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Algorithm (Bisection Method)

1) Given initial interval 𝑎0, 𝑏0 = 𝑎, 𝑏 , set 𝑘 = 0

2) Compute 𝑐𝑘+1 = 𝑎𝑘 +
1

2
[𝑏𝑘 − 𝑎𝑘]

3) If 𝑓 𝑐𝑘+1 𝑓 𝑎𝑘 < 0, set 𝑎𝑘+1 = 𝑎𝑘, 𝑏𝑘+1 = 𝑐𝑘+1,

4) If 𝑓 𝑐𝑘+1 𝑓 𝑏𝑘 < 0, set 𝑏𝑘+1 = 𝑏𝑘, 𝑎𝑘+1 = 𝑐𝑘+1
5) Update 𝑘 and go to Step 2

*For very large values of 𝑎 and 𝑏, (𝑎 + 𝑏)/2 can lead to a 

computational overflow, whereas 𝑎 +
1

2
(𝑏 − 𝑎) will not 
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Theorem: (Bisection Convergence and Error)

Let 𝑎0, 𝑏0 = [𝑎, 𝑏] be  the initial interval with 𝑓(𝑎)𝑓(𝑏) < 0. Define 
the approximate root as 𝑥𝑛 = 𝑐𝑛 = (𝑏𝑛−1 − 𝑎𝑛−1)/2. Then, there 
exists a root 𝛼 ∈ [𝑎, 𝑏] such that

𝛼 − 𝑥𝑛 ≤
1

2

2

(𝑏 − 𝑎)

to achieve an accuracy of 𝛼 − 𝑥𝑛 ≤ ε

It suffices to take 𝑛 ≥
log 𝑏−𝑎 −log(𝜀)

log(2)
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Newton’s Method

The method is sometimes called Newton-Raphson, in honor of Joseph 
Raphson, who published the idea before Newton did.

The Newton’s method is the best-known algorithm of finding roots, it  
is simple and fast

The only drawback of the method is that using both the derivative 
(𝑓′ 𝑥 ) and the function itself (𝑓(𝑥)).
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*If the initial guess at the root is 𝑥𝑖, a tangent can be extended from 
the point [𝑥𝑖 , 𝑓(𝑥𝑖)].

The point where this tangent crosses the x-axis usually represents an 
improved estimate of the root.

**The Newton-Raphson formula can be derived from Tylor series 
expansion of 𝑓(𝑥) about x;

𝑓 𝑥𝑖+1 = 𝑓 𝑥𝑖 + 𝑓′ 𝑥𝑖 𝑥𝑖+1 − 𝑥𝑖 + 𝑂 𝑥𝑖+1 − 𝑥𝑖
2

5
term is dropped



Assuming that 𝑥𝑖 is close to 𝑥𝑖+1,

𝑥𝑖+1 = 𝑥𝑖 −
𝑓 𝑥𝑖

𝑓′(𝑥𝑖)

Given an expression in terms of something simple plus a remainder 
generate a numerical approximation by dropping the remainder.

Start with 𝑥0,

𝑥1 = 𝑥0 −
𝑓 𝑥0
𝑓′ 𝑥0

⇒ 𝑥2 = 𝑥1 −
𝑓 𝑥1
𝑓′ 𝑥1

⇒ ⋯ ⇒ 𝑥𝑛+1 = 𝑥𝑛 −
𝑓 𝑥𝑛
𝑓′(𝑥𝑛)

(draw straight lines) up to reach a close enough solution

This is Newton’s Theorem based on very simple idea

->Replace a general function by a simpler function and do the required 
computation exactly on the simpler function
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Example: 𝑓 𝑥 = 2 − 𝑒𝑥 applying Newton’s method, choose 𝑥0 = 0.

