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Syllabus

Texts:

• An Introduction to 
Numerical Methods 
and Analysis, J. F. 
Epperson, Wiley, 2002

• Applied Numerical 
Methods with 
MATLAB, S.C. Chapra, 
2012, McGrow-Hill

Lecture Notes

• We will use lecture 
notes of Asst. Prof. 
Birol Erol and Asst. 
Prof. Bahadır Çatalbaş 
prepared from 
textbooks. 

• Lecture slides will be 
shared with students.

Grading: 

• 60% Midterm 

• 40% Final



Course Coverage

1. Motivation, Basic Tools of Calculus, Simple Approximations

2. Horner’s Rule,  Euler’s Method

3. Linear Interpolation

4. Root Finding Methods (The Bisection Method, Newton’s Method)

5. Root Finding Methods (The Secant Method, Fixed Point Iteration, etc.)

6. Root Finding Methods (Other techniques)

7. Lagrange Interpolation

8. Midterm Exam



Course Coverage

9. Newton Interpolation and Divided Differences 

10. Piecewise Polynomial Interpolation and Introduction to the Splines

11. Least Squares Methods in Approximation

12. Numerical Integration

13. Numerical Methods for Ordinary Differential Equations(Initial Value 
Problem and Euler Method)

14. Linear Equation Systems and Gauss Elimination, LU(Lower-Upper)
Factorization

15. Final



Aim of Course

• Formulization and analytical thinking

• Ability to apply knowledge of mathematics, science and engineering 
learning design

• Solve complex problems using computers 



Importance of Numerical Methods

• Powerful problem solving tools for
• Large system of equations

• Solution of nonlinear equations

• Efficient way of learning computer logic and programming

• Learn to how math is employed in engineering



Problem-Model-Solution

• In engineering, we propose mathematical models for problems.

• After that, we apply the analytical or numerical method to end up with solutions.

Analytical Methods:

Exact solutions to to problems. Hovewer it may not be computationally feasible to 
obtain it.

Numerical Methods:

Since analytical solution may not be exist or even if it exists, it may not be 
computationally feasible to calculate we benefit from methods called numerical 
methods.

Here we need some approximations so then we decide and have “close enough” 
solution.

Some examples are integration, differentiation, optimization etc.



Problem-Model-Solution

Mathematical models are utilized to understand and solve real world problems such as

-Energy      -Environmental Issue       -Transportation       -Financial Problems

To solve these problems using approximations and obtain “close-enough” results compared to analytical 
solution, errors are added to our solution and we know it…

Accuracy: 

Refers to the closeness of a value to the reference standard. 

There will be an error, so it is needed to understand how to handle this error.

Efficiency: 

Does the algorithm take an inordinate amount of computer time?

* There is a trade of between accuracy and efficiency. They compete so to make an algorithm more accurate 
usually make it more costly and less efficient. 

Stability: 

Does the method produce similar results for similar data? 

If we change data by a small amount, do we get big differences? If so, the method is unstable.



Basic Tools of Calculus
Taylor’s Theorem

Provides an approximation of (𝑛 + 1) times differentiable function around a given point.

Suppose that we are working on a function f(x) that is continuous and has (𝑛 + 1) continious derivatives on interval 
(𝑎, 𝑏].

Theorem (Taylor’s Theorem with Remainder): 

Let 𝑓(𝑥) have 𝑛 + 1 continuous derivatives on (𝑎, 𝑏] for some 𝑛 ≥ 0 and let 𝑥, 𝑥0 ∈ 𝑎, 𝑏 , then 

𝑓 𝑥 = 𝑝𝑛 𝑥 + 𝑅𝑛(𝑥)

𝑝𝑛 𝑥 = 𝑓 𝑥0 + 𝑓′ 𝑥0 𝑥 − 𝑥0 +
𝑓′′ 𝑥0 𝑥−𝑥0

2

2!
+⋯ = σ𝑘=0

𝑛 𝑥−𝑥0
𝑘

𝑘!
𝑓(𝑥0)

𝑘

The remainder

𝑅𝑛 𝑥 =
1

𝑛!
𝑥0׬
𝑥
𝑥 − 𝑡 𝑛 𝑓 𝑛+1 𝑡 𝑑𝑡

*Every continuous function can be approximated by a polynomial of order n.

