$\mathbf{L}=90+5 \times \mathbf{n}[m] ; \quad \mathbf{B}=(\mathbf{L} / 7.0) ; \quad \mathbf{T}=(\mathbf{B} / 2.5) ; \quad \mathbf{D}=\mathbf{H}=(\mathbf{L} / 12.0) ; \quad \mathbf{C}_{\mathbf{B}}=0.68$,where " n " is the last digit of your student ID.

Frame spacing will be found from the following formula: $\quad \mathrm{a}=(\mathbf{L} / 500)+0,48[\mathrm{~m}]$

1. Determine the dimensions of the spotted structural member as "Q1" in Figure 1, using GL Rules. (25 points)
2. Calculate the maximum axial compressive load (in kN) that may be safely carried by the spotted structural member as "Q2" in Figure 1, using GL Rules. (25 points)

Note that the structural member "Q2" has a rectangular cross section, which is a 120×10 flat bar section. Also note that the height of double bottom ($h_{D B}$) is 1,25 metres.
3. Determine the dimensions of the spotted structural member as "Q3" in Figure 2, using GL Rules. (25 points)
4. Calculate the section modulus (SM) of $140 \times 70 \times 10$ angle section attached to a plate with a thickness of " t ". The thickness needed for the calculation may be found by the following simple formula, where \mathbf{L} is in $[m]$ (25 points):
$t=\sqrt{L}[\mathrm{~mm}]$
(Remember that a standard thickness value should be used!)

Also remember that: $\quad y_{N A}=\sum A_{i} y_{i} / \sum A_{i} ; \quad I_{N A}=\sum I_{i}+\sum A_{i} d_{i}^{2}$ and $S M=I_{N A} / y_{\max }$

Normal strength steel ($\mathrm{ReH}_{\mathrm{eH}}=235$ [MPa]), whose modulus of elasticity (E) is 200 [GPa], is used. Service range is unlimited. Any other assumptions that may be needed for the calculations should be clearly stated. (90 minutes allowed)

