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2.9. STATICALLY INDETERMINATE PROBLEMS

In the problems considered in the preceding section, we could always
use free-body diagrams and equilibrium squations to determine the internal
forees produced in the various portions of a member under given loading
conditions. The values obtained for the internal forces were then substi-
tuted into Eqs. (2.8) or (2.9) to compute the deformation § of the member.

: There are many problems, however, in which the internal forces can-

not be determined from statics alone. In fact, in most of these problems the

| peactions themselves—which are external forces—cannot be determined by

;Impiy drawing a free-body diagram of the member and writing the corre-

equilibrium equations. The equilibrium equations must be com-

; plﬂmenf-ﬂd by relations involving deformations obtained by considering the

geometry of the problem. Because statics is not sufficient to determine

f gither the reactions or the internal forces, problems of this type are said to

| be statically indeterminate, The following examples will show how to han-
dle this type of problem,

Example 202 -~ \
A rod of length L, eross-sectional area Ay, and modalug
- u[.eiasl:lul}' £,, has been placed inside a tube of the same
'i,gngth L, but of crosg-sectional area Ay and modulus of elastic-
113{ E: {Fig- 2.23a), Whatis the deformation of the rod and tube
when a force P is exerted on a rigid end plate as shown?
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Fig. 2.23

Denoting by P, and Py, respectively, the sl forces in the
rod and in the tube, we draw free-body diagrams of all three
elements (Fig. 2.23b, ¢, d). Only the last of the diaprams yields
any significant information, numely:

H+by=P (211}

Clearly, one equation is not sufficlent to determine the two
unknown intemnal forces T and F,. The problem is statically
indeterminute.

However, the geometry of the problem shows that the
deformations §, and 5. of the rod and tube must be equal.
Recalling Eq. (2.7), we write

i = bk b, = Tl (2.1
1T AE, 1 A
Equating the deformations &, and 8, we obtain:
PI Fi
= 2.13
AE AL e

Equations (2 11) and (2.13) may be solved ﬁmu!tanem:_sly for Py
and Fy
AE P

-~ AP
= AE, & AyE, b= AyE) 4 AE;

Either of Eqs. (2.12) may then be used (o determine the com-
tmon deformation of the rod and tulse.
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Example 2.03

A bar AB of length L and uniform cross section is attached
to rigid supports at A and B before being loaded. What are the
stresses in portions AC and BC due to the application of 2 |acd
P at point € (Fig. 2.24a)?
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Drawing the free-body diagram of the bar {Fig. 2.24b), we
obtain the equilibrium equation

R, +Ry=F 2.14)

Since this equation is not sufficient to determine the two un.
known reactions R, and Ry, the problem is statically indeter.
minate.

However, the reactions may be determioed if we observe
from the peometry that the total elongation & of the bar must
be zero. Denoting by &, and &, respectively, the elongations of
the portions AC and BC, we write

ﬁ=5|+ﬁgzn

or, expressing 8, and &, in terms of the corresponding internal
forces Ppoand Py

PL, PL
e et O et SO a.15)
AE T AE . 1)

But we note from the free-body diagrams shown respectively in
parts b and ¢ of Fig. 2.25 that P, = B and F; = —Ry. Comy-
ing these values into (213, we write

R,L, — Ak, =10 {2.16)
Exquations (2.14) and (2.16) may be solved simultaneously for
R, and Ry: we obtain R, = PLy/L and Ry = PL,/L. The de.
sired stresses in AC and BC may be obtained by dividing, re-
spectively, P, = R, and Py = —Hp by the eross-sectionil area
of the bar.

Superposition Method. We may observe that a structure is stati-
cally indeterminate whenever it is held by more supports than are required
to maintain its equilibrium, This results in more unknown reactions than
available equilibrium equations. 1t is often found convenient o designate
one of the reactions as redundant and to eliminate the corresponding sup-
port. Since the stated conditions of the problem cannot be arbltrarily
changed, the redundant reaction must be maintained in the solution. Bul it
will be treated as an unknown load which, together with the other loads,
must produce deformations which are compatible with the original con-
straints. The actual solution of the problem is carried out by considering
separately the deformations caused by the given loads and by the redun-
dant reaction, and by adding—or superposing—the results obtained. |

i The general conditions under which the combined eHect of several loads may be obtained
in this way are discussed in See. £.12,

o
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Example 2.04
Determine the reactions 2t A and B for the steel bar and
|oading shown in Fig. 2.26, assuming a close fit at both supports
| before the loads are applied.

