Yıldız Technical University Civil Engineering Department Construction Management Division

Engineering Economy- 2

Uniform-series Present Worth Factor (Eșit Geri Ödemeli Birikim Fonu)

$$
\begin{aligned}
& P=A \frac{(1+i)^{N}-1}{i(1+i)^{N}} \\
& P=A(P / A, i \%, N)
\end{aligned}
$$

- When A, i and N are known, calculation of \mathbf{P} value: The equivalent present worth P of a uniform series A end of period cash flows N at an interest rate i.

Example -1

- How much money should you be willing to pay now for a guaranteed $\$ 600$ per year for 9 years starting next year, at a rate of return of 16% per year?

$$
\begin{aligned}
& \mathrm{P}=\mathrm{A}(\mathrm{P} / \mathrm{A}, \% 16,9) \\
& \mathrm{P}=600^{*}(1+0,16) / 9-1 / 0,16 \\
& (1+0,16)^{\wedge 9} \\
& \mathrm{P}=600^{*} 4,6065 \\
& \mathrm{P}=2763,9 \mathrm{TL}
\end{aligned}
$$

$$
\begin{aligned}
& P=A \frac{(1+i)^{N}-1}{i(1+i)^{N}} \\
& P=A(P / A, i \%, N)
\end{aligned}
$$

Capital Recovery Factor (Eșit Seri Ödemeli Kapital Geri Kazanım)

P is known

$$
A=P \frac{i(1+i)^{N}}{(1+i)^{N}-1}
$$

$$
A=P(A / P, i \%, N)
$$

- When P, i and N are known, calculation of value of A: the present worth P is known and the equivalent uniform-series amount A is sought throughout a period N at an interest rate i.
- The payback of house and car credits are some of the examples of capital recovery factors.

Example - 2

- Company A borrows 450 ooo TL for buying laboratory equipment at a rate of return of \%1o per year for 8 years starting next year. What should the company pay annually throughout the credit period?

450000

$$
\mathrm{i}=\% 10
$$

$\mathrm{A}=\mathrm{P}(\mathrm{A} / \mathrm{P}, \% 10,8)$
$\mathrm{A}=4500000^{*} 0,10(1+0,10) \uparrow 8 /$
$(1+0,10) 18-1$
$\mathrm{A}=450000^{*} 0,1874$
$\mathrm{A}=84330 \mathrm{TL}$

$$
\begin{aligned}
& A=P \frac{i(1+i)^{N}}{(1+i)^{N}-1} \\
& A=P(A / P, i \%, N)
\end{aligned}
$$

Uniform Series Compound Amount (Eșit Ödemeli

 Seri - Bileșik Değer Faktörü)

- When A, i and N are known, calculation of F value: The equivalent future worth F of a uniform series A end of period cash flows N at an interest rate i.

Example - 3

At the end of each year, 4500 TL is deposited throughout 8 years at an interest rate of $\% 10$ per year. What is the amount of the money which can be withdrawn at the end of $8^{\text {th }}$ year?

Sinking Fund Factor (Eșit Ödemeli Seri - Birikim Hesabı)

- When F, i and N are known, calculation of A value: This function determines the A value for n years, given F in year n , at a given interest rate.
- These calculations are performed for determining the periodically deposited amount required to replace the fixed assets.

Example - 4

- At the present time, a father proposes to give 1000 TL to his son who wants to collect 7000 TL at the end of $7^{\text {th }}$ year. He deposits this money to a bank. On the other hand, the son is planning to deposit equal amount of money earned by working at a part time job at the end of each year. If the interest rate is \%1o per year, how much money should he earn?

