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PREFACE

This short lecture notes aims to give some fundamental subjects in geodetic
conventional deformation analysis. It has been written for graduate students who take Error
Theory and Parameter Estimation and Adjustment Computation courses in their Geodesy
departments. For reading the notes, it is highly recommended to have knowledge on
geodetic network adjustment solutions, especially trace-min, partial trace-min and S-
transformation.

The updated version with numerical examples and literature review will appear soon.
Your comments on the lecture notes will be appreciated.

C. Aydin
istanbul, July-2014

(caydin78@gmail.com)







1. INTRODUCTION

Because of acting forces, a physical body may displace from x; initial position to x;

present position in time in 3D space. The displacement vector

d=x—X; (1.2)

consists of two parts

e relative part,

e non-relative part.

The relative part, the so-called rigid body displacement, represents translation and
rotation. They are relative because they change depending on where we are observing
the body from. For instance, a body may not move or rotate for an observer moving
and rotating along the same direction simultaneously with the body. The non-relative
part, on the other hand, does not depend on the observer position. This part

represents shape change, i.e. deformation.

Engineering buildings, such as dams, bridges, tunnels etc., or the Earth’s crust are
such bodies affected by some physical forces all the time. Monitoring their responses
to the forces is an essential task not only for understanding the body mechanism but
also for taking some precautions before any possible damage. The responses, which
are monitored as afore-mentioned displacements, are very small compared to the
body size. Geodetic methods and instruments may overcome this problem sufficiently
having provided milimeter accuracy in positioning of the stations distributed in even

large areas, and therefore, today they are indispensable in crustal and constructional



deformation studies. Although geodetic deformation analysis is now around 30 years
old and there are plenty of approaches, techniques, methods etc., the surveying
principle is the same. For monitoring the bodies (the “objects” as commonly
pronounced in geodesy), we establish a deformation network. There are two types of

deformation network,
e absolute deformation networks,
e relative deformation networks.

An absolute deformation network consists of two parts; 1) reference points and 2)
object points. The reference points are established in a stable region, the so-called
reference block, whereas the object points are located at some specific places of the
object such that they are able to characterize the investigated dynamical property of
the object itself. Both point groups are predefined in absolute networks. Or, if the
reference points and object points are defined after deformation analysis or
depending on a prior information beforehand, we call such deformation networks
absolute ones. On the other hand, if a deformation network may not be partitioned

into two parts beforehand, this type of network is called relative deformation network.

Before realization of a deformation network, a practitioner knows naturally
(intuitively or depending on pre-analysis of the studied area) which part is reference
block and which part is object. However, after realization we should test whether the
reference block has undergone any deformation or not. In other words, the reference
points are not exact in a deformation network. Therefore, in theory, all deformation
networks are (should be!) described as relative ones unless verifying the reference
points by some statistical tests based on the corresponding deformation

measurements.



T \. Reference points
Reference points

Fig. 1.1. Configuration of an absolute deformation network

In that course we mainly concentrate on conventional (geometrical) deformation
analysis for absolute and reference deformation networks, i.e., global test and
localization procedures; sensitivity analysis to derive the capacity of our deformation
networks; kinematic models to derive velocity and/or acceleration of the bodies which

move in time as well as strain analysis to interprete the deformation of an object.



2. GLOBAL TEST

Global test is realized for two aims; to learn (or verify)
e whether whole network has undergone any deformation or not,

e whether a part of the network (for instance, reference points) has any

deformation or not.

By global test it is not possible to answer if the corresponding points have
translated or rotated as a block (remember these kind of displacements are relative

changes), therefore the aim is sometimes expressed as follows;

e To learn whether the corresponding part has some points whose coordinates

have significant changes.

2.1 Testing Whole Network-Method |

We here desire to test if a whole network has any deformation or not. Let our c-
dimensional deformation network with u=cp coordinate unknowns of p points be
measured in two periods. Applying trace-minimum solution to each period

observations, suppose that we get
x,=Q, APy, Q, =(A/PA) =(A/PA +GG')" -GG’ (i=1,2) (2.1a)

as well as

v,=AX, -y, , sg;,=(v/Pv)/f, (i=1,2) (2.1b)



where
A
Qxix-‘

Pi

nixu design matrix with rankA=u—r,

uxu cofactor matrix of the unknowns,

nixn; weight matrix of the observations
nix1 (diminished) observation vector,
denotes pseudo-inverse,

nix1 residual vector,

a-posteriori variance of unit weight,
number of observations,

number of datum parameters,

degrees of freedom (f=n;—u+r) and

rxu coefficient matrix of constraint equations (datum
matrix) to define the datum of the network.

