Introduction to Statistics

Topics

- Topics to be covered in the course:
 - Design of Experiments,
 - Exploratory Data Analysis and Descriptive Statistics,
 - Probability Theory,
 - Sampling Distributions and the Central Limit Theorem,
 - Estimation,
 - Statistical Inference,
 - Contingency tables,
 - Nonparametric Tests,
 - Power and sample size,
 - ANOVA,
 - Correlation and Regression

What is Statistics?

- Statistics can be defined as "a quantitative technology for empirical science; it is a logic and methodology for the measurement of uncertainty and for an examination of that uncertainty."
- The key word here is "uncertainty." Statistics become necessary when observations are variable.

The role of statistical analysis in science

- This course discusses statistical methods and their applications to engineering problems.
- We use **empirical evidence** to study data and make **informed decisions**.
- To study data, we measure a set of **characteristics**, which we refer to as variables.
- The objective of many scientific studies is to learn about the variations of a specific characteristic

The role of statistical analysis in science

- For engineering problems, it is important to find possible **relationships** among different **variables**.
- The variables that are the main focus of a study are as the **response (or target) variables**.
- In contrast, variables that explain or predict the variation in the response variable are called as independent variables or predictors
- Statistical analysis begins with a scientific problem usually presented in the form of a hypothesis testing or a prediction problem.

Goals of statistics

- Estimate the values of important parameters
- Test hypotheses about those parameters

Statistics is also about good scientific practice

- •Feline High-Rise Syndrome (FHRS)
 - The injuries associated with a cat falling out of a window.

 "The diagnosis of high-rise syndrome is not difficult. Typically, the cat is found outdoors, several stories below, and a nearby window or patio door is open."

High falls show lower injury rates

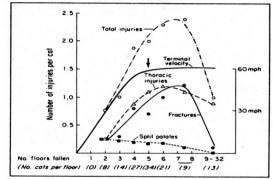


Figure 2—Relationship of injuries to distance fallen and velocity in 132 cats with high-rise syndrome: \blacklozenge points to 1: terminal velocity (—); total number of injuries/cat(0, ----); number of thoracic injuries (pulmonary contusions + pneumothorax)/cat (\blacklozenge , - - -); number of fractures/cat (\blacklozenge , ---); number of split palates/cat (\blacklozenge , ---).

- Cats have high surface-to-volume ratios
- Cats have excellent vestibular systems
- Cats reach terminal velocity quickly, relax, and therefore absorb impact better
- Cats land on their limbs and absorb shock through soft tissue

Jared Diamond, Nature 1988

Or not...

A sample of convenience is a collection of individuals that happen to be available at the time

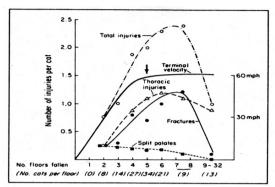
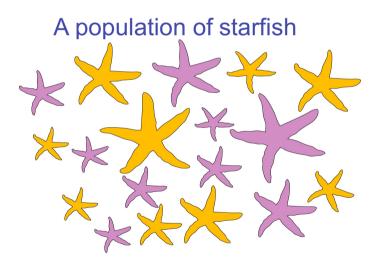


Figure 2—Relationship of injuries to distance fallen and velocity in 132 cats with high-rise syndrome: \downarrow points to terminal velocity (—); total number of injuries/cat (\circ , -----); number of thoracic injuries (pulmonary contusions + pneumothorax/cat (\diamond , ---); number of fractures/cat (\bullet , ---); number of split palates/cat (\bullet , ---).

Whitney and Mehloff, Journal of the American Veterinary Medicine Association, 1987

х.



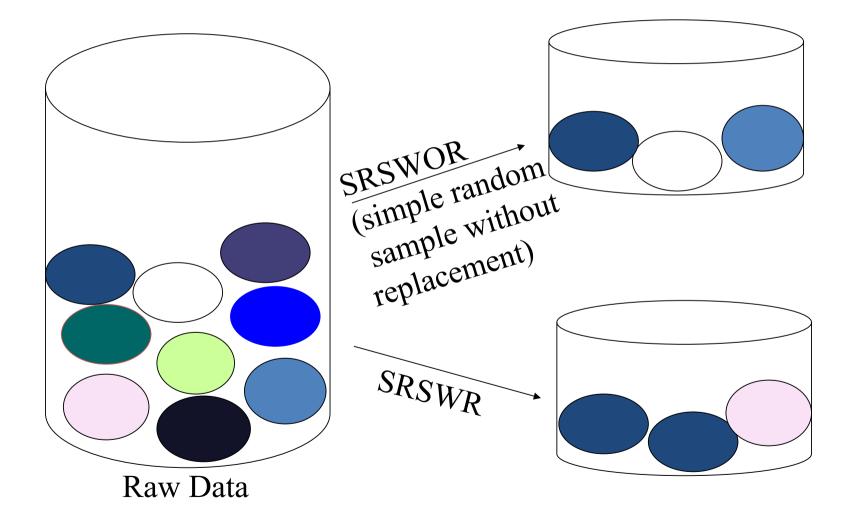
Sampling Principles

- **Samples** are typically selected randomly (i.e., with some probability) from the **population**.
- Unless stated otherwise, these randomly selected members of populations are treated as independent.
- The selected members (e.g., people, points) are called **sampling units**.
- The individual entities from which we collect information are called observation units, or simply **observations**.
- Samples must be **representative of the population**, and their environments should be comparable to the population.