𝑥1 = 𝑥0 −
2 − 𝑒𝑥0

−𝑒𝑥0
= −

2 − 1

−1
= 1

𝑥2 = 𝑥1 −
2 − 𝑒𝑥1

−𝑒𝑥1
= 1 −

2 − 𝑒

−𝑒
= 0.735758…

𝑥3 = 𝑥2 −
2 − 𝑒𝑥2

−𝑒𝑥2
= 0.735758 −

2 − 𝑒0.735758

−𝑒0.735758
= 0.694042
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Example: A root of 𝑓 𝑥 = 𝑥3 − 10𝑥2 + 5 = 0 => lies close 𝑥0 = 0.7
compute this root with Newton’s method.

𝑓′ 𝑥 = 3𝑥2 − 20𝑥

𝑥1 = 𝑥0 −
𝑓 𝑥0
𝑓′ 𝑥0

𝑥 −
𝑥3 − 10𝑥2 + 5

3𝑥2 − 20𝑥
=
2𝑥3 − 10𝑥2 − 5

𝑥(3𝑥 − 20)

𝑥1 =
2 0.7 3 − 10 0.7 2 − 5

0.7(3 0.7 − 20)
= 0.73536

𝑥2 =
2 0.73536 3 − 10 0.73536 2 − 5

0.73536(3 0.73536 − 20)
= 0.734460
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*Newton’s method is not a global method.

There are examples for which convergence will be poor or even for 
which convergence does NOT occur.

Usually, this can be cured by obtaining a better initial guess, it is 
needed to take 𝑥0 very close to exact root (𝛼) in order to obtain 
convergence.

Example: 𝑓 𝑥 =
20𝑥−1

19𝑥
, 𝛼 = 0.05

9

𝒙𝟎 𝒙𝟏

1 -18

0.5 -4

0.25 -0.75

0.125 -0.0625

0.0625 0.046875



Example: Consider 𝑓 𝑥 = arctan(𝑥) -> this has a single root at 0

However, for 𝑥0 = 1.391745 ⇒ 𝑥1 = −1.391745 ⇒ 𝑥2 = 1.391745

=>Under what conditions can we expect Newton’s method to 
converge?

*If 𝑓, 𝑓′, 𝑎𝑛𝑑 𝑓′′ are continuous near the root and if 𝑓′ does not equal 
to zero at the root, then the Newton’s method will converge whenever 
the initial guess is sufficiently close to the root.

In this context “sufficiently close” implies that if we keep taking 𝑥0
closer and closer to the root, we will find an 𝑥0 such that the iteration 
converges.
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Derivation of Newton’s method from Taylor’s Theorem strongly 
suggested

Theorem: The Newton’s Error Formula

Let 𝑓 ∈ 𝐶2(𝐼) be given, for some interval 𝐼 ⊂ 𝑅 with 𝑓 𝛼 = 0 for 
some 𝛼 ∈ 𝐼 for a given 𝑥𝑛 ∈ 𝐼, define 

𝑥𝑛+1 = 𝑥𝑛 −
𝑓 𝑥𝑛
𝑓′(𝑥𝑛)

Then, there exist a point 𝜁𝑛 between 𝛼 and 𝑥𝑛 such that

𝛼 − 𝑥𝑛+1 = −
1

2
𝛼 − 𝑥𝑛

2
𝑓′′ 𝜁𝑛
𝑓′ 𝜁𝑛
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Proof: Expanding f in a Taylor series about 𝑥 = 𝑥𝑛:

𝑓 𝑥 = 𝑓 𝑥𝑛 + 𝑥 − 𝑥𝑛 𝑓′ 𝑥𝑛 +
1

2
𝑥 − 𝑥𝑛 𝑥2𝑓′′(𝜁𝑛)

here 𝜁𝑛 is between 𝑥 and 𝛼. Now set 𝑥 = 𝛼,

0 = 𝑓 𝑥𝑛 + 𝛼 − 𝑥𝑛 𝑓′ 𝑥𝑛 +
1

2
𝛼 − 𝑥𝑛

2𝑓′′(𝜁𝑛)