Using the solutions given in Eqg. (2.1a), the displacement vector d and its

cofactor matrix Q, are obtained as

d=X2—X1 , Qdd ZCI)(lx1 +QX2X2 (22)

The test procedure depends on discriminating the following null hypothesis

(Ho) against its alternative (H1);

Ho: E(d)=0 vs. Hi: E(d)=0 (2.3)

For this, we have two possible ways;

e F-(Fisher) test

° XZ—(Chi—square) test.

5



The test statistics (T) and the threshold values (k) of these two tests are given as

follows:

where
h
f
s
o
o,

T+
1=9%eh ), c=F,,
hs; "
(2.4)
d'a’.d
T=—"3~y*h) , K=Y%pi,

Gy

rankQ,, (see Note 2.1),

total degrees of freedom, i.e., f=f;+f,,
pooled variance factor (see Note 2.2),
total significance level (Type | error) and

a-priori variance factor (see Note 2.3).

We simply compare the corresponding test statistic T with its threshold value « in Eq.

(2.4). There is two possible outcomes and results;

i) If T<k, Ho is accepted with a significance level. It means that there does not

exist any deformation in the network. In other words, the vector d of the

monitored displacements is only the result of random errors in two periods.

i) If T>x, Hy is accepted with 1—a confidence level. Then we conclude that the

network has undergone deformation between two periods. Or, we may say

that at least one point in the network has significant coordinate change.



Note 2.1: If both periods are identical, then h=rankQ ,,=u—r holds.

Note 2.2: Pooled variance factor is obtained as follows

2 2 T T
e fls(),1+f250,2 _Vv,Pv,+v,Pv, Q
d

f,+f, f f
. . . . w 2 2 »
However, to consider the pooled variance factor in Eq. (2.4), the ratio “sg /s,
should be smaller than F, ; , . threshold value (Variance test)”. Otherwise, we may
not put the pooled variance into Eq. (2.4); in other words, it means that the periods

are not proper for any comparison.

*) This is valid if s;, is numerically bigger than s ,. Otherwise, the ratio “s; ,/s;,”

is compared with F, ;.

Note 2.3: In statistical point of view, xz—test is more powerful than F-test. In other
words, the probability of correctly accepting the alternative hypothesis (the power
of the test) in xz-test is bigger. However, it requires a precise knowledge on the a-

priori variance cfj. Since it can be derived from long time experience on the data of

the surveying methods applied in the studied area, this requirement may not be
ensured always or in a short time. Therefore, commonly F-test is chosen because it
needs only the variances from the current measurements of the periods. Herafter,

in the test procedures we will consider only F-distributed test statistics.




Note 2.4: For each period, adjustment procedure should be realized with common
approximate coordinates in the network. However this may not be ensured
everytime because in some cases (for example in monitoring of landslides which
may cause big displacements) iterative adjustment is required; so, the approximate
coordinates inevitably changes in each iteration. For such cases, instead of using
diminished coordinate unknown vectors (x;), adjusted coordinates of the periods

should be considered to estimate the displacement vector in Eq. (2.2).

2.2 Testing Whole Network-Method Il

The previous test statistic values are deduced from the theory of “generalized
linear hypothesis”. In deformation analysis, there is a second method which
substitutes the hypotheses implicitly into a corresponding Gauss-Markoff model. It is

called therefore implicit hypothesis method.

We may gather the separate adjustment models of the periods in a unique

Gauss-Markoff model as

l, A, 0 \x, P O
E = , P= (2.5)
l, 0 A, )\x, 0 P,
Now we will consider the null hypothesis Hq: E(d)=0 or Ho: E(x1)=E(x;) in model (2.5).

For this we write the following model, which implies that “there is no any difference

SN IREEAN

between two periods”;



Solving model (25) we get the following quadratic form, which is equivalent to

the sum of the weighted sum of the squared residuals of the periods,
Q= VIP1V1 + VIPZVZ = flsé,l"' fzsé,z (2.7)

On the other hand, the solution of model (2.6), which has fy=f+u—r degrees of

freedom, results in
Q, =v/Pv, (2.8)

If there is no any difference between two periods, the difference between two
quadratic forms of the models, i.e., R=Q—Q, should go to zero. For this the test
statistic from “testing of linear hypotheses” is set as follows

Tz(QH—Q)/(fH—f): R

o ENF(h'f) (2.9)

because of fu—f=u—r=h and (Q/f)= sfi (Note 2.2). The test statistic is identical with the

one of F-test in Eq. (2.4). So, the test procedure is similar.

