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Section 6.5
Normal 
Approximation to 
the Binomial
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Theorem 6.3

The normal distribution with ! = #$ and %! = #$(' − $) provides a good 
approximation to the binomial distribution 

a) when * is large and + is not extremely close to 0 or 1 (#$ and #(' − $) are 
greater than or equal to 5); and 

b) even when * is small and + is reasonably close to 1/2. 
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Normal approximation of b(x; 15,0.4)

!(# = %)
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Normal approximation to the 
Binomial

The correction +0.5 is called a continuity correction. 
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Normal approximation of b(x; 15,0.4)

!(' ≤ # ≤ ))
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Normal approximation to the 
Binomial

Example 1:

Use normal approximation
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Normal approximation to the 
Binomial

Example 2:

Use normal approximation
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Section 6.6
Gamma and 
Exponential  
Distributions
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Gamma and Exponential Distributions

The exponential and gamma distributions play an important role in both queuing 
theory and reliability problems. 

Time between arrivals at service facilities and time to failure of components and 
electrical systems often are nicely modeled by the exponential distribution. 

The relationship between the gamma and the exponential allows the gamma to be 
used in similar types of problems. 
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Definition 6.2
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Figure 6.28 Gamma distributions
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Theorem 6.4
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Exponential Distribution

The special gamma distribution for which , = 1 is called the exponential distribution. 
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Exponential Distribution

Example: Suppose that a system contains a certain type of component whose time, in 
years, to failure is given by . . The random variable . is modelled nicely by the 
exponential distribution with mean time to failure /	 = 	5. If 5 of these components are 
installed in different systems, what is the probability that at least 2 are still functioning at 
the end of 8 years? Assume that the components fail independently.
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Memoryless Property of the 
Exponential Distribution

The exponential distribution is the unique distribution having this property.

Example: Let 2 denote the time until detecting a particle with a Geiger counter 
and assume that 2 has an exponential distribution with 3(2) = 1.4 minutes. 
Suppose we turn on the Geiger counter and wait 3 minutes without detecting a 
particle. What is the probability that a particle is detected in the next 30 seconds?
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Relationship to the Poisson 
process

Suppose that we have a Poisson process with parameter 6 > 0, where 6 is the average 
number of occurrences per unit time. Let 9(:) be the number of occurrences in [0, :]. We 
know that 9(:) is a Poisson random variable with parameter 6:, i.e.

> 9 : = ? = @"#$ 6: %

?! , ? = 0,1,2, …

Let .& denote the time until the first occurrence, and for * > 1, let .' denote the time elapsed 
between the * − 1 $( and the *$( occurrences.

Proposition 1: .&, .), … are independent exponential random variables with parameter 1/6.
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Relationship to the Poisson 
process

Proposition 1 leads to an alternative equivalent definition of the Poisson process:

1. Start with a sequence of independent exponential random variables .&, .), . . . , with 
common parameter 1/6, and let these represent the interoccurrence times.
2. Record an occurrence at times .&, .& + .), .& + .) + .*,. etc.

These occurrences form a Poisson process with parameter 6.
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Relationship to the Poisson 
process

Let F' be the time until the *th occurrence, * ≥ 1. Then, F' = ∑+,&' .+.

Proposition 2: F' has a gamma distribution with parameters , = *, / = 1/6.

When , is a positive integer *, the gamma distribution is also known as the Erlang 
distribution. Thus, F' has an Erlang distribution with parameters , = *, / = 1/6.

We have also shown that if .&, .), … , .- are independent exponential random variables with 
parameter / (, is a positive integer), then  .& + .) +⋯+ .- has the Erlang (gamma) 
distribution with parameters , and /.
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Example 1

The distance to the first major crack and the distance between successive major cracks in a 
highway follow an exponential distribution with a mean of 10 km. Assume that these 
distances are independent of each other. So, the successive major cracks form a Poisson 
process with parameter 0.1 per km.
(a)  What is the probability that there are no major cracks in a 20-km stretch of the highway?
(b)  What is the probability that there are two major cracks in a 20-km stretch of the 
highway? 
(c)  What is the probability that the first major crack occurs between 24 and 30 km of the 
start of inspection? 
(d)  What is the probability that there are no major cracks in two separate 10-km stretches of 
the highway? 
(e) Given that there are no cracks in the first 10 km inspected, what is the probability that 
there are no major cracks in the next 20 km inspected?