Divide both sides by 𝑓′(𝑥𝑛), and re-arrange

𝑥𝑛 − 𝛼 −
𝑓 𝑥𝑛
𝑓′ 𝑥𝑛

=
1

2
𝛼 − 𝑥𝑛

2
𝑓′′ 𝜁𝑛
𝑓′ 𝑥𝑛

𝑥𝑛 −
𝑓 𝑥𝑛
𝑓′ 𝑥𝑛

− 𝛼 = 𝑥𝑛+1 − 𝛼
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The error at one 
step goes like the 
square of the error 
at the previous 
step. When the 
error becomes 
small, it begins to 
decrease rapidly.



If we assume that convergence is occurring 𝑓′ 𝛼 ≠ 0 so that
lim
𝑛→∞

𝑥𝑛 = 𝛼

𝑓′(𝑥𝑛) ≈ 𝑓′ 𝛼 and 𝑓′′(𝑥𝑛) ≈ 𝑓′′ 𝛼

𝛼 − 𝑥𝑛+1 ≈ −
1

2
𝛼 − 𝑥𝑛

2 𝑓′′ 𝛼

𝑓′ 𝛼
= 𝐶 𝛼 − 𝑥𝑛

2 where 𝐶 = −
1

2

𝑓′′ 𝛼

𝑓′ 𝛼
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Theorem: Assume that 𝑓 is defined and twice continuous differentiable 
for all 𝑥, with 𝑓(𝛼) = 0 for some 𝛼, define the ratio

𝑀 =
max
𝑥∈𝑅

|𝑓′′(𝑥)|

2min
𝑥∈𝑅

|𝑓′(𝑥)|

And assume that 𝑀 < ∞, then for any 𝑥0 such that
𝑀 𝛼 − 𝑥0 < 1

the Newton iteration converges, moreover

𝛼 − 𝑥𝑛 ≤ 𝑀−1 𝑀 𝛼 − 𝑥0
2𝑛

=> explain to us how the iteration converges.

And to assure us that if we can find a value of 𝑥0 that is close enough to 
the root, then we will get convergence (a rapid convergence)
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Theorem: Let 𝑓 ∈ 𝐶2(𝐼), where 𝛼 ∈ 𝐼 ⊂ 𝑅 is a root and 𝐼 is an open 
interval. Assume that 𝑓′(𝛼) ≠ 0 and let the values 𝑥𝑛 be defined by 
applying Newton’s method to 𝑓. Then, for 𝑥0 sufficiently close to 𝛼, we 
have that

lim
𝑛→∞

𝑥𝑛 = 𝛼 and lim
𝑛→∞

𝛼−𝑥𝑛+1

𝛼−𝑥𝑛
2 = −

𝑓′′(𝛼)

2𝑓′(𝛼)
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The Algorithm

1) Let 𝑥 be a guess for the root of 𝑓 𝑥 = 0

2) Compute Δ𝑥 = −
𝑓 𝑥

𝑓′(𝑥)

3) Let 𝑥 ← 𝑥 + Δ𝑥 and repeat steps 2-3 until Δ𝑥 < 𝜀

* Convergence can be speeded up by replacing

𝑥𝑖+1 = 𝑥𝑖 −𝑚
𝑓 𝑥

𝑓′(𝑥)

m is the multiplicity of the root. m=2 can be chosen.
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The Secant Method

An obvious drawback of Newton’s method is that, it requires to have a 
formula for the derivative of 𝑓.

There are certain function whose derivatives may be difficult or 
inconvenient to evaluate.

One obvious way to deal with this problem is to use an approximation 
to derivative in the Newton’s formula.

