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Provides an approximation of (𝑛 + 1) times differentiable function around a given point.

Suppose that we are working on a function f(x) that is continuous and has (𝑛 + 1) continious derivatives on interval 
(𝑎, 𝑏].

Theorem (Taylor’s Theorem with Remainder): 

Let 𝑓(𝑥) have 𝑛 + 1 continuous derivatives on (𝑎, 𝑏] for some 𝑛 ≥ 0 and let 𝑥, 𝑥0 ∈ 𝑎, 𝑏 , then 

𝑓 𝑥 = 𝑝𝑛 𝑥 + 𝑅𝑛(𝑥)

𝑝𝑛 𝑥 = 𝑓 𝑥0 + 𝑓′ 𝑥0 𝑥 − 𝑥0 +
𝑓′′ 𝑥0 𝑥−𝑥0

2

2!
+⋯ = σ𝑘=0

𝑛 𝑥−𝑥0
𝑘

𝑘!
𝑓(𝑥0)

𝑘

The remainder

𝑅𝑛 𝑥 =
1

𝑛!
𝑥0׬
𝑥
𝑥 − 𝑡 𝑛 𝑓 𝑛+1 𝑡 𝑑𝑡

*Every continuous function can be approximated by a polynomial of order n.

*Allow us to replace/obtain, in a computational setting, a much simple problem.

Basic Tools of Calculus
Taylor’s Theorem
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The remainder, the error term,

𝑅𝑛 𝑥 =
𝑥−𝑥0

𝑛+1

𝑛+1 !
𝑓(𝑛+1) 𝑐 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑐 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑥0 𝑎𝑛𝑑 𝑥

𝑎𝑛𝑑

lim
𝑛→∞

𝑅𝑛 𝑥 = 0

Taylor’s series for 𝑥0 = 0 is called as Maclaurin series

Example: 𝑓 𝑥 = 𝑒𝑥, find 𝑛𝑡ℎ order Taylor series expansion of 𝑓 𝑥 around 𝑥 = 0

𝑓 𝑘 0 = 1

𝑒𝑥 = 1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 +⋯+

1

𝑛!
𝑥𝑛 +

1

𝑛+1 !
𝑥𝑛+1𝑒𝑐𝑥

𝑝𝑛(𝑥) 𝑅𝑛 𝑥 , remainder 𝑐𝑥 is an unknown 
point between 𝑥 and 0.
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Taylor’s Theorem an approximation and an error estimate provides

Considering the problem of approximating the exponential function on the interval [−1, 1]

𝑒𝑥 = 1 + 𝑥 +
1

2!
𝑥2 +

1

3!
𝑥3 +⋯+

1

𝑛!
𝑥𝑛 +

1

𝑛 + 1 !
𝑥𝑛+1𝑒𝑐𝑥

𝑝𝑛(𝑥) Polynomial                      𝑅𝑛 𝑥 , remainder

𝑐𝑥 is an unknown point between x and 0.

Without lost of generality 𝑥 can be any point in [-1, 1] then

𝑐𝑥 can be any point in [-1, 1] 

For simplicity, let’s denote polynomial by 𝑝𝑛(𝑥) and remainder by 𝑅𝑛 𝑥 , so that the 
equation:

e𝑥 = 𝑝𝑛 𝑥 + 𝑅𝑛(𝑥)

5



Suppose that we want this approximation to be accurate within 10−6 absolute error. i.e.,

|e𝑥 − 𝑝𝑛 𝑥 | ≤ 10−6 for all 𝑥 in the interval [−1, 1].

|e𝑥 − 𝑝𝑛 𝑥 | = |𝑅𝑛(𝑥)| ≤ 10−6, if we make |𝑅𝑛(𝑥)| ≤ 10−6 the absolute error in 
approximation will be less that 10−6.

In other words, we need make the upper bound less than 10−6.

𝑅𝑛 𝑥 =
|𝑥𝑛+1𝑒𝑐𝑥|

𝑛+1 !
=

𝑥 𝑛+1𝑒𝑐𝑥

𝑛+1 !
(Note that: 𝑒𝑧 > 0 for all z.)

