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Euler Method vs Linear Interpolation

• 𝑦′ = 𝑓 𝑥, 𝑦 , 𝑦 𝑥0 = 𝑦0

• 𝑦1 = 𝑦0 + 𝑓 𝑥0, 𝑦0 Δ𝑥

• 𝑥1 = 𝑥0 + Δ𝑥

• 𝑦2 = 𝑦1 + 𝑓 𝑥1, 𝑦1 Δ𝑥

• 𝑥2 = 𝑥1 + Δ𝑥
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(𝑥0, 𝑦0)

(𝑥1, 𝑦1)

(𝑥2, 𝑦2)

(𝑥3, 𝑦3)

Δ𝑥

The number 
𝑦1, 𝑦2 are the 
approximations 
of 𝑦 𝑥1 , 𝑦 𝑥2

𝑓(𝑥) 

𝑝2(𝑥) 

𝑝1 𝑥

• 𝑦 = 𝑓 𝑥 = 𝑟2 − (𝑥 − 𝑥𝑐)2 + 𝑦𝑐

• 𝑝 𝑥𝑘 =  𝑓 𝑥𝑘 = 𝑦𝑘  for all 𝑘

• 𝑝1 𝑥 =
𝑥1−𝑥

𝑥1−𝑥0
𝑓 𝑥0 +

𝑥−𝑥0

𝑥1−𝑥0
𝑓 𝑥1

• 𝐸 𝑥 =  𝑓 𝑥 – 𝑝1 𝑥 ,

(𝑥0, 𝑦0)

(𝑥1, 𝑦1) (𝑥2, 𝑦2)

𝑝1 𝑥0

𝑝1 𝑥1 = 𝑝2(𝑥1)
𝑝2 𝑥2 = 𝑝3(𝑥2)

𝑝3(𝑥) 

E(x)

(𝑥𝑐 , 𝑦𝑐)

𝑟 (𝑥3, 𝑦3)



Linear Interpolation Methods

Tells how approximating the function with straight lines for example, 
almost all graphs produced by computers are actually the results of 
piecewise linear interpolation in which the machine draws very large 
number of very small straight lines represent the curve. 

Given a set of data points 𝑥𝑘: (called as nodes),

We say the function 𝑝 interpolates the function 𝑓 at these nodes,

if 𝒑(𝒙𝒌) = 𝒇(𝒙𝒌) for all 𝒌.

We are most interested in the extent to 𝒑 ≈ 𝒇
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Linear interpolation methods based on using straight line to 
approximate a given function.

⇒ 2 points to determine a straight line

𝑥0, 𝑥1 and a function 𝑓 ⇒ we want to find the equation of a straight 
line that passes through these two points: (𝑥0, 𝑓(𝑥0)) , (𝑥1, 𝑓(𝑥1))

𝑝1 𝑥 =
𝑥1 − 𝑥

𝑥1 − 𝑥0
𝑓 𝑥0 +

𝑥 − 𝑥0

𝑥1 − 𝑥0
𝑓 𝑥1
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Let us investigate how accurate the linear interpolation using Rolle’s 
Theorem  ⇒ Special case of mean value theorem if 𝑓 𝑐 = 𝑓 𝑏 ⇒
there exists 𝜁 such that 𝑓’(𝜁) = 0.

Define,
𝐸 𝑥 = 𝑓 𝑥 – 𝑝1 𝑥 ,

𝑤 𝑥 = 𝑥 − 𝑥0 𝑥 − 𝑥1 ,

𝐺(𝑥) = 𝐸(𝑥) −
𝑤(𝑥)

𝑤(𝑡)
𝐸(𝑡)

𝑡 → some fixed value in (𝑥0, 𝑥1) where ( (𝑥0 < 𝑡 < 𝑥1) )

𝐺(𝑥0) = 0, 𝐺(𝑥1) = 0, 𝐺(𝑡) = 0
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Then the Rolle’s Theorem states that;

There exists a point 𝑧0 between 𝑥0 and 𝑡 such that 𝐺′ 𝑧0 = 0

and a point 𝑧1, between 𝑥1 and 𝑡, such that 𝐺′(𝑧1) = 0.

Let’s apply Rolle’s Theorem to 𝐺′ and assert that there exists 

a point 𝜁 between 𝑧0 and 𝑧1 such that 𝐺’’(𝜁) = 0.