𝑓′(𝑥) ≈
𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ
-> forward difference

𝑥𝑛+1 = 𝑥𝑛 − 𝑓 𝑥𝑛
ℎ

𝑓 𝑥 + ℎ − 𝑓(𝑥)
Convergence of the approximation of derivative
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Reminder;

𝑓′(𝑥) ≈
𝑓 𝑥+ℎ −𝑓(𝑥)

ℎ
-> forward difference approximation

𝑓′(𝑥) ≈
𝑓 𝑥+ℎ −𝑓(𝑥−ℎ)

2ℎ
-> central difference approximation

𝑓′(𝑥) ≈
𝑓 𝑥 −𝑓(𝑥−ℎ)

ℎ
-> backward difference approximation
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The secant method

𝑥3 = 𝑥2 − 𝑓2
𝑥2 − 𝑥1
𝑓2 − 𝑓1

More generally,

𝑥𝑛+1 = 𝑥𝑛 − 𝑓(𝑥𝑛)
𝑥𝑛 − 𝑥𝑛−1

𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1)
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Example: 𝑓 𝑥 = 2 − 𝑒𝑥 , using 𝑥0 = 0, 𝑥1 = 1 ⇒ 𝛼 = 0.69314718

𝑥2 = 𝑥1 − 𝑓 𝑥1
𝑥1 − 𝑥0

𝑓 𝑥1 − 𝑓 𝑥0
= 0.581976, 𝑒𝑟𝑟𝑜𝑟 = 0.1111704

𝑥3 = 𝑥2 − 𝑓 𝑥2
𝑥2 − 𝑥1

𝑓 𝑥2 − 𝑓 𝑥1
= 0.676652, 𝑒𝑟𝑟𝑜𝑟 = 0.0164544

𝑥4 = 0.6940813, 𝑒𝑟𝑟𝑜𝑟 = 0.00093421
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Theorem: (The Secant Method Convergence)

Let 𝑓 be a twice continuously differentiable in a neighborhood of a root 
𝛼, and assume that 𝑓′(𝑥) ≠ 0 for all x in this neighborhood. Then, for 
𝑥0 and 𝑥1 sufficiently close to 𝛼 the secant iteration converges to 𝛼
with

lim
𝑛→∞

𝛼−𝑥𝑛+1

𝛼−𝑥𝑛
= 0 and lim

𝑛→∞

𝛼−𝑥𝑛+1

𝛼−𝑥𝑛
𝑝 =

1

2

𝑓′′ 𝛼

𝑓′ 𝛼

𝑝−1

For 𝑝 =
1+ 5

2
≈ 1.618…

** If 𝑓, 𝑓′, 𝑓′′ are all continuous near the root and if 𝑓′ does not equal 
to zero at the root, then the secant method will converge whenever the 
initial guess is sufficiently close to the root.

Note: Evidently, the order of convergence is generally lower than for 
Newton’s method. However, the derivatives 𝑓′(𝑥𝑛) need not be 
evaluated, and this is a definite computational advantage. 

https://www.math.drexel.edu/~tolya/300_secant.pdf
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Example: 𝑓 𝑚 =
𝑔𝑚

𝑐𝑑
tanh

𝑔𝑐𝑑

𝑚
𝑡 − 𝑣(𝑡) (from Book #2 page 160)

Determine the mass of the bungee jumper with a drag coefficient of 
0.25 kg/m to gave a velocity 36 m/s after 4 sec of free fall. The 
acceleration of gravity is 9.81 m/s2 .

Use an initial guess of 50 kg and value of 10−4 for perturbation fraction 
(desired relative error).
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Fixed-Point Iteration

Consider Newton’s method as applied to 𝑓 𝑥 = 𝑥2 − 𝑎

𝑥𝑛+1 =
1

2
(𝑥𝑛 +

𝑎

𝑥𝑛
) because 𝑥𝑛+1 = 𝑥𝑛 −

𝑓 𝑥𝑛

𝑓′(𝑥𝑛)

as 𝑛 → ∞, we know that 𝑥𝑛 → 𝛼 = 𝑎 (In this case convergence occur for 
any 𝑥0 > 0)

