prototype. The 4-8 antenna array with feed network
is manufactured . Since the number of the antennas are decreased, the pattern
characteristics of some ¢ values are not as desired. The pattern where the axial ratio
is good is also good. The measurement errors and S,, differences have been occurred
in this thesis because of the two dielectric substrate layers. The isoflux pattern is

achieved by less number of the microstrip antennas.
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