Week-7
 Traverse Computations

Traverse

A traverse consist of a series of straight lines connected at established points, along the route of survey.

TOPOGRAPHY (HRT3351)

Traverse

Purpose of Traverse Stations

- To determine the horizontal location of natural or artificial objects and topographic detail points on the ground to prepare plans or maps with contour lines.
- To determined the location of points of which horizontal positions are unknown by the help of other points of which positions are known by making necessary observations between traverse stations

OA

TOPOGRAPHY (HRT3351)

Types of Traverse

There are three kinds of traverses with their geometrical properties;

- Open Traverse
- Closed-Loop Traverse
- Closed-Link Traverse

OPEN TRAVERSE:

Open traverse does not create a closed shape, may begin at a point of known position and end at a point of previously unknown position.

Computational check is not possible to detect error or blunder in distance and directions.

Open Traverse

Open Traverse

TOPOGRAPHY (HRT3351)

Open Traverse Computation

Traverse surveying in the field yields observed angles or directions and length of the traverse sides. Thus, these parameters are used in traverse computations which are performed in a plane rectangular coordinate system.

Computation of Azimuths:

Computational check is not possible to detect error or blunder in distance and directions in open traverse computation. Therefore, it is impossible to balance traverse angles.

FUNDAMENTAL COMPUTATION -3

$$
t_{A B}+\beta_{B}=K
$$

- $K<200^{g} ; K+200^{g} ; t_{B C}=t_{A B}+\beta_{B}+200^{g}$
- $200^{9}<\mathrm{K}<600^{9} ; \mathrm{K}-200^{\mathrm{g}} ; \mathrm{t}_{\mathrm{BC}}=\mathrm{t}_{\mathrm{AB}}+\beta_{\mathrm{B}}-200^{\mathrm{g}}$
- $K>600^{g} ; K-600^{g} ; t_{B C}=t_{A B}+\beta_{B}-600^{g}$

Open Traverse Computation

Computation of Departures and Latitudes:

Rectangular Coordinate System

Direction of
+X , refers to North, $+Y$, refers to East

Open Traverse Computation

Computation of Departures and Latitudes:

$$
\begin{aligned}
& Y_{B}=Y_{A}+\Delta Y=Y_{A}+S \cdot \operatorname{Sin} \alpha \\
& X_{B}=X_{A}+\Delta X=X_{A}+S \cdot \operatorname{Cos} \alpha
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Sin} \alpha=\frac{\Delta Y}{S} \rightarrow \Delta Y=S \cdot \operatorname{Sin} \alpha \\
& \operatorname{Cos} \alpha=\frac{\Delta X}{S} \rightarrow \Delta X=S \cdot \operatorname{Cos} \alpha
\end{aligned}
$$

$$
\Delta Y=\text { Departure }
$$

$$
\Delta X=\text { Latitude }
$$

Open Traverse

EXAMPLE - 1

Known :

$Y B=1000.00 \mathrm{~m}$ $X B=1000.00 \mathrm{~m}$ $(A B)=175 \mathrm{~g} .1680$

Unknown:
$\mathrm{P} 1(\mathrm{X}, \mathrm{Y})=$?
$\mathrm{P} 2(\mathrm{X}, \mathrm{Y})=$?
P3 $(X, Y)=$?

Open Traverse

EXAMPLE - 1

Known :
$\begin{array}{ll}Y B=1000.00 \mathrm{~m} & \mathrm{P} 1(X, Y)=? \\ X B=1000.00 \mathrm{~m} & \mathrm{P} 2(X, Y)=? \\ (\mathrm{AB})=175 \mathrm{~g} .1680 & \mathrm{P} 3(X, Y)=?\end{array}$

Unknown:

Station Point	Measured Traverse Angles $(\beta$ - grad $)$	Azimuths (α-grad)	Lengths (m)	$\begin{gathered} \text { Departure } \\ \Delta Y \\ (\mathrm{~m}) \\ \hline \end{gathered}$	Latitude ΔX (m)	Coordinates Y $(\mathrm{~m})$	Coordinates X $(\mathrm{~m})$	Station Point
A	1289.3540	1759.1680						A
B			146.78 m		-8.12	1000.00 m	1000.00 m	B
		103.5220		146.56		114656		
		90.3640	163.95	162.08	24.72			
P_{2}	215.9250	106.2890	132.54	131.89	-13.07	1308.64	1016.60	P_{2}
P3						1440.53	1003.53	P3

Closed-Link Traverse

CLOSED-LINK TRAVERSE:

Closed-Link traverse is connected to at least two points, at the beginning and at the end of traverses, whose coordinates have been previously determined.

Calculations can be made to check for errors.