Note 2.5: In each free adjustment method (trace-min, partial trace-min and
minimum-constrained), we get a unique residual vector. Therefore, solution of
model (2.6) may be realized by any free adjustment method. Since the minimum-
constrained solution is a normal adjustment procedure, it is easy to use this solution
in the implicit hypothesis method. For this, arbitrary r columns of the design matrix

in model (2.6) are deleted before adjustment.




2.3 Testing Whole Network for Non-ldentical Case

A deformation network may be augmented or renovated with newer points in
different periods. In that case we should handle with different configurations in the

periods to be compared. To make them identical there are two possible ways;

i) The corresponding periods are separately adjusted using the observations

connecting the identical points in both periods.

ii) The periods are re-adjusted such that only identical points in the periods

define the datum of the network.

The latter is more advantageous because we do not modify the network design. Let us
consider that our c-dimensional deformation network with p points is augmented with

k newer points in the second period and we have already their trace-minimum

solutions;
Coordinates Cofactors
1st Period 2nd Period 1st Period 2nd Period

i i '

Identical points X, (cpx1) X}, (cpx1) QX1><1 QX,ZX,2 o
H ’

New points — X, (ckx1) QX,)(,2 Qx'nx'n

X, Q;ﬁz

In the second period, new points should be extracted from the datum definition. We
may use S-transformation for doing this. Let c(k+p)xr coefficient matrix of the

constrained equations for the second period be had the following form

10



G, =(G' G!) (2.10)

where GI is the ckxr datum sub-matrix for the new points. Taking GI =0 above (in

other words, new points are extracted from the datum definition) we set a new

coefficient matrix
B, =(G' 0) (2.11)
With Egs. (2.10) and (2.11), the S-transformation matrix is computed as
S,=1-G,(B,G,) "B, (2.12)

Using the matrix S, we define a new datum for the second period

S, X, = 2] and $,Q.. S = Vs D, (2.13)
X e Q)(nx2 anxn

The sub-vector x, and the sub-matrix Q,, in Eq. (2.13) are now compatible
with x, and Q,, . Hence, both periods are identical and ready for comparison as

usual.

2.4 Testing a Part of a Network

Our reference points should be stable because we define the cloud of these
points as our “observer” to monitor the object. We should therefore verify whether
the reference points have undergone any deformation or whether they include any
point whose coordinates have changed significantly. This procedure is one of the most

important stage in monitoring of the object.
Suppose that R and ® represent py; reference points and pg=p—ps object points,

11



respectively. The displacement vector d and its cofactor matrix Qqq in Eq. (2.2) may be

written explicitly for these point groups as follows

d:(gm] ' Qdd:[gs}m 89{@} (2.14)
dg Qer  Qgo

To test the reference points first we should define the network datum according to

them. This may be realized by the following S-transformation

— dmj — Qs Quo
d=S, d= , Q=S QuS;.= (2.15)
N (d® dd R RN Q@m Q®®
where the transformation matrix S, is set as follows;
S, =1-G(B'G)'B" with G' =(G;, G) and B =(G;, 0) (2.16)

In the test, the sub-vector d; and the sub-matrix Qg in Eq. (2.15) are used: The test

statistic having F-distribution, similar to the one in Eq. (2.4), is given as follows

TA+
_ dy;Q ey

T
2
h‘de

% ~F(hy,,f) (2.17)
where hy, =h—c(p—px)=rankQ,,;. The test statistic is compared with the threshold

value Fhm fiar

i) If T,;<F, then our reference points are accepted as stable with a error.

5f1-a ?

ii) If Ty 2F, (1., there is at least one point whose coordinates has changed

significantly. In that case, we should find the responsible point(s) and

extract it (them) from the reference definition. One possible way for point

12



detection is adding each reference point one by one to the point cloud ® in
Eg. (2.14) in each time and repeat the above test procedure for the
remaining reference points until the test statistic becomes smaller than the
corresponding threshold value. Other possible way is applying localization

procedure, which is given in Section 3.2.3.