But,

𝐺′′ 𝑥 = 𝐹′′ 𝑥 −
2

𝑤(𝑡)
𝐸(𝑡)

𝐺′′ 𝜁 = 0 => 𝐹′′ 𝜁 −
2

𝑤 𝑡
𝐸 𝑡 = 0

And we have     𝑓 𝑡 − 𝑝1(𝑡) =
1

2
(𝑡 − 𝑥0)(𝑡 − 𝑥1)𝑓′′(𝜁)
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𝑤(𝑡)

= 𝐸(𝑡) because we defined (𝐸(𝑥) = 𝑓(𝑥) – 𝑝1(𝑥))



For any 𝑡 ∈ [𝑥0, 𝑥1],

The error in the approximation will grow rapidly outside the interval [𝑥0, 𝑥1]. 

⇒ Let us take absolute values, investigate for the worst case for the second derivative 
term.

|𝑓(𝑥) − 𝑝1(𝑥)| ≤
1

2
| 𝑥 − 𝑥0 𝑥 − 𝑥1 | max

𝑥0≤𝑡≤𝑥1

|𝑓′′(𝑡)|

≤
1

2
max

𝑥0≤𝑡≤𝑥1

𝑡 − 𝑥0 𝑡 − 𝑥1 max
𝑥0≤𝑡≤𝑥1

𝑓′′ 𝑡

So the upper bound on the error depends on the maximum of the function:
𝑔 𝑥 = | 𝑥 − 𝑥0 𝑥 − 𝑥1 | = (𝑥1 − 𝑥)(𝑥 − 𝑥0)

𝑔(𝑥0) = 𝑔(𝑥1) = 0 , the Extreme Value Theorem says that the maximum value of 𝑔 on 
the interval [𝑥0, 𝑥1] will be on critical point.

𝑔′(𝑥) = 𝑥1 − 𝑥 − 𝑥 + 𝑥0 = 𝑥1 + 𝑥0 − 2𝑥

𝑥𝑐 =
1

2
(𝑥0 + 𝑥1) => 𝑔(𝑥𝑐) =

1

4
𝑥1 − 𝑥0

2
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Finally our error is bounded

𝑓 𝑥 − 𝑝1 𝑥 ≤
1

8
𝑥1 − 𝑥0

2( max
𝑥0≤𝑡≤𝑥1

|𝑓′′(𝑥)|)

Theorem (Linear Interpolation Error)

Let 𝑓 ∈ 𝐶2([𝑥0, 𝑥1]) and let 𝑝1 𝑥 be linear polynomials that 
interpolates 𝑓 at 𝑥0 and 𝑥1, then for all 𝑥 ∈ [𝑥0, 𝑥1],

𝑓 𝑥 − 𝑝1 𝑥 ≤
1

2
|(𝑥 − 𝑥0)(𝑥 − 𝑥1)| max

𝑥0≤𝑡≤𝑥1

|𝑓′′(𝑥)|

≤
1

8
𝑥1 − 𝑥0

2 max
𝑥0≤𝑡≤𝑥1

|𝑓′′(𝑥)|

Note: 𝐶𝑘([𝑎, 𝑏]) — The set of functions 𝑓 such that 𝑓 and its first k 
derivatives are all in C([𝑎, 𝑏])
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Example: Consider the problem of constructing a piecewise linear 
approximation to 𝑓(𝑥) = log2(𝑥) using the nodes 1/4, 1/2, 1.

𝑄1 𝑥 =

1
2 − x

1
2 −

1
4

𝑙𝑜𝑔2

1

4
+

𝑥 −
1
4

1
2 −

1
4

𝑙𝑜𝑔2

1

2
= 4𝑥 − 3

𝑄2 𝑥 =
1 − x

1 −
1
2

𝑙𝑜𝑔2

1

2
+

𝑥 −
1
2

1 −
1
2

𝑙𝑜𝑔2 1 = 2𝑥 − 2

𝑞 𝑥 =
4𝑥 − 3,

1

4
≤ 𝑥 ≤

1

2

2𝑥 − 2,
1

2
≤ 𝑥 ≤ 1
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The error

|𝑙𝑜𝑔2 𝑥 − 𝑄1 𝑥 | ≤
1

8

1

2
−

1

4

2

max
𝑡∈[

1
4,

1
2]