Closed-Link Traverse

Closed－Link Traverse Computation

Balancing Traverse Angles：

Firstly，azimuth of N1N2 and azimuth of N3N4 must be calculated．
$\tan (A B)=\frac{Y_{B}-Y_{A}}{X_{B}-X_{A}} \rightarrow(A B)=\arctan \frac{Y_{B}-Y_{A}}{X_{B}-X_{A}}=\arctan \frac{\Delta Y}{\Delta X}=\operatorname{atn} \frac{\Delta Y}{\Delta X}$

FUNDAMENTAL
 COMPUTATION－2

Closed-Link Traverse Computation

Balancing Traverse Angles:

Angular Condition:

$(N 3 N 4)=(N 1 N 2)+\Sigma \beta-n .200^{\text {grad }}$
n -> number of stations with starting and end points.

Angular Misclosure:
$f_{\beta}=\left((N 1 N 2)+\Sigma \beta-n .200^{\text {grad }}\right)-(N 3 N 4)$

The maximum angular misclosure of a traverse is calculated by below equation.

$$
\mathrm{F}_{\mathrm{B}}=1.5^{\mathrm{c}} \sqrt{\mathrm{n}} \quad \mathrm{n}->\text { number of traverse angles. }
$$

If the angular misclosure (fB) < the maximum angular misclosure (FB), measurement can be accepted and traverse angles can be balanced.

Closed-Link Traverse Computation

Computation of Azimuths:

Computational check is not possible to detect error or blunder in distance and directions in open traverse computation. Therefore, it is impossible to balance traverse angles.

FUNDAMENTAL COMPUTATION -3

- $K<200^{g} ; K+200^{g} ; t_{B C}=t_{A B}+\beta_{B}+200^{g}$
- $200^{9}<\mathrm{K}<600^{9} ; \mathrm{K}-200^{g} ; \mathrm{t}_{\mathrm{BC}}=\mathrm{t}_{\mathrm{AB}}+\beta_{\mathrm{B}}-200^{\mathrm{g}}$
- $K>600^{g} ; K-600^{g} ; t_{B C}=t_{A B}+\beta_{B}-600^{g}$

Closed-Link Traverse Computation

Computation of Departures and Latitudes:

$$
\begin{aligned}
& Y_{B}=Y_{A}+\Delta Y=Y_{A}+S \cdot \operatorname{Sin} \alpha \\
& X_{B}=X_{A}+\Delta X=X_{A}+S \cdot \operatorname{Cos} \alpha
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Sin} \alpha=\frac{\Delta Y}{S} \rightarrow \Delta Y=S \cdot \operatorname{Sin} \alpha \\
& \operatorname{Cos} \alpha=\frac{\Delta X}{S} \rightarrow \Delta X=S \cdot \operatorname{Cos} \alpha
\end{aligned}
$$

Closed-Link Traverse Computation

EXAMPLE - 2

Nokta Y X
B $\quad 1000.00 \mathrm{~m} 1000.00 \mathrm{~m}$
$(A B)=1569.3885$
C $\quad 1388.45 \quad 946.65$
$(C D)=779.5020$

Closed-Link Traverse Computation

EXAMPLE - 2

Station	Traverse Angle (β)	Azimuth (a)	$\begin{gathered} \text { Length } \\ \mathrm{S} \end{gathered}$	ΔY	ΔX	Y	X	Station
A			125.14	$\begin{array}{r} +2 \\ 124.29 \end{array}$	$\begin{array}{r} -2 \\ 14.55 \end{array}$			A
B	$\begin{array}{r} +60 \\ 1369.1874 \end{array}$	1569.3885				1000.00 m	1000.00 m	
P1	+60	92.5819				1124.31	1014.53	P1
	227.6345	120.2224	112.64	$\begin{array}{r} +1 \\ 107.00 \end{array}$	$\begin{array}{r} -2 \\ -35.18 \end{array}$			
	+60					1231.32	979.33	P2
P2	142.9418	63.1702	98.75	$\begin{array}{r} +1 \\ 82.68 \end{array}$	$\begin{array}{r} -2 \\ 54.00 \end{array}$			
	+60					1314.01	1033.31	P3
P3	291.6458	154.8220	114.21	$\begin{array}{r} +2 \\ 74.42 \end{array}$	$\begin{array}{r} -2 \\ -86.64 \end{array}$			
	+60					1388.45	946.65	C
C	122.6740	77.5020						
D								D

```
[\beta] = 921.0835
    \alpha,0}=156.388
        1077.4720
5.200 = 1000.0000
            77.4720
            77.5020
    f
                F
```


Week-8
 Height Measurements

TOPOGRAPHY (HRT3351)
Assoc. Prof. Dr. Burak AKPINAR