Populations vs Samples

Populations <-> Parameters; Samples <-> Estimates

Random samples of 5 starfish



Sampling

Some of the most widely used sampling designs

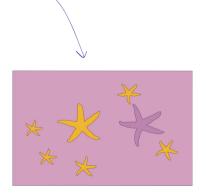
- Simple Random Sampling: the chance of being selected is the same for any group of *n* members in the population
- Cluster Sampling/Stratified Sampling: The population is first partitioned into subpopulation, a.k.a. *strata*, and sampling is performed seperately within each subpopulation.

Sampling: with or without Replacement

Sampling: Cluster or Stratified Sampling

Raw Data

Cluster/Stratified Sample



Populations vs Samples

• **Bias** is a systematic discrepancy between estimates and the true population characteristic.

A biased sample

Sampling Bias

The 1936 US presidential election

VS.

Alf Landon Republican

Franklin Roosevelt Democrat

1936 Literary Digest Poll

- 2.4 million respondents
- Based on questionnaires mailed to 10 million people, chosen from telephone books and club lists
- Predicted Landon wins: Landen 57% over Roosevelt 43%

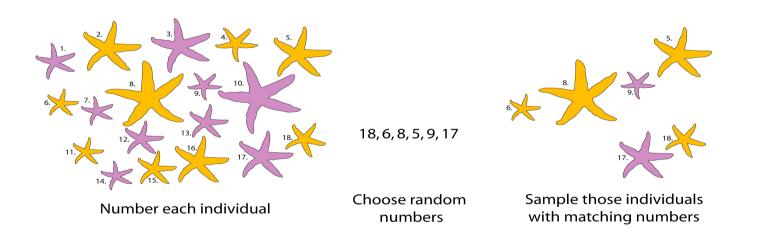
1936 election results

Roosevelt won with 62% of the vote

What went wrong?

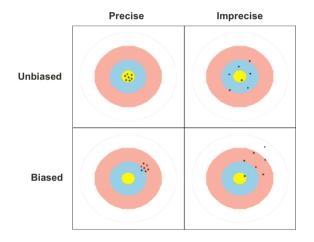
- Subjects given the questionnaire were chosen from telephone books and clubs, biasing the respondents to be those with greater wealth
 - Voting and party preference is correlated with personal wealth

Volunteer bias


- Volunteers for a study are likely to be different, on average, from the population
- For example:
 - Volunteers for sex studies are more likely to be open about sex
 - Volunteers for medical studies may be sicker than the general population
 - Volunteers for customer satisfaction surveys are likely to be very happy or upset about the service that they received

Properties of a good sample

- Independent selection of individuals
- Random selection of individuals
- Sufficiently large


One procedure for random sampling

• In a random sample, each member of a population has an equal and independent chance of being selected.

Sampling

 Population parameters are constants whereas estimates are random variables, changing from one random sample to the next from the same population.

Each point represents an estimate of a parameter.

Sampling error

- The difference between the estimate and average value of the estimate
- Larger samples on average will have smaller sampling error

Observational studies and experiments

- After obtaining the sample, the next step is gathering the relevant information from the selected members.
- In observational studies, researchers are passive examiners, trying to have the least impact on the data collection process.
- **Observational studies** are quite helpful in **detecting relationships** among characteristics.

Observational studies and experiments

- For relationships between characteristics, it is vital to **distinguish** between **association** and **causality**.
- The realationship is **casual** if one characteristic **influences the other one**.
- It is usually easier to establish causality by using experiments.
- In experiments, researchers attempt to control the process as much as possible.

Observational studies and experiments

- Observational Studies:
 - **Retrospective**: look into history
 - **Prospective**: observation over time
- Randomization and Replication
- Collecting Data
 - **Cross-Sectional**: at some fixed time
 - Longitudinal: follow the samples over time and repeatedly collect information and take measurements
 - **Time Series**: over a period of time. It is collected more frequently, but on smaller samples

Data exploration

- Towards statistical inference and decision making is to perform data exploration, which involves visualizing and summarizing the data.
- The objective of data visualization is to obtain a high level understanding of the sample and their observed (measured) characteristics.
- Summary statistics:

To make the data **more manageable**, further reduce the amount of information in **meaningful ways** to **focus** on the **key aspects** of the data.

Data exploration

- Data exploration techniques to show **distribution** of a **variable**.
- Distributions tell us the possible values it can take, the chance of observing those values, and how often we expect to see them in a random sample.
- Data exploration can help detect previously unknown patterns and relationships that are worth further investigation.
- Can also identify possible data issues, such as unexpected or unusual measurements, known as outliers.

Statistical inference

- We collect data on a sample to **learn about the population**.
 - i.e., Mackowiak, et al. (1992) measure the normal body temperature for 148 people to learn about the normal body temperature for the entire population.
- In this case, we say we are **estimating** the **unknown population average**.
- However, the characteristics and relationships in the whole population remain unknown.
- Therefore, there is always some uncertainty associated with our estimations.

Statistical inference

- Mathematical tool to address **uncertainty** is **probability**.
- The process of using data to draw conclusions about whole population with a degree of uncertainty about our findings, is called statistical inference.
- The knowledge acquired from data through statistical inference allows us to make decisions w.r.t the scientific problem.

Computation

- Usually **computer programs** are used to perform most of statistical analysis and inference tasks.
- The computer programs commonly used for this purpose include SAS, STATA, SPSS, MATLAB, Python and R.
- R is free and arguably the **most common software** among **statisticians**.
- For the purpose of this course, we use **R programming** language for statistical analysis.