INTRODUCTION TO COASTAL HYDRAULICS

HOMEWORK 1

In assignments, X is the last digit of the student number and Y is the penultimate digit. In the assignments, the student number must be written and $X=$? and $Y=$? must be indicated in every solution.

Question 1

The depth of water at a wave channel varies between 8 X cm and 2 Y cm . What should be the period ranges that generate deep water, shallow water or intermediate water conditions in the channel?

Question 2

If the wave profile is given by; $\eta=0 . X \sin (0.0866 x-0.785 t)$
a) Draw the wave profile (for $\Delta t=T / 8, x=0 \mathrm{~m}$)
b) Calculate the water depth of the recorded wave profile and find the deep water wave length.

Question 3

A wave with a period of $\mathrm{T}=7 . \mathrm{X} \mathrm{sec}$ and a height of $\mathrm{H}=3 . \mathrm{X} \mathrm{m}$ is propagating over a water depth of $\mathrm{d}=10 . \mathrm{Y} \mathrm{m}$. Determine the maximum horizontal and vertical components of particle velocity at $\mathrm{z}=-4 . \mathrm{X} \mathrm{m}$ below the surface.

Question 4

A wave with a period of $\mathrm{T}=10 . \mathrm{X} \sec$ and a height of $\mathrm{H}=2 . \mathrm{Y} \mathrm{m}$ is propagating from deep water into shallow water.
a) At a depth of $\mathrm{d}=100 \mathrm{~m}$, determine the maximum horizontal and vertical components of particle velocity and the maximum horizontal and vertical water particle displacements for $\mathrm{z}=$ -80 m and $\mathrm{z}=-\mathrm{d}$. $\left(\mathrm{u}_{\max }, \mathrm{w}_{\max }, \mathrm{A}\right.$ and B$)$.
b) At a depth of $\mathrm{d}=39 \mathrm{~m}$, determine the maximum horizontal and vertical components of particle velocity and the maximum horizontal and vertical water particle displacements for $\mathrm{z}=$ -30 m and $\mathrm{z}=-\mathrm{d}$. $\left(\mathrm{u}_{\max }, \mathrm{w}_{\text {max }}, \mathrm{A}\right.$ and B$)$.
c) At a depth of $\mathrm{d}=2.4 \mathrm{~m}$, determine the maximum horizontal and vertical components of particle velocity and the maximum horizontal and vertical water particle displacements for $\mathrm{z}=$ 0 and $\mathrm{z}=-\mathrm{d}$. ($\mathrm{u}_{\text {max }}, \mathrm{w}_{\text {max }}, \mathrm{A}$ and B).

Question 5

A wave with a period of $T=8 . Y \mathrm{sec}$ is propagating over a water depth of $\mathrm{d}=19 . \mathrm{X} \mathrm{m}$. The equation of the elliptical orbit is as follows at $\mathrm{z}=0$;
$\frac{\alpha^{2}}{7.87}+\frac{\beta^{2}}{4}=1$
a) Determine the wave profile.
b) If the movement of the water particle starts at $\mathrm{T}=0$ from the top of the orbit, find the particle velocity at $3 / 4$ of the orbital length.