*Allow us to replace/obtain, in a computational setting, a much simple problem.



The remainder, the error term,

𝑅𝑛 𝑥 =
𝑥−𝑥0

𝑛+1

𝑛+1 !
𝑓(𝑛+1) 𝑐 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑐 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑥0 𝑎𝑛𝑑 𝑥

𝑎𝑛𝑑

lim
𝑛→∞

𝑅𝑛 𝑥 = 0

Taylor’s series for 𝑥0 = 0 is called as Maclaurin series

Example: 𝑓 𝑥 = 𝑒𝑥, find 𝑛𝑡ℎ order Taylor series expansion of 𝑓 𝑥 around 𝑥 = 0

𝑓 𝑘 0 = 1

𝑒𝑥 = 1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 +⋯+

1

𝑛!
𝑥𝑛 +

1

𝑛+1 !
𝑥𝑛+1𝑒𝑐𝑥

𝑝𝑛(𝑥) 𝑅𝑛 𝑥 , remainder 𝑐𝑥 is an unknown 
point between 𝑥 and 0.



Example: 𝑓 𝑥 = ln(1 + 𝑥), find the Taylor series expansion of 𝑓 𝑥 around 𝑥 = 0

𝑓 𝑥 = ln(1 + 𝑥) => 𝑓 0 = 0

𝑓′ 𝑥 =
1

1+𝑥
=> 𝑓′ 0 = 1

𝑓′′ 𝑥 =
−1

1+𝑥 2 => 𝑓′′ 0 = 2

ln 1 + 𝑥 = 𝑥 −
𝑥2

2
+

𝑥3

3
−

𝑥4

4
+⋯ = σ𝑛=0

∞ −1 𝑛 𝑥𝑛+1

𝑛+1



Example: 𝑓 𝑥 = sin(𝑥), find the Taylor series expansion of 𝑓 𝑥 around 𝑥 = 0

𝑓 𝑥 = sin(𝑥) => 𝑓 0 = 0

𝑓′ 𝑥 = cos(𝑥) => 𝑓′ 0 = 1

𝑓′′ 𝑥 = −sin(𝑥) => 𝑓′′ 0 = 0

𝑓′′′ 𝑥 = −𝑐𝑜𝑠(𝑥) => 𝑓′′′ 0 = −1

sin 𝑥 = 𝑥 −
1

3!
𝑥3 +

1

5!
𝑥5 +⋯+

−1 𝑛

2𝑛+1 !
𝑥2𝑛+1 +

−1 𝑛+1

2𝑛+3 !
𝑥2𝑛+3cos(𝑐𝑥)

= σ𝑘=0
𝑛 −1 𝑘

2𝑘+1 !
𝑥2𝑘+1 + 𝑅𝑛(𝑥)

cos(𝑥) = 1 −
1

2!
𝑥2 +

1

4!
𝑥4 +⋯+

−1 𝑛

2𝑛 !
𝑥2𝑛 +

−1 𝑛+1

2𝑛+2 !
𝑥2𝑛+2cos(𝑐𝑥)

= σ𝑘=0
𝑛 −1 𝑘

2𝑘 !
𝑥2𝑘 + 𝑅𝑛(𝑥)



Taylor’s Theorem an approximation and an error estimate provides

Considering the problem of approximating the exponential function on the interval [−1, 1]

𝑒𝑥 = 1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 +⋯+

1

𝑛!
𝑥𝑛 +

1

𝑛 + 1 !
𝑥𝑛+1𝑒𝑐𝑥

𝑝𝑛(𝑥) Polynomial                      𝑅𝑛 𝑥 , remainder

𝑐𝑥 is an unknown point between x and 0.

Without lost of generality 𝑥 can be any point in [-1, 1] then

𝑐𝑥 can be any point in [-1, 1] 

For simplicity, let’s denote polynomial by 𝑝𝑛(𝑥) and remainder by 𝑅𝑛 𝑥 , so that the 
equation:

e𝑥 = 𝑝𝑛 𝑥 + 𝑅𝑛(𝑥)



Suppose that we want this approximation to be accurate within 10−6 absolute error. i.e.,

|e𝑥 − 𝑝𝑛 𝑥 | ≤ 10−6 for all 𝑥 in the interval [−1, 1].

|e𝑥 − 𝑝𝑛 𝑥 | = |𝑅𝑛(𝑥)| ≤ 10−6, if we make |𝑅𝑛(𝑥)| ≤ 10−6 the absolute error in 
approximation will be less that 10−6.