Note 2.6: The degrees of freedom h,, must be bigger than 0, i.e., hy,>1. Since there

may be a significantly changed point among them, we should take into account

hy,=2. This natural limitation gives information about the minimum number of

reference points (ps) for a network: From the inequality, we get
hy, =h—c(p—px)=cp—r—cp+cpr=cpy—r=2.

Then we see that px should be equal to (2+r)/c in a worst case. This means that our
absolute deformation networks (1, 2 or 3D) should be designed so that it consists of

approximately at least 3 reference points.

13




3. TESTING OBJECT POINTS

3.1 Testing Object Points in Absolute Deformation Networks

As we mentioned previously, an absolute deformation network has two parts;
reference points and object points. The reference points should be verified by the
global test given in Section 2.2 such that they can be defined as “observer” to monitor

the object.

Let our reference points ‘R be already verified as stable. Then, each object point
may be tested to learn whether its observed displacement relative to the reference

points is significant or not by using the following test statistic

d,Q.,d
Ty =—— 2P F(c,f)  Vi=l,...Ppe (3.1)
' cs,
where
d®i : cx1 ith object point’s displacement vector, which is the

corresponding sub-vector of the object displacement
vector dg in Eq. (2.15),

Qys : cxc cofactor matrix of the ith object point displacements,

which is the corresponding sub-matrix of the object
cofactor matrix Qg in Eq. (2.15) and

C : dimension of the corresponding network.

Each test statistic in Eq. (3.1) is compared with the threshold value F,

f,1-a 2

14



i) If T, <F

cfl-a’

the corresponding displacement is not significant.

i) If Ty, >F

cfl-a”

it is accepted that the corresponding displacement is

significant with 1—a confidence level.

Note 3.1: The above given test procedure is equivalent to “relative confidence
interval/ellipse/ellipsoid” method applied in deformation analysis studies. For

example, let us consider 2D cases: First, the displacement vector (dy ) of a

corresponding point is plotted on a map and, then, the confidence ellipse obtained

from Qg (this ellipse is called “relative” in deformation analysis) is centered on

the end point of the displacement vector (see Fig 3.1). If the displacement vector on
the plot remains outside of the ellipse, than this displacement of the corresponding

point is said to be significant with the preassumed probability of confidence level.

Relative
confidence ellipse

Displacement
vector

Object point

Fig 3.1. Displacement vector and relative confidence ellipse
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Note 3.2: If our reference points are verified as undeformed (stable) by the global
test in Section 2.4, this does not mean that we also verified that they has not moved
in time as a block. It means that the observed displacements of the object points
with the above testing procedure carry the relative effect of the reference points if
they has undergone a rigid body displacement. This fact may not be so important
for some studies, for instance in tectonic/velocity studies, which are mostly based
on some relative functions. However, for some cases, for example in damage
monitoring of engineering buildings, it may be a problematic issue because an
analysist may interprete mistakenly that the object is under a damaging force
system. To be clear and not to cause a wrong or over interpretation, two
different/independent relative blocks may be chosen in the studied area, if it is
possible. Depending on these two relative-tested blocks two different results are
obtained for the object points. Then we may check our object’s displacements by
comparing two results. Of course, there will be some statistical unbalancies
between two results, but it may be ignorable effect compared to early or wrong

emergency alarm for a possible damage.

For 1D networks, i.e., levelling and gravity monitoring networks, square root of

the test statistic Ty in Eq. (3.1) becomes t (Student)-distributed, because of the

probability distribution function properties,

d2 Q2 d
JTo =522 = 9el (3.2)
' S4 Sa+/Qee,

where

dg and Qg : the ith point’s displacement and its

cofactor, respectively

16



The threshold value is then taken as /F_ ;, , =t;, ., Which denotes o-percentage

point of the t-distribution.

3.2 Localization

Localization is a procedure to identify the points having significant coordinate
changes. Mostly it is adapted in relative deformation networks to separate reference
points and object points, however it may be used also in absolute deformation

networks to detect the disturbing point(s) in the reference point set.
There are three localization methods commonly applied in deformation analysis;
i) Gauss-elimination method
ii) Implicit hypothesis method
iii) S-transformation method

We discuss only first two of them for relative deformation networks. Afterwards, the
localization procedure in absolute deformation networks by Gauss-elimination method

is explained.