≤
𝑒𝑐𝑥

𝑛+1 !
, because x ≤ 1 for all x ∈ [-1, 1]

≤
𝑒

𝑛+1 !
, because e𝑐𝑥 ≤ 𝑒 for all x ∈ [-1, 1]

So that, if we find 𝑛 such that 
𝑒

𝑛+1 !
≤ 10−6 then we will have 𝑒𝑥 − 𝑝𝑛 𝑥 = 𝑅𝑛 𝑥 ≤

10−6.

𝑛 = 9 satisfies the desired accuracy.
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Rolle’s Theorem

Suppose that 𝑦 = 𝑓(𝑥) is continuous at every 
point of the closed interval [𝑎, 𝑏] and 
differentiable at every point of its interior (𝑎, 𝑏). If

𝑓 𝑎 = 𝑓 𝑏

then there is at least one number 𝑐 in 𝑎, 𝑏 at 
which

𝑓′ 𝑐 = 0.

Thus, there should be one place where  tangent 
line should be horizontal

Note that it is also satisfied for functions intersect 
the x axis at two points; 𝑓 𝑎 = 𝑓 𝑏 = 0.

0
𝑥

𝑦

𝑓′ 𝑐 = 0

𝑦 = 𝑓 𝑥

𝑎 𝑏𝑐
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The Mean Value Theorem

Let 𝑓 be a given function, continuous on closed 
interval [𝑎, 𝑏] and differentiable at every point of 
its interior (𝑎, 𝑏). Then there exists a point 𝜁 ∈
[𝑎, 𝑏] such that

𝑓′ 𝜁 =
𝑓 𝑏 − 𝑓(𝑎)

𝑏 − 𝑎
0

𝑥

𝑦

𝑓′ 𝜁

𝑦 = 𝑓 𝑥

𝑎 𝑏ζ

The mean value theorem (MVT) states that between any two points on the 
graph of a differentiable function 𝑓 there at least one place where the 
tangent line to the graph is parallel to line joining.

𝐴

𝐵
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Consequences of MVT

MVT is used to prove many results

-> Let 𝑓 be a function that is continuous and differentiable on [𝑎, 𝑏]

if 𝑓′ 𝑥 > 0 for every 𝑥 in [𝑎, 𝑏], the f is increasing on [𝑎, 𝑏]

𝑓′ 𝑥 < 0 decreasing

𝑓′ 𝑥 = 0 constant
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Proof:

Secant line intersection points for y = 𝑓(𝑥): A 𝑎, 𝑓 𝑎 , B(𝑏, 𝑓 𝑏 )

Equation of secant line: 𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1)

Here 𝑔(𝑥) is the equation of secant line AB

𝑔 𝑥 − 𝑓 𝑎 =
𝑓 𝑏 − 𝑓(𝑎)

𝑏 − 𝑎
(𝑥 − 𝑎)

𝑔 𝑥 =
𝑓 𝑏 − 𝑓 𝑎

𝑏 − 𝑎
𝑥 − 𝑎 + 𝑓 𝑎 (1)

Let ℎ 𝑥 = 𝑓 𝑥 − 𝑔(𝑥),

ℎ 𝑥 = 𝑓 𝑥 −
𝑓 𝑏 − 𝑓 𝑎

𝑏 − 𝑎
𝑥 − 𝑎 + 𝑓 𝑎 𝑓𝑟𝑜𝑚 (1)

ℎ 𝑎 = ℎ 𝑏 = 0 and ℎ(𝑥) is continuous on [𝑎, 𝑏] and differentiable on (a, b). 