$\mathrm{A}=\mathrm{F}(\mathrm{A} / \mathrm{F}, 10 \%, 7)-\mathrm{P}(\mathrm{A} / \mathrm{P}, \% 10,7)$
$\mathrm{A}=7000^{*} 0,10 /(1+0,10) 17-1-1000{ }^{*} 0,10$
$(1+0,10) \uparrow 7 /(1+0,10) \uparrow 7-1$
$\mathrm{A}=7000^{*} 0,1054-1000^{*} 0,2054$
$\mathrm{A}=532,4 \mathrm{TL}$

Arithmetic Gradient Factors

An arithmetic gradient is a cash flow series that either increases or decreases by a constant amount. The amount of the increase or decrease is the gradient.

Gradient uniform series (Sürekti Artan/Azalan Seri Ödemeler)

Gradient uniform series

Example - 5

- A textile company wants to buy a manufacturing machine whose economic life is 5 years. The engineers predict that the operating and maintenance expenses of this machine will be $\$ 1000$. These expenses are expected to increase $\$ 250$ each year uniformly and it is assumed that these expenses occurred at the end of the year. If the company wants to deposit an amount of money at \%12 interest rate to compensate these expenses. Then how much money should they deposit?

Example - 6

- A company wants to deposit money to a bank at $\% 10$ interest rate. The money deposited at the end of first year is $\$ 1200$, and it will decrease by $\$ 200$ per year for 4 years. What is the amount of money will the company earn at the end of $5^{\text {th }}$ year?

Composite Cash Flows (Karıșık Nakit Akıșları)

- Carrying all inflows and outflows one by one or
- Grouping approach

Composite Cash Flows

$$
\mathrm{P}=?
$$

Composite Cash Flows

Composite Cash Flows

Composite Cash Flows

$$
\mathrm{P}=?
$$

Composite Cash Flows

$\mathrm{P}=$?

```
P= F (P/F,%12,1)+ A (P/A, %12, 3)* (P/F,%12,1)+ A (P/A, %12, 3)*
(P/F,%12,4)+(A3+G(A/G,%12,5))*(P/A,12%,5)*(P/F,12%,7)
P= 50 (P/F,%12,1)+ 100(P/A, %12, 3)* (P/F,%12,1)+ 150 (P/A, %12,
3)* (P/F,%12,4)+(150+50(A/G,%12,5))*(P/A,12%,5)*(P/F,12%,7)
P= 50*0,8929+100*2,4018*0,8929+150*2,4018*0,6355+
(150+50*1,7746)*3,6048*0,4523
P=$ 877,29
```


Composite Cash Flows

Example 2: In order to satisfy the equivalent of these two cash flows, what should be the value of C ?

$\mathrm{P}_{1}=\mathrm{A}_{1}(\mathrm{P} / \mathrm{A}, \% 12,6)-\mathrm{A}_{2}(\mathrm{P} / \mathrm{A}, \% 12,2)$
$\mathrm{P}_{1}=300^{*} 4,1114-200^{*} 1,6901$
$\mathrm{P}_{1}=\$ 895.4$

$$
\begin{aligned}
& \mathrm{P}_{2}=\mathrm{A}(\mathrm{P} / \mathrm{A}, \% 12,2)+\mathrm{F}(\mathrm{P} / \mathrm{F}, \% 12,5) \\
& \mathrm{P}_{2}=\mathrm{C}^{*} 1,6901+\mathrm{C}^{*} \mathrm{O}, 5674 \\
& \mathrm{P}_{2}=2,2575 \mathrm{C}
\end{aligned}
$$

$$
\mathrm{P}_{1}=\mathrm{P}_{2}
$$

$$
C=\$ 396.73
$$

Composite Cash Flows

Example 3:According to the cash flow given below, determine the value of F ?


```
F=(A
7%,5)* (F/P,7%,2)- A (F/A,7%, 2)
F=(2000+500(A/G,7%,5))*(F/A,7%,5)*(F/P,7%,7)-(5000-1000(A/G,7%,5))
*(F/A,7%,5)* (F/P,7%,2)-1000 (F/A, 7%, 2)
F=(2000+500*1,8650)*5,7507*1,6058-
(5000-1000*1,8650)*5,7507*1,1449-1000*2,0700
F=4369,33
```