3.2.1 Localization with Gauss-elimination method

If the global test shows significantly changed points in our relative deformation
network, the next step is identifying or localizing these points. For each point in our c-

dimensional network we compute the following effect values

R=8P'5, with & =d +PP,d, , (i=1,2,..p) (3.3)

where
S : cx1 reduced displacement vector of the ith point,

17



Q.2

cx1 displacement vector of the ith point

'Fv’” : cxc weight matrix belonging to the ith point (ith block
diagonal of P=Q_,),

EA (cp—c)x1 vector of displacements of the remaining points
denoted A not including the point i and,

ﬁA : cx(cp—c) weight matrix between point i and the

remaining points (see Note 3.3).

Note 3.3: Displacement vectors and their weight matrices used in Eq.(3.3) may be

represented as

d P, P
d:((':liA]r PddZdi Z(:ﬁAA A.I.AJ (34)

The point resulting in maximum effect value by Eq. (3.3) is accepted as
significantly changed point. Let this point be the jth point. Then first object point is

being defined;

®={j} (3.5)

Now we should define the datum of our network depending on the remaining
p—1 points. Let us denote these remaining points with B. Using the transformation

matrix Sg defining the datum according to the points B, we obtain

Sgd{ff‘] ) SBQddS;=£SBB 8”3} (3.6)
d® Q@B Q®®

Our next aim is to investigate the remaining points B. If the test statistic

18



—L B8 ~F(hg,f) , (hB=rank(~lBB=randed—c) (3.7)

is smaller than the threshold value F, ., ,, the localization procedure is ended. The

object points and the reference points are being separated already as ®={j } and R=B,
respectively. Otherwise, it is decided that the group of points B has significantly

changed point(s) and a new localization procedure is required. In that case, we

consider d, and @,, asdand Q_, in Eq. (3.4),

aB —d ’ 633 _)Qddr (38)

and we search the point giving the maximum effect using Eq.(3.3) among the
remaining p—1 points. The procedure is repeated until the global test shows no-more
significantly changed points. In each localization step the object point set ® in Eqg. (3.5)

is augmented with the newer identified points.

For 1D networks, the effect R; in Eq. (3.3) may be computed directly: Let the

displacement vector and its weight matrix given by Eq. (3.4) be written as follows

HQ.Z
iy w1
O

d= ,PddZdi= . (3.9)

[oX
SO
=

The multiplication dPyq results in

5=ded= ) (3.10)

Dividing the elements of the vector in (3.10) by the weights in (3.9) gives the

19



corresponding effect
R=8/P, , (i=1,2,....,p) (3.11)

Hence, for 1D networks, the computation burden of Eq. (3.6) is drastically being

reduced.

3.2.2 Localization with implicit hypothesis method

Two periods’ Gauss-Markov models are gained into a single Gauss-Markov

Lo 2

Our hypothesis now assumes that the group of points A, which does not contain the

model by Eqg. (2.5) as

suspected point i, has not deformed. This hypothesis may be implicity incorporated

into the above Gauss-Markov model as follows

X
/ A A. 0 A P O
Bl b= M T x,| , P=| ' (3.12)
I, A, 0 A, 0 P,

Suppose that the solution of model (3.12) yields the weighted sum of the squared
residuals (Q,,). =(v.Pv,),. Each point in the network is attained as i in model (3.12) in

turn, and we get p effects for the points in the network as follows
Riz((zH )i_Q ’ (izllzl"'lp) (313)

If R; belonging to the jth point is the minimum effect value among the others, this point

is accepted as the point with significant coordinate change. It is our first object point:

20



Then we may define the object point group ® as
®={j} (3.14)

Now we should learn whether the remaining p—1 points, denoted B, still consist
of any significantly changed points. For this we use the minimum deficiency R; to set
the following test statistic

_(Ry/hg) R,

T E~F(h3'f) (3.15)

where hg=fy—f—c=h—c. If the test statistic in Eq. (3.15) is bigger than the corresponding

threshold value, i.e.
Te2F o1 (3.16)

we should identify the responsible point(s) among the group of points B. For the ith

point of B, we set our Gauss-Markov model as follows;

xD
I A, A, 0 A 0 P
E 1 — D1 il ®1 xiz , — 1 (317)
I, A, 0 A, 0 A, 0 P,
\ ) x®1
B X,
where
D : denotes the points except the ith point in B (DW{i}=B)
® : shows the object point identified in the previous

localization step (we do not change of the place of ® in
Eq. (3.17) during the all localization steps anymore).