𝑙𝑜𝑔2 𝑒 𝑡−2 = 0.1803368801 𝑓𝑜𝑟 𝑥 ∈ [
1

4
,
1

2
]

| 𝑙𝑜𝑔2 𝑥 − 𝑄2 𝑥 | ≤
1

8
1 −

1

2

2

max
𝑡∈[

1
2,1]

𝑙𝑜𝑔2 𝑒 𝑡−2 = 0.1803368801𝑓𝑜𝑟 𝑥 ∈ [
1

2
, 1]

⇒ |log2(x) – q(x)| ≤ 0.1803368801

10

not always the same



Application, The Trapezoid Rule

One of the most important application of the linear interpolation is the construction of the trapezoid rule for 
approximating definite integrals, define the integration of interest.

𝐼 𝑓 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

Let p1(x) be the linear polynomial that interpolates f at x = a and x = b

𝑝1 𝑥 =
𝑥 − 𝑎

𝑏 − 𝑎
𝑓 𝑏 +

𝑏 − 𝑥

𝑏 − 𝑎
𝑓 𝑎

The basic trapezoid rule is defined by exactly integrating p1(x);

𝑇1 𝑓 = 𝐼 𝑝1 = න
𝑎

𝑏

𝑝1 𝑥 𝑑𝑥 =
1

2
(𝑏 − 𝑎)(𝑓 𝑏 + 𝑓(𝑎))
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
1

𝑏−𝑎

𝑥2

2
|𝑎
𝑏 − 𝑎 ∙ 𝑥|𝑎

𝑏 𝑓 𝑏 + −
𝑥2

2
|𝑎
𝑏 + 𝑏 ∙ 𝑥|𝑎

𝑏 𝑓 𝑎

1

𝑏−𝑎

𝑏2−𝑎2

2
+ 𝑎2 − 𝑎𝑏 𝑓 𝑏 +

𝑎2−𝑏2

2
+ 𝑏2 − 𝑎𝑏 𝑓 𝑎

1

𝑏−𝑎

𝑎2

2
+

𝑏2

2
− 𝑎𝑏 𝑓 𝑏 +

𝑎2

2
+

𝑏2

2
− 𝑎𝑏 𝑓 𝑎

1

𝑏−𝑎

1

2
𝑎 − 𝑏 2𝑓 𝑏 +

1

2
𝑎 − 𝑏 2𝑓 𝑎

1

𝑏−𝑎

1

2
𝑎 − 𝑏 2 𝑓 𝑏 + 𝑓 𝑎

1

2
(𝑏 − 𝑎) 𝑓 𝑏 + 𝑓 𝑎

*Note that here we want to make an approximation by replacing the “exact function” (𝑓(. )) by a simpler function 

that approximates it (𝑝1(. )), and doing the desired calculation (integration) exactly on the simpler function.
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𝐼 𝑓 = 𝑎׬

𝑏
𝑓 𝑥 𝑑𝑥

≈ (
𝑏−𝑎

2𝑛
)(𝑦0 + 2𝑦1 + ⋯ + 2𝑦𝑛−1 + 𝑦𝑛)

How much accurate?

• The error = 𝐼 𝑓 − 𝑇1(𝑓)

• 𝐼 𝑓 − 𝑇1 𝑓 = 𝐼 𝑓 − 𝐼(𝑝1)
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𝐼 𝑓 − 𝐼 𝑝1 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 − න
𝑎

𝑏

𝑝1 𝑥 𝑑𝑥

𝑎׬=                         

𝑏
(𝑓 𝑥 − 𝑝1 𝑥 )𝑑𝑥

                         = 
1

2
𝑎׬

𝑏
𝑥 − 𝑎 𝑥 − 𝑏 𝑓′′(ζ𝑥)𝑑𝑥

𝜁
 𝑥

 𝜖 [𝑎, 𝑏] and depends on 𝑥, since (𝑥 − 𝑎)(𝑥 − 𝑏) does not change sign on [𝑎, 𝑏] we can now apply Integral 
Mean Value Theorem to set an error estimate.