We can write more abstractly as
𝑥𝑛+1 = 𝑔(𝑥𝑛)

for 𝑔 𝑥 =
1

2
(𝑥 +

𝑎

𝑥
). Note that

𝑓 𝛼 = 0 <=> 𝛼 = 𝑔 𝛼 ⇒ This defines 𝛼, which we are ready know as the 
root of (the point where the graph of 𝑦 = 𝑓(𝑥) crosses the x-axis), to be a 
point where the graph of the new function 𝑦 = 𝑔(𝑥) crosses the line 𝑦 = 𝑥
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𝛼 = 𝑔 𝛼 shows that 𝑔(𝛼) stays at 𝛼 ⇒ this kind of point is called a 
fixed point of function 𝑔 and 𝑥𝑛+1 = 𝑔 𝑥𝑛 → fixed-point iteration for 
g.

𝑥2 − 𝛼 = 0 ⇒ 𝛼 = 𝑔 𝛼 <=> 𝑓 𝛼 = 0 <=> 𝛼 = 𝑎

* Fixed-point iteration can be developed by rearranging the function 
𝑓 𝑥 = 0. So that 𝑥 is on the left hand side of the equation. This 
transformation can be accomplished either by algebraic manipulation 
or by simply adding 𝑥 to both sided of the original equation.

Numerical Analysis 
KOM2722 G2
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Example: Suppose that we know there is a solution for the equation 
𝑥3 − 7𝑥 + 2 = 0 in [0,1].

𝑥 =
1

7
𝑥3 + 2 ⇒ 𝑥𝑛+1 =

1

7
(𝑥𝑛

3 + 2)

Numerical Analysis 
KOM2722 G2
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Example: 𝑓 𝑥 = 𝑥2 − 2𝑥 − 3 = 0 ⇒ roots at 𝑥 = −1 and 𝑥 = 3

• 𝑥 = 𝑔1 𝑥 = 2𝑥 + 3

If we start with 𝑥 = 4

𝑥0 = 4, 𝑥1 = 11 = 3.31662, 𝑥2 = 9.63325 = 3.10375

𝑥3 = 9.20750 = 3.03439, 𝑥4 = 9. 06877 = 3.01144

𝑥5 = 9.02288 = 3.00381

=> Converging on the root at 𝑥 = 3.

• Other rearrangements of 𝑓 𝑥

𝑥 = 𝑔2 𝑥 =
3

𝑥−2
⇒ x0 = 4, x1 = 1.5, x2 = −6, x3 = −0.375,

𝑥4 = −1.2631, 𝑥5 = −0.919355,

𝑥6 = −1.02762, 𝑥7 = −0.990876,

𝑥8 = −1.00305

We now converge to the other root at 𝑥 = −1,

Numerical Analysis 
KOM2722 G2
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• Consider a third rearrangement

𝑥 = 𝑔3 𝑥 =
𝑥2−3

2

𝑥0 = 4, 𝑥1 = 6.5, 𝑥2 = 19.625, 𝑥3 = 191.07 ⇒The iteration is 
diverging. The fixed point of 𝑥 = 𝑔 𝑥 is the intersection of the line 
𝑦 = 𝑥 and 𝑦 = 𝑔(𝑥) plotted against x.

** The method may converge to a root different from the expected 
one, or it may diverge. Different rearrangements will converge at 
different rates.

Numerical Analysis 
KOM2722 G2

27


	Slayt 1: Numerical Analysis  KOM2722- AVE3842  Week 5
	Slayt 2
	Slayt 3
	Slayt 4: Newton’s Method
	Slayt 5
	Slayt 6
	Slayt 7
	Slayt 8
	Slayt 9
	Slayt 10
	Slayt 11
	Slayt 12
	Slayt 13
	Slayt 14
	Slayt 15
	Slayt 16
	Slayt 17: The Secant Method
	Slayt 18
	Slayt 19
	Slayt 20
	Slayt 21
	Slayt 22
	Slayt 23: Fixed-Point Iteration
	Slayt 24
	Slayt 25
	Slayt 26
	Slayt 27