Now in the second localization step, each point in B is attained as i in Eq. (3.17)

21



by turn and the effects of all p—1 points are computed as realized by Eq. (3.13). The
point giving minimum effect is taken as the new object point and we update our object
point definition ® in Eq. (3.14). If the global test, which is set according to the effect of
the point identified in that second localization step (hs becomes h—2c), shows more
suspected points among the remaining points, similarly we continue localizing these
points. The procedure is repeated until the corresponding global test shows no-more

significantly changed point in the network.

3.2.3 Localization in absolute deformation networks

If the global test in Section 2.4 results in that our reference points ‘R is not
stable, we should identify the changed point(s) among them. One way for doing this is

applying localization procedure to the reference points: For this we consider d,, and

Q,,,; belonging to the py reference points in Eq. (2.15) as d and Qqq in (3.4),

dm—)d , ng—>Qdd (3.18)

and we start localization procedure with Eq. (3.3) to identify the responsible point(s)
among px reference points. The localization procedure is similarly realized until the
corresponding global test shows that remaining reference points have no any points
disturbing the stability of our reference. The identified points are removed from the

reference point set and added to the object points.

22



4. SENSITIVITY ANALYSIS

Sensitivity analysis is used to optimize a deformation network such that it
becomes sensitive to the expected displacement, movement or deformation or to
derive the minimum detectable displacement, movement or deformation parameter

for measuring the quality of our design.

In theory it can be adapted to all kind of changes to be monitored in a studied

area, however we express it just for displacements here.

4.1 Global Sensitivity Analysis

4.1.1 Optimization Criteria

The hypotheses given by Eq. (2.3) is originally set as
Ho: E(d)=0 vs. Hj: E(d)#0=A (4.1)

where
A : ux1 vector of expected displacements.

Because we are now at the design stage, we know that the alternative
hypothesis H; in Eq. (4.1) is true. In that case, second test statistic in Eq. (2.4) follows a

non-central y’-distribution;

T

T+
_dQud ey (4.2)

Gy
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where A is the non-centrality parameter computed from the vector of expected

displacements A as follows;

_ATQ A

2
Gy

Y (4.3)

Once we obtain the non-centrality parameter in Eq. (4.3), the power of the
global test, i.e., the probability of correcty accepting the true alternative hypothesis,
may be computable from the distribution function of the non-central xz—distribution,

F(x =%l o sh, A), as

v=1-F(x*=%7 o sh, 1) (4.4)

The power of the test y mathematically increases with increasing non-centrality
parameter A and with decreasing degrees of freedom h. It means that the power of
our test will be better for more precise network and less points (remember that h is

related with number of points in an identical network, i.e. h=u—r=cp—r).

Instead of computing the power of the test by Eq. (4.4), the non-centrality
parameter is compared with a non-centrality parameter giving a desired power of the
test yo and significance level ag. This parameter is called lower bound of the non-

centrality parameter Ao (see Table 4.1). If the following inequality is fulfilled,

A>hon (4.5)

the network is defined as “sensitive to the expected displacements”. Otherwise, the

network is re-designed such that it becomes sensitive.
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Table 4.1 Some lower bound of the non-centrality parameters (Ao ) for yo=80 and

90%, o,o= 5% and 1<h<100

h Y0=80% Y0=90%
1 7.85 10.51
2 9.64 12.65
3 10.90 14.17
4 11.94 15.41
5 12.83 16.47
10 16.24 20.53
20 20.96 26.13
30 24.55 30.38
40 27.56 33.94
50 30.20 37.07
100 40.56 49.29

4.1.2 Minimum detectable displacement

Forecasting the directions of the displacements is easier than setting the vector
A of expected displacements itself. Let the vector A be the product of a scale factor (b)

and a given direction vector (g),

A=bg (4.6)

Substituting Eq. (4.6) into Eqg. (4.3) and using Eqg. (4.5) we obtain

S Y (4.7)
gQ.8
Then we define the minimum detectable displacement vector as follows;
Aminzbming (48)

In some cases, even directions of the displacements are not be available. To
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obtain the minimum displacement vector in such a case, we use the eigen-vector Amax
belonging to the maximum eigen value Amax of Qgq. This results in the minimum value

of the scale factor

Aop e
|:)minzcd mzcd 7\‘0,h7\‘max (49)

Then, if we consider Eq. (4.9) in Eqg. (4.8), we obtain the displacement vector which is
just detectable on the directions of the eigen-vector with a specified power of the test

Yo and significance level o.