[ Remainder ׬𝑎

𝑏
𝑔 𝑡 𝑓 𝑡 𝑑𝑡 = 𝑓(ζ) 𝑎׬

𝑏
𝑔 𝑡 𝑑𝑡 ζ ϵ [a, b] 𝑖𝑓 𝑔 does not change sign on [𝑎, 𝑏] ]

Using the interpolation error theory



න
𝑎

𝑏

𝑥 − 𝑎 𝑥 − 𝑏 𝑓′′(ζ𝑥)𝑑𝑥 = 𝑓′′ 𝑧 න
𝑎

𝑏

𝑥 − 𝑎 𝑥 − 𝑏 𝑑𝑥

= −
1

6
𝑏 − 𝑎 3𝑓′′(𝑧)

(𝑎3 − 𝑏3 − 3𝑎2𝑏 + 3𝑎𝑏2)

𝑎 − 𝑏 3

𝑥3

3
|𝑎
𝑏 −

𝑥2

2
|𝑎
𝑏 𝑎 + 𝑏 + 𝑎𝑏 |𝑎

𝑏

1

6
(2𝑏3 − 2𝑎3 + 3𝑎3 − 3𝑏3 + 3𝑎2𝑏 + 3𝑎2𝑏 − 3𝑎𝑏2 + 6𝑎𝑏2 − 6𝑎2𝑏)

We have:

𝐼 𝑓 − 𝑇1 𝑓 = −
1

12
𝑏 − 𝑎 3𝑓′′ 𝑧 𝑧 ∈ [𝑎, 𝑏]
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Theorem: (Trapezoid Rule Error Estimate, (single subinterval))
Let 𝑓 𝜖 𝐶2([𝑎, 𝑏]) and let 𝑝1 interpolate 𝑓 at 𝑎 and 𝑏. Define 𝑇1(𝑓) = 𝐼(𝑝1). Then there exists 𝑧 𝜖 [𝑎, 𝑏] such that:

𝐼(𝑓)– 𝑇1(𝑓) = −
1

12
𝑏 − 𝑎 3𝑓′′(𝑧)

** the error will be small if the length of the integration interval, (𝑏 − 𝑎), is small…

If we use more points in the approximation, we subdivide the interval [a, b] into n subintervals;

𝑎 = 𝑥0 < 𝑥1 < 𝑥2 … . < 𝑥𝑛
− 1 <

𝑥𝑛 = 𝑏

→ “the n-subinterval trapezoid rule” =>

𝐼 𝑓 = ෍

𝑖=1

𝑛

න
𝑥𝑖−1

𝑥𝑖

𝑓 𝑥 𝑑𝑥  ෍

𝑖=1

𝑛
1

2
𝑥𝑖 − 𝑥𝑖−1 𝑓 𝑥𝑖 − 1 + 𝑓 𝑥𝑖 = 𝑇𝑛(𝑓)

If we use uniform grid, meshpoints are equally spaced => 𝑥𝑖 – 𝑥𝑖−1 = ℎ

𝑇𝑛 𝑓 =
ℎ

2
𝑓 𝑥0 + 2𝑓 𝑥1 + 2𝑓 𝑥2 + ⋯ + 2𝑓 𝑥𝑛−1 + 𝑓 𝑥𝑛 , 𝑤ℎ𝑒𝑟𝑒 ℎ =

𝑏 − 𝑎

𝑛
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Theorem: (Trapezoid Rule Error Estimate, Uniform Grid)
Let 𝑓 𝜖 𝐶2([𝑎, 𝑏]) and let 𝑇𝑛(𝑓) be the 𝑛-subinterval trapezoid rule approximation to 𝐼(𝑓) using a uniform grid. 

Then there exists 𝜁ℎ 𝜖 [𝑎, 𝑏], depending on ℎ, such that:

𝐼(𝑓)– 𝑇𝑛(𝑓) = −
𝑏 − 𝑎

12
ℎ2𝑓′′(𝜁ℎ)

Example: 𝑓 𝑥 = 𝑒𝑥 and 𝑎, 𝑏 = [0,1] so that:

𝐼 𝑓 = 0׬

1
𝑒𝑥 𝑑𝑥 = 𝑒 − 1 = 1.71828 …

Then the trapezoid rule using a single subinterval 𝑇(𝑓) =
1

2
(𝑏 − 𝑎)(𝑓 𝑏 + 𝑓(𝑎))

𝑇1 𝑓 =
1

2
∙ 1 ∙ 𝑒0 + 𝑒1 =

1+𝑒

2
= 1.859140

whereas the trapezoid rule using two subintervals is given by:

𝑇2 𝑓 =
1

2

𝑏−𝑎

𝑛
𝑦0 + 2𝑦1 + 𝑦2 =

1

2

1

2
𝑒0 + 2𝑒

1

2 + 𝑒1 = 1.75393 …

Example: 𝐼 𝑓 = 0׬
1 𝑒𝑥−2

𝑑𝑥 , how small does 𝑛 have to be to guarantee that |I(f) – Tn(f)| ≤ 10-3?
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Theorem: (Trapezoid Rule Error Estimate, Non-uniform Grid)
Let 𝑓 𝜖 𝐶2([𝑎, 𝑏]) and let 𝑇𝑛(𝑓) be the 𝑛-subinterval trapezoid rule approximation to 𝐼(𝑓) using a non-uniform 

grid defined by 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 … . < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏.

with ℎ𝑖 = 𝑥𝑖 – 𝑥𝑖−1, ℎ = max
𝑖

(ℎ𝑖). Then,

|𝐼 𝑓 − 𝑇𝑛 𝑓 | ≤
𝑏−𝑎

12
ℎ2 max

𝑥 𝜖 [𝑎,𝑏]
|𝑓′′|
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ROOT FINDING

A common problem encountered in engineering analysis;

given a function 𝑓(𝑥), determine the values of 𝑥 for which 𝑓(𝑥) = 0.

-> The solutions are known as the roots of the equation 𝑓(𝑥) = 0 or the 
zeros of the function 𝑓(𝑥).

• The equation 𝑦 = 𝑓(𝑥) => contains three elements; an input value 𝑥, an 
output value 𝑦, and the rule “𝑓” for computing 𝑦.

• The roots of equations maybe real or complex,

• The complex roots are seldom computed, because they rarely have physical 
significance

• In general, an equation may have any number of roots, or no roots at all.
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For example: 𝑠𝑖𝑛𝑥 − 𝑥 = 0 ⇒ has a single root 𝑥 = 0

tan𝑥 − 𝑥 = 0 ⇒ has infinite number of roots (𝑥 =
0, ±4.493, ±7.725, … )

You have learned to use a quadrate formula

𝑥 = −
𝑏± 𝑏2−4𝑎𝑐

2𝑎
to solve 𝑓 𝑥 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0

Although the quadratic formula is handy for solving this equation, but 
there are many other functions for which the root cannot be 
determined so easily.

Before advent of digital computers, there were a number of ways to 
solve for the roots.

For complicated function, an approximate solution technique is 
needed. One method to obtain an approximate the solution is to plot 
the function and determine where it crosses the x axis.

19

Represents x value 𝑓(𝑥) = 0



Although graphical methods are useful for obtaining rough estimates of 
roots, they are limited because of their lack of precision.

An alternative approach is to use trial and error

-> based on guessing a value of x and evaluating whether 𝑓(𝑥) is zero

If not, another guess is made and again evaluate 𝑓(𝑥)

-> it is repeated until a guess results in an 𝑓(𝑥) that is close to zero
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** Besides roots, another feature of interest to engineers are a 
function's min. and max. values.

• The determination of such optimal values is referred to as 
optimization

All methods of finding roots are iterative procedures that require a 
starting point -> an estimate of the root.

-> This estimate can be crucial a bad starting value may fail to 
convergence or it may converse to the wrong root.

There is NO universal recipe for estimating the value of a root a 
systematic numerical search for the roots is needed.

21

𝑓′ 𝑥 = 0



-> Bisection method

-> Newton’s method

-> The secant method

-> Fixed point iteration

-> Special Topics
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1) Bisection Method

T h e bisection method is a variation of the incremental method in which the 
interval is always divided in half

• Halving the interval until it becomes sufficiently small

If a function changes sign over an interval, the function value at the midpoint is 
evaluated

The location of root is determined within the subinterval where the sign change 
occurs.

The subinterval then becomes the interval for the next iteration.

The process is repeated until the root is known to the required precision

23

Interval halving method



If there is a root in the interval (𝑥1, 𝑥2) then

𝑓 𝑥1 𝑓 𝑥2 < 0 -> this means that 𝑓 is negative at one point, 
and positive at the other point.

If we assume that 𝑓 is continuous => (the Intermediate Value 
Theorem), there must be some value between 𝑎 and 𝑏 where 𝑓 𝑥 = 0

In order to halve the interval, we compute 𝑓(𝑥3) where 𝑥3 =
1

2
𝑥1 + 𝑥2 , there are three possibilities;

1-) 𝑓 𝑥1 𝑓 𝑥3 < 0 ⇒ This means that a root is between 𝑥1 𝑎𝑛𝑑 𝑥3
(there might be more than one) [𝑥1, 𝑥3]

2-) 𝑓 𝑥1 𝑓 𝑥3 = 0 ⇒ If we assume that we already know 𝑓 𝑥1 ≠
0 ⇒ this means we have found the root 𝑥3.