In other words, we need make the upper bound less than 10−6.

𝑅𝑛 𝑥 =
|𝑥𝑛+1𝑒𝑐𝑥|

𝑛+1 !
=

𝑥 𝑛+1𝑒𝑐𝑥

𝑛+1 !
(Note that: 𝑒𝑧 > 0 for all z.)

≤
𝑒𝑐𝑥

𝑛+1 !
, because x ≤ 1 for all x ∈ [-1, 1]

≤
𝑒

𝑛+1 !
, because e𝑐𝑥 ≤ 𝑒 for all x ∈ [-1, 1]

So that, if we find 𝑛 such that 
𝑒

𝑛+1 !
≤ 10−6 then we will have 𝑒𝑥 − 𝑝𝑛 𝑥 = 𝑅𝑛 𝑥 ≤

10−6.

𝑛 = 9 satisfies the desired accuracy.



The error defined as (|e𝑥 − 𝑝𝑛 𝑥 |) increases and accuracy of approximation decreases as 
we get away from the interval [−1, 1]. This is expected since the Taylor polynomial is 
constructed to match function 𝑓(𝑥) and its first derivatives at 𝑥 = 𝑥0, so 𝑝𝑛 𝑥 is a good 
approximation to 𝑓(𝑥) only when 𝑥 is near to 𝑥0.



Example: Find the minimum order of Taylor series expansion for 𝑓 𝑥 = sin(𝜋𝑥) to be 
accurate within 10−4 absolute error for all 𝑥 ∈ [−

1

2
,
1

2
] using 𝑥0 = 0.

𝑝𝑛 𝑥 = 𝜋𝑥 −
1

6
𝜋3𝑥3 +

1

120
𝜋5𝑥5 +⋯+ −1 𝑛 1

2𝑛+1 !
𝜋2𝑛+1𝑥2𝑛+1

𝑅𝑛 𝑥 = −1 𝑛+1 1

2𝑛+3 !
𝜋2𝑛+3𝑥2𝑛+3cos(𝑐𝑥)

The error

𝑓 𝑥 − 𝑝𝑛 𝑥 | = |𝑅𝑛 𝑥 =
1

2𝑛+3 !
𝜋𝑥 2𝑛+3|cos(𝑐𝑥)|, where cx is between x

and 0. It can be bounded c𝑥 ∈ [−
1

2
,
1

2
] interval

𝑅𝑛 𝑥 =
𝜋𝑥 2𝑛+3

(2𝑛+3)
|cos(𝑐𝑥)| ≤

𝜋𝑥 2𝑛+3

(2𝑛+3)

By using calculator

𝑅4 𝑥 ≤ 0.3599𝑥10−5, 𝑅3 𝑥 ≤ 0.1604𝑥10−3, 𝑛 = 4 achieves desired 
accuracy

𝑝4 𝑥 = 𝜋𝑥 −
1

6
𝜋3𝑥3 +

1

120
𝜋5𝑥5 −

1

5040
𝜋7𝑥7 +

1

362880
𝜋9𝑥9



Consider the problem of expanding 𝑓(𝑥 + ℎ) in a Taylor Series, about point 𝑥0 = 𝑥

Here ℎ is generally considered to be small parameter,

𝑓 𝑥 + ℎ = 𝑓 𝑥 + 𝑥 + ℎ − 𝑥 𝑓′ 𝑥 +
1

2
𝑥 + ℎ − 𝑥

2
𝑓′′ 𝑥

+⋯+
1

𝑛!
𝑥 + ℎ − 𝑥

𝑛
𝑓 𝑛 𝑥 +

1

𝑛+1 !
𝑥 + ℎ − 𝑥

𝑛+1
𝑓 𝑛+1 𝜁

= 𝑓 𝑥 + ℎ𝑓′ 𝑥 +
1

2
ℎ2𝑓′′ 𝑥 +⋯+

1

𝑛!
ℎ𝑛𝑓𝑛 𝑥 +

+
1

(𝑛+1)!
ℎ𝑛+1𝑓(𝑛+1) 𝜁

This kind of expansion will be useful time and again in our studies. 
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