Note 4.1: The direction vector g for leveling monitoring networks consists of “1” for
the uplifted points, “-1” for the subsided points and “0” for stable points. In 2D
networks (or in a horizontal plane) it includes “cos6” and “sinf@” where 0 is the

forecasted azimuth of the displacement vector of the corresponding point.

4.2 Sensitivity Analysis in Absolute Deformation Networks

Let our object points ® be defined related to the reference points R. The

hypotheses to test each object point are set follows;
Ho: E(dg )=0 , Hi:E(dg )#0=Ag (4.10)

where A is the expected displacement vector of the ith object point.

Let us assume that our test statistic set for discriminating the hypotheses in Eq.

(4.10) is y*-distributed. Since we know that the alternative hypothesis is true now, the
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test statistic has a non-central y-distribution;

d’ Q. d
Ty =—— 2 (e, M) (4.11)
Gy

where A, is the non-centrality parameter,

860504
7\4|—T .
d

(4.12)

To learn whether our expected displacements for the ith point is detectable or

not, the non-centrality parameter A; is compared with its boundary value Aq; If

Aizho,c (4.13)

holds, the corresponding displacement is said to be detectable with the corresponding

power of the test.

To derive the minimum detectable displacement, we may follow the same
methodology given in the previous section. Instead of giving the formula for a specific

direction, we consider the eigenvector of the maximum eigen-value A .. of Qg4 .

Similar to Eqg. (4.9), we obtain

(Bmin)i= G20, A s =G Ao V(Mo (4.14)

With this scale factor, the minimum detectable displacement vector of the ith point

becomes

(A® )minz(bmin)iA (415)

; max,i
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where A . is the eigen-vector belonging to the maximum eigenvalue A _ ..

Note 4.2: For 2D networks, first term of the right hand of Eq. (4.14), i.e., 6, /A

is in fact the semi-major axis of the relative error ellipse of the ith point. Then,
(bmin)i may be considered as the semi-major axis of the relative error ellipse for the
power of the test (we may call this ellipse relative power ellipse!). Furthermore,
(4.15) shows that minimum detectable displacement is on the direction overlapped
with the direction of the relative error ellipse of the ith point. Then in 2D examples,
(bmin)i denotes the minimum detectable displacement magnitude of the
corresponding point. The boundary value is obtained as Ao->=9.64 for 80% power
of the test from Table 4.1. It means that a displacement whose magnitude is 3.1
times of the semi-major axis of the relative confidence ellipse may be just
detectable with 80% power of the test in an object point of an absolute

deformation network.

For 1D networks, A becomes equal to the displacement’s cofactor value of the

corresponding point. From Table 4.1 we read Ag-1=7.85 for 80% power of the test.
Then it is clear that a displacement (uplift or subsidence) may be just detectable

with 80% power, if its magnitude is 2.8 times of the displacement’s standard

deviation.

With the above-mentioned simple statistics in two previous notes, one is able
to speak about the capacity of the designed network. The cofactor matrices of
displacements with respect to the reference points may easily be derived and the
pooled variance may be guessed depending on the experiences before any realization.
Then the minimum detectable displacement of an object point is about “3 times” of
the semi-major axis of its relative confidence ellipse and displacement’s standard

deviation in 2D and 1D networks, respectively. If our expectation does not match with
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this magnitude, then we may re-design our network such that its object points have
smaller ellipses or smaller standard deviations depending on the network type. For
example, let us assume that we expect 5 mm vertical movement in a region, and our
leveling network’s object points relative to a reference point set have around 2 mm

standard deviation in a period. Then the displacement’s standard deviation is expected

as 22 =2,8 mm. With 80% power (or more), the minimum detectable displacement is
around 3x2,8=8.4 mm. It means that we may not able to detect 5 mm movement with
80% power of the test using the corresponding design. For that reason, we should plan
additional observations or should measure the network with more precise levels to
improve the precision of our points. Such an optimization is called “trial and error”
method; but we may also set some analytical target functions to obtain a global
solution to this optimization problem. This is called “analytical optimization of
deformation networks”; however, nowadays, because of our improved computing
capabilities by normal PCs, trial and error methods may be more preferable. They are
more realistic because we may produce the problem depending on some experiments
which we may face with in reality. In analytical tools, sometimes, if we do not consider
the constraints realistically (it is a little bit hard to consider all conditions
mathematically!), the solution may go far away from the global solution and stop at a
local one, which may mislead the practitioner, or, which may cause an another

problem waiting for a different solution.
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5. INTERPRETATION MODELS

After defining the reference points in our network, we may investigate the object
points’ movements and strain elements of some object blocks to interprete the motion
and the deformation of the object, respectively. For this we use kinematic model and
strain model. In this section we briefly explain these models used in deformation

analysis.