Thus applying Rolle’s Theorem, there is some x = 𝑐 in (𝑎, 𝑏) such that ℎ′(𝑐) = 0

ℎ′ 𝑥 = 𝑓′ 𝑥 −
𝑓 𝑏 − 𝑓 𝑎

𝑏 − 𝑎
For some 𝑐 in 𝑎, 𝑏 , ℎ′ 𝑐 = 0. Thus,

ℎ′ 𝑐 = 𝑓′ 𝑐 −
𝑓 𝑏 − 𝑓 𝑎

𝑏 − 𝑎
= 0

𝑓′(𝑐) =
𝑓 𝑏 − 𝑓 𝑎

𝑏 − 𝑎
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Intermediate Value Theorem

Let 𝑓 ∈ 𝐶([𝑎, 𝑏]) be given, and assume that 𝑊 is a value between 𝑓(𝑎)
and 𝑓(𝑏), that is, either f 𝑎 ≤ 𝑊 ≤ 𝑓(𝑏), or 𝑓(𝑏) ≤ 𝑊 ≤ 𝑓(𝑎). Then 
there exists a point 𝑐 ∈ [𝑎, 𝑏] such that 𝑓(𝑐) = 𝑊. 

* This theorem says that a certain point exists does not give us much 
information about its numerical value.

-> We will use this theorem as the basis for finding the roots.

Note: 𝐶([𝑎, 𝑏]) — The set of functions 𝑓 which are defined on the 
interval [𝑎, 𝑏], continuous on all of (𝑎, 𝑏), and continuous from the 
interior of [𝑎, 𝑏] at the endpoints.
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Extreme Value Theorem

Let 𝑓 ∈ 𝐶 𝑎, 𝑏 be given; then there exists a point 𝑚 ∈ [𝑎, 𝑏] such 
that 𝑓(𝑚) ≤ 𝑓(𝑥) for all 𝑥 ∈ [𝑎, 𝑏], and a point 𝑀 ∈ [𝑎, 𝑏] such that 
𝑓(𝑀) ≥ 𝑓(𝑥) for all 𝑥 ∈ [𝑎, 𝑏]. Moreover, 𝑓 achieves its maximum 
and minimum values on [𝑎, 𝑏] either at the endpoints 𝑎 or 𝑏, or at a 
critical point. 

The student should recall that a critical point is a point where the first 
derivative is either undefined or equal to zero. 
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Integral Mean Value Theorem

Let 𝑓 and 𝑔 both be in 𝐶([𝑎, 𝑏]), and assume further that 𝑔 does not 
change sign on [𝑎, 𝑏]. Then there exists a point 𝜁 ∈ [𝑎, 𝑏] such that 

න

𝑎

𝑏

𝑔 𝑡 𝑓 𝑡 𝑑𝑡 = 𝑓(𝜁)න

𝑎

𝑏

𝑔 𝑡 𝑑𝑡
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Discrete Average Value Theorem

Let 𝑓 ∈ 𝐶([𝑎, 𝑏]) and consider the sum,

𝑆 = ෍

𝑘=1

𝑛

𝑎𝑘𝑓(𝑥𝑘) ,

Where each point 𝑥𝑘 ∈ 𝑎, 𝑏 , and the coefficients satisfy

𝑎𝑘 ≥ 0, ෍

𝑘=1

𝑛

𝑎𝑘 = 1

Then there exists a point 𝜂 ∈ [𝑎, 𝑏] such that 𝑓(𝜂) = 𝑆, i.e., 

𝑓(𝜂) = ෍

𝑘=1

𝑛

𝑎𝑘𝑓(𝑥𝑘)

Proof:

𝑓 𝑥𝑘 ≤ 𝑓𝑀 ⇒ 𝑆 = ෍

𝑘=1

𝑛

𝑎𝑘𝑓 𝑥𝑘 ≤ 𝑓𝑀 ෍

𝑘=1

𝑛

𝑎𝑘 = 𝑓𝑀
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Error, Approximate Equality and Asymptotic 
Order
There are different error definitions such as measurement errors, 
modeling errors, etc. Here we concerned here only with the 
computational errors such as truncation error or approximation error 
(True Value = Approximation Error + Error).

We have already talked about the "error" made in a simple Taylor series 
approximation. It is time we got a little more precise. 
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Error

If 𝐴 is a quantity we want to compute and 𝐴ℎ is an approximation to that 
quantity, then the error is the difference between the two:

𝑒𝑟𝑟𝑜𝑟 = 𝐴 − 𝐴ℎ;

the absolute error is simply the absolute value of the error: 
𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝐴 − 𝐴ℎ ;

and the relative error normalizes by the absolute value of the exact value: 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
𝐴 − 𝐴ℎ
|𝐴|

,

where we assume that 𝐴 ≠ 0.