Fig. 2.26

~ We shall consider the reaction at B as redundant and re-
,luse the bar from that support. The reaction Ry, is now consid-
cml s an unknowy load (Fig. 2.27a) and will be determined
_ from the condition that the deformation & of the rod must be
equal to zero. The solution is carried out by considering sepa-
rutely the deformation &, caused by the given loads (Fig, 2.27h)
and the deformation &, due to the redundant reaction H,
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- The deformation & i:d:l,l:ﬁuuﬂ from Eq. {E.E} after the bar
~ has been divided into four portions, as shown. in Fig 225,

Following the same procedure as in Example 201, we write
B=0 EB=K=060xI10N F,=9%0x N
A=A, =400 % 10-"m* Ay =A, =250 x 10" m?

Li=Li=Li=L,=0150m

150 erni
] -
300 kN 150 mm
Cr -
150 mim
x -
ED0 KN 150 mm
Fig. 2.28 B L

Substituting these values into Eq. (2.8), we obtain

60 % 10PN
""‘Z,gf: (D"'-ﬂlxm-i g

600 x 108 N 800 % 10°N )ﬂ.lﬁﬂm
250 % 10-%"m? "~ 250 x 10-Fm? E
5, = LIBXIC (2.17)

Considering now the deformation &, due to the redundant
reaction Ry, we divide the bar into two portions, as shown in
Fig. 228, and write

Po=Py= —Ry
= 400 % 10-%m? A, = 250 x 10-% m?
Ll le :D-mm

Fig. 2.26
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Subistituting theseWahies into Eg. (28), we obtnin
_PL,  BL, (185X 109H,
T AE T AE E

Expressing thal the total deformation & of the bar must be
zero, we write

{2.18)

Bg

= Eh + BH = {E.lﬂ]-

and, substituting for &, and By, from (2,17) and (2.18} into (2.19),

_LI1Z5 X 100 (L85 X MOOR, _
- > =

3 E

Solving for Ry, we have
R, = 577 % 107N = 577 kN

The reaction i, at the upper support is obtained from the
free-body diagram of the bar (Fig. 2.30). We write
El‘;:ﬂ: H.-mmnmiﬂ-bﬁ".——ﬂ
R, = 900kN — Ry = 900 kN — 577kN = 323kN
y e

Onoe the reactions have beon determined, the stredsos and
strains in the har may easily be obtained. It should be noted
that, while the total deformation of the bar is zero, each of iis
component parts does deform under the given loading and re-
straining conditions.

Example 2.05

Determine the reactions at A and B for the steel bar and
loading of Example 204, assuming now that a 4.50-mm clear-
ance exists between the bar and the ground before the loads are
applied (Fig. 231). Assume E = 200 CPa.

A = 400 m®

| O i =
V-

4.5 mm
Fig. 2231

We follow the same procedure us in Example 2.04. Can-
sidering the reaction at B as redundant, we compule the defor-
mations §, and 8, caused respectively by the given londs and
by the redundant reaction Ry, However, in this case the total
deformation is not zero, but § = 4.5 mm. We write therefore

§=8, +8;,=45x10"m (2.20)
Substituting for §, and &, from (217) and (218) into {£.20), and
recalling that E = 200 GFa = 200 x 10" Pa, we have

1.185 3 107

- i

1
= X {1.95 » 107, 5 %105

200 x 107

Solving for R, we obtain
H_,' = 1154 ¥ 10N = 1154 kN

The renction at A is obtained from the free-body diagram of
the bar iﬁg 2.3‘."}:

EFE =k
H, = 900 kN — Ry =000kN — 1154kN = T83kN

R, — 300N — 600KN + Ry =0

R e LR