3-) 𝑓 𝑥1 𝑓 𝑥3 > 0 ⇒ This means that a root must lie in the other half 
of the interval [𝑥3, 𝑥2]
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The new interval is half the size of the original interval. The bisection is repeated until the interval 
has been reduced to a small value 𝜀,

𝑥2 − 𝑥1 ≤ 𝜀

25

-> Use bisection to solve the problem 
graphically 

𝑎 = 50, 𝑏 = 200, 𝑓 50 𝑓 150 < 0

               𝑥𝑟 =
50+200

2
= 125

Note that exact value of the root is 142.7376

𝑓 50 𝑓 125 > 0 ⇒ The root must lie in the other half of the interval

𝑓 125 𝑓 200 < 0 ⇒ 𝑥𝑟 =
125+200

2
= 162.5 

𝑓 125 𝑓 162.5 < 0 ⇒ 𝑥𝑟 =
125+162.5

2
= 143.75 

Relative error

𝜀𝑡 =
142.7376−125

142.7376
100 = 12.43% after first iteration, 𝜀𝑡 = 13.85% after second iteration,

𝜀𝑥 = 0.709% -> The method can be repeated until the result is accurate enough.



Example: 𝑓 𝑥 = 2 − 𝑒𝑥 , 𝑎, 𝑏 = [0,1]

𝑓 𝑎 = 1, 𝑓 𝑏 = −0.7183 ⇒ 𝑐 =
0+1

2
=

1

2
⇒ 𝑓 𝑐 = 0.3513 > 0

𝑎, 𝑏 → [
1

2
, 1]

𝑓 𝑎 = 0.3513, 𝑓 𝑏 = −0.7183 ⇒ 𝑐 =
1/2+1

2
=

3

2
⇒ 𝑓 𝑐 = −0.117 < 0

𝑎, 𝑏 → [
1

2
,

3

4
]

𝑓 𝑎 = 0.3513, 𝑓 𝑏 = −0.117 ⇒ 𝑐 =
1/2+3/4

2
=

5

8
⇒ 𝑓 𝑐 = 0.1318 > 0

𝑎, 𝑏 → [
5

8
,

3

4
]

we have reduced interval of uncertainty from 0,1 which has length 1 to   
5

8
,

3

4
⇒

1

8
= 0.125
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Algorithm (Bisection Method)

1) Given initial interval 𝑎0, 𝑏0 = 𝑎, 𝑏 , set 𝑘 = 0

2) Compute 𝑐𝑘+1 = 𝑎𝑘 +
1

2
[𝑏𝑘 − 𝑎𝑘]

3) If 𝑓 𝑐𝑘+1 𝑓 𝑎𝑘 < 0, set 𝑎𝑘+1 = 𝑎𝑘, 𝑏𝑘+1 = 𝑐𝑘+1,

4) If 𝑓 𝑐𝑘+1 𝑓 𝑏𝑘 < 0, set 𝑏𝑘+1 = 𝑏𝑘, 𝑎𝑘+1 = 𝑐𝑘+1

5) Update 𝑘 and go to Step 2

*For very large values of 𝑎 and 𝑏, (𝑎 + 𝑏)/2 can lead to a 

computational overflow, whereas 𝑎 +
1

2
(𝑏 − 𝑎) will not

27


	Slayt 1: Numerical Methods KOM2722- AVE3842  Week 4
	Slayt 2: Euler Method vs Linear Interpolation
	Slayt 3: Linear Interpolation Methods
	Slayt 4
	Slayt 5
	Slayt 6
	Slayt 7
	Slayt 8
	Slayt 9
	Slayt 10
	Slayt 11: Application, The Trapezoid Rule
	Slayt 12
	Slayt 13
	Slayt 14
	Slayt 15
	Slayt 16
	Slayt 17
	Slayt 18: ROOT FINDING
	Slayt 19
	Slayt 20
	Slayt 21
	Slayt 22
	Slayt 23: 1) Bisection Method
	Slayt 24
	Slayt 25
	Slayt 26
	Slayt 27