Using a relative error protects us from misguiding the accuracy of an 
approximation for very large or very small numbers.

16



Approximate Equality

If two quantities are approximately equal to each other, we will use the notation “≈” to 
denote this relationship, as in 

𝐴 ≈ 𝐵

This is an admittedly vague notion. Is 0.99 ≈ 1? Probably so. Is 0.8 ≈ 1? Maybe not.
lim
ℎ→0

𝐴ℎ = 𝐴 ⇒ 𝐴ℎ ≈ 𝐴 𝑓𝑜𝑟 𝑎𝑙𝑙 "ℎ" 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑠𝑚𝑎𝑙𝑙

lim
𝑛→∞

𝐴𝑛 = 𝐴 ⇒ 𝐴𝑛 ≈ 𝐴 𝑓𝑜𝑟 𝑎𝑙𝑙 "𝑛" 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑙𝑎𝑟𝑔𝑒

For example, the definition of derivative of function 𝑦 = 𝑓 𝑥 is as follows:

lim
ℎ→0

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
= 𝑓′(𝑥)

We therefore conclude that, for ℎ small enough,
𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
≈ 𝑓′ 𝑥 .
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Asymptotic Order (Big O notation)

Another notation of use is the so-called "Big O" notation, more formally 
known as asymptotic order notation. Suppose that we have a value 𝑦 and a 
family of values {𝑦ℎ}, each of which approximates this value,

𝑦 ≈ 𝑦ℎ
for small values of ℎ. If there exists a positive function 𝛽(ℎ), 𝛽 ℎ → 0 as 
ℎ → 0, and a constant 𝐶 > 0, independent of ℎ, such that

𝑦 − 𝑦ℎ ≤ 𝐶𝛽(ℎ)

for all ℎ sufficiently small, then we say that
𝑦 = 𝑦ℎ + 𝑂 𝛽 ℎ ,

meaning that 𝑦 − 𝑦ℎ is “on the order of” 𝛽(ℎ). Here 𝛽(ℎ) is a function of 
the parameter h, and we assume that

lim
ℎ→0

𝛽(ℎ) = 0
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Example: 𝐴 = 0׬
∞
𝑒−2𝑥𝑑𝑥 , 𝐴𝑛 = 0׬

𝑛
𝑒−2𝑥𝑑𝑥

Exact solution ⇒ 𝐴 =
1

2

Solution 𝑜𝑓 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 ⇒ 𝐴𝑛 =
1

2
−

1

2
𝑒−2𝑛

⇒ 𝐴𝑛 = 𝐴 −
1

2
𝑒−2𝑛

⇒ 𝐴 = 𝐴𝑛 +
1

2
𝑒−2𝑛

⇒ 𝐴 = 𝐴𝑛 + 𝑂(𝑒−2𝑛)

𝛽 𝑛 = 𝑒−2𝑛
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Theorem: Let 𝑦 = 𝑦ℎ + 𝑂(𝛽(ℎ)) and z = 𝑧ℎ + 𝑂(𝛾(ℎ)), with 𝑏𝛽 ℎ >
𝛾(ℎ) for all ℎ near zero. Then 

𝑦 + 𝑧 = 𝑦ℎ + 𝑧ℎ + 𝑂(𝛽 ℎ + 𝛾(ℎ))

𝑦 + 𝑧 = 𝑦ℎ + 𝑧ℎ + 𝑂(𝛽 ℎ )
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Horner’s Rule

Up to now, we devoted some time to the construction of polynomial approximations to 
given functions. It might be good if we discussed the best way to evaluate those 
approximations efficiently. 

The most efficient way to evaluate a polynomial is by nested multiplication. If we have 

𝑝𝑛 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑛𝑥

𝑛,

then we factor out each power of x as far as it will go, thus getting

𝑝𝑛 𝑥 = 𝑎0 + 𝑥(𝑎1 + 𝑥(𝑎2 +⋯+ 𝑥 𝑎𝑛−1 + 𝑎𝑛𝑥 … )).

In the first form –> we need to find powers of 𝑥2, 𝑥3, … , 𝑥𝑛

In the second form –> (𝑛 + 1) multiplications and 𝑛 additions

21



Example: We could write
𝑞 𝑥 = 1 + 𝑥 + 3𝑥2 − 6𝑥3

as
𝑞 𝑥 = 1 + 𝑥(1 + 𝑥(3 − 6𝑥))
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Difference Approximations To The Derivative

One of the simplest uses of Taylor's Theorem as a means of 
constructing approximations involves the use of difference quotients to 
approximate the derivative of a known function 𝑓 . Intuitively, this is 
obvious from the definition of the derivative:

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥 + ℎ + 𝑓(𝑥)

ℎ
⇒ 𝑓′ 𝑥 =

𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ

The challenge for us is to make this vague statement more precise (just 
how accurate is this approximation, in terms of the parameter ℎ?) 
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Using Tylor’s Theorem

𝑓′ 𝑥 −
𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ
= 𝑓′ 𝑥 −

ℎ𝑓′ 𝑥 +
1
2
ℎ2𝑓′′ 𝜁𝑥, ℎ

ℎ

= −
1

2
ℎ𝑓′′ 𝜁𝑥, ℎ

Here the error is proportional to ℎ.

Can we do better?

⇒ 𝑓 𝑥 + ℎ = 𝑓 𝑥 + ℎ𝑓′ 𝑥 +
1

2
ℎ2𝑓′′ 𝑥 +

1

6
ℎ3𝑓′′′ 𝜁1

⇒ 𝑓 𝑥 − ℎ = 𝑓 𝑥 − ℎ𝑓′ 𝑥 +
1

2
ℎ2𝑓′′ 𝑥 −

1

6
ℎ3𝑓′′′ 𝜁2

Subtract

𝑓 𝑥 + ℎ − 𝑓 𝑥 − ℎ = 2ℎ𝑓′ 𝑥 +
1

6
ℎ3𝑓′′′ 𝜁1 −

1

6
ℎ3𝑓′′′ 𝜁2
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Let us solve for 𝑓′(𝑥)

𝑓′ 𝑥 =
𝑓 𝑥 + ℎ − 𝑓(𝑥 − ℎ)

2ℎ
−
1

6
ℎ2

𝑓′′′ 𝜁1 + 𝑓′′′ 𝜁2
2

𝑓′ 𝑥 =
𝑓 𝑥 + ℎ − 𝑓(𝑥 − ℎ)

2ℎ
−
1

6
ℎ2𝑓′′′ 𝜁𝑥 , ℎ

This estimate will tent to be better since ℎ2 < ℎ.

Forward difference approximation: 𝑓′ 𝑥 =
𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ

Central difference approximation: 𝑓′ 𝑥 =
𝑓 𝑥+ℎ −𝑓(𝑥−ℎ)

2ℎ
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Example: 𝑓 𝑥 = 𝑒𝑥, take derivative for 𝑥 = 1, using ℎ = 1/8

Exact Value: 

𝑓′ 𝑥 = 𝑒𝑥, 𝑓′ 1 = 𝑒

Forward difference approximation:

𝑓′ 𝑥 ≈
𝑒1.125−𝑒

0.125
= 2.895480164

Central difference approximation:

𝑓′ 𝑥 ≈
𝑒1.125−𝑒0.875

0.25
= 2.72536622

The error in first approximation is −0.177

in second approximation is −7.084𝑥10−3
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Euler's Method For Initial Value Problems

One immediate application of difference methods for approximating 
derivatives is the approximate solution o f initial value problems for 
ordinary differential equations. The usual general form of such a 
problem is 

𝑦′ = 𝑓 𝑡, 𝑦 , 𝑦 𝑡0 = 𝑦0,

where 𝑓 is a known function of 𝑡 and 𝑦, and 𝑡0 and 𝑦0 are given values. 
The object in solving this problem is to find 𝑦 as a function of 𝑡; in 
ordinary differential equations, there are different techniques for 
analytically solution ways but in some cases, it may not be easy or 
feasible.
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From the last course, we can show that

𝑓′ 𝑥 −
𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ
= −

1

2
ℎ𝑓′′ 𝜁𝑥,ℎ = 𝑂(ℎ)

with Taylor series expansion.

For 𝑦′(𝑡) = 𝑓 𝑡, 𝑦(𝑡) ,
𝑦 𝑡 + ℎ − 𝑦(𝑡)

ℎ
= 𝑓 𝑡, 𝑦 𝑡 +

1

2
ℎ𝑦′′(𝑡ℎ)

which can be simplified slightly to become

𝑦 𝑡 + ℎ = 𝑦 𝑡 + ℎ𝑓 𝑡, 𝑦 𝑡 +
1

2
ℎ2𝑦′′ 𝑡ℎ .
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We will choose some small increment Δ𝑥

** The basic idea behind Euler’s method is to 
start at the known initial point 𝑥0, 𝑦0 and 
draw a line segment in the direction 
determined by the slope field until we reach 
the point (𝑥1, 𝑦1) with 𝑥 coordinate 𝑥1 =
𝑥0 + Δ𝑥

𝑦𝑛+1 − 𝑦𝑛
Δ𝑥

= 𝑓(𝑥𝑛, 𝑦𝑛)

𝑦𝑛+1 = 𝑦𝑛 + 𝑓 𝑥𝑛, 𝑦𝑛 Δx

(𝑥0, 𝑦0)

(𝑥1, 𝑦1)

(𝑥2, 𝑦2)

(𝑥3, 𝑦3)

Δ𝑥

(𝑥𝑛, 𝑦𝑛) (𝑥𝑛+1, 𝑦𝑛)

(𝑥𝑛+1, 𝑦𝑛+1)

Δ𝑥

𝑦𝑛+1 − 𝑦𝑛
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To approximate the solution of the initial-value problem
𝑦′ = 𝑓 𝑥, 𝑦 , 𝑦 𝑥0 = 𝑦0

Step 1: Choose a nonzero number Δ𝑥 to serve as an increment or step 
size along x-axis

𝑥1 = 𝑥0 + Δ𝑥, 𝑥2 = 𝑥1 + Δ𝑥, ….

Step 2: Compute successively,

𝑦1 = 𝑦0 + 𝑓 𝑥0, 𝑦0 Δ𝑥

𝑦2 = 𝑦1 + 𝑓 𝑥1, 𝑦1 Δ𝑥

…

𝑦𝑛+1 = 𝑦𝑛 + 𝑓(𝑥𝑛, 𝑦𝑛)Δ𝑥

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑦𝑛)

The number 𝑦1, 𝑦2, … , 𝑦𝑛+1 
are the approximations of 
𝑦 𝑥1 , 𝑦 𝑥2 , … , 𝑦 𝑥𝑛+1
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Example: 𝑦′ = −𝑦 + sin 𝑡 , 𝑦 0 = 1

This has exact solution 𝑦 𝑡 =
3

2
𝑒−𝑡 +

1

2
(sin 𝑡 − cos(𝑡)), found by using the 

kinds of methods taught in the usual ODE courses.

Let us apply Euler’s method for ⇒ ℎ = 1/4

Step 1: ℎ = 1/4, so 𝑡1 = ℎ = 1/4 and 𝑦0 is given as 1. Then,
𝑦1 = 𝑦0 + ℎ𝑓 𝑡0, 𝑦0

= 1 +
1

4
−1 + sin 0 =

3

4

Thus, 𝑦
1

4
≈ 0.75, the error in this approximation 

𝑒1 = 𝑦
1

4
− 𝑦1 = 0.8074469434 − 0.75 = 0.0574469434

Step 2:  We have 𝑡2 = 2ℎ =
1

2
and 𝑦1 = 0.75 from the Step 1. Then

𝑦2 = 𝑦1 + ℎ𝑓 𝑡1, 𝑦1 =
3

4
+
1

4
−
3

4
+ sin

1

4
= 0.624350 ≈ 𝑦(

1

2
)

𝑒2 = 𝑦
1

2
− 𝑦2 = 0.7107174779 − 0.624350 = 0.08636
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