5.1 Kinematic Model

An object may change its position in time continuously related to a reference

frame. This motion is expressed by the following well-known equation

o1 .
B(t)=B(t0)+(t—t0)x+5(t—t0)2 % (5.1)
where
t : current time,
1o : initial time,
B(t) current (present) position,
B(t,) initial position,
X : velocity and
X : acceleration.

If the parameters B(t,), x and X are available, one may predict the object’s

position in any period from Eq. (5.1). Reversely, if we have coordinates of the point in
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different periods, we may estimate the parameters to create a model for the object’s
movement. This is called kinematic model in deformation analysis. To satisfy
redundancy in kinematic modelling, there should be at least 4 periods. Hereafter we

assume therefore that we have m>4 periods.

5.1.1 Single point model for an object point’s movement

5.1.1.1 Model |

Now suppose that we work with a 1D network, or we would like to model only
one component of a point among its other components (as realized mostly for North,
East and Up components of a GNSS station). For this we set the following Gauss-
Markov model from Eq. (5.1) having taken the initial period as t; and partitioning the

initial (unknown) position B(t,) into two parts as fB(t,)=p(t,)+ 3P,

Y 1 (t,—-t) 0.5(t,—t,)’ 5 Q;, 0 - 0
| Y[l BTt OSTET O QO 52)
Yo 1 (t -t,) 05(t —t,) X o 0 - Q.
where
Y, : cx1 (diminished) coordinate component (observation),
(y; = Blt)—Blt,)),
B(t) coordinate component in the ith period,
op : unknown shift parameter,
X : unknown velocity,
X : unknown acceleration,
cé : a-priori variance of unit weight and
Q;; : cofactor value of the corresponding coordinate
component.
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5.1.1.2 Model I

For c-dimensional networks, considering model (5.2) may cause over-optimistic

results because in that case we neglect the correlations between the coordinate

components of a point. They are in fact highly correlated therefore they may be

considered in a single Gauss-Markov model

Y. I (tl_tl)l 0-5(t1_t1)2| SB Ill 0 0
: y:2 |1t 0.5(t2.—t1)zl x|, pool 0 Q.;; 0 (5.3)
: : : : s : : ) .1
Yo I (t,—t) 0.5(t —t)1 0 o - Q.
where
Y cx1 (diminished) coordinate (observation) vector
(y; = B(t)-B(t,)),
B(t) cx1 coordinate vector,
| cxc identity matrix,
op cx1 unknown shift parameter vector,
X cx1 vector of unknown velocities,
X cx1 vector of unknown accelerations along the
corresponding axes,
cy a-priori variance of unit weight and
Q, cxc cofactor matrix belonging to the corresponding point
in the ith period.
5.1.1.3 Model Il

In some cases previous two models may not yield satisfactory estimates

because of some unmodelled physical effects on the coordinates. They are mostly
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observed as periodic changes in time series of a point’s coordinate component as

shown in Fig 5.1.
If we have a prior information about the periodical part of the changes, instead
of Eqg. (5.19) we may consider

B(t)=P(t,) + (t—t,) %+ periodic part (5.4)

where the periodic part is a linear function of the effect of the corresponding physical
sources. (The point’s movement may include also an acceleration part; however, for

simplicity we drop it in Eq. (5.4))

Coordinate

|
n

Fig 5.1 Coordinate changes in time domain

The periodicity may happen hourly, daily, annually or semi-annually depending
on the sources. They are commonly modelled using “ajcos(2mt/T,)+a,sin(2nt/T,)”
function, where T, is the known period, a; and a, are the unknown amplitutes. Let us
consider that our periodic part may be modelled with this function: Then instead of

model (5.2) we may set the following Gauss-Markov model
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Y, 1 At, cos(2mAt,/T) sin(2rAt,/T)\ 8P
e[V |l _ 1 At, cos(2mAt,/T) sin(2nAt,/T) | x

Y., 1 At, cos(2nAt /T) sin2rAt /T) )\ a

m

Q; O 0
bt 0 QW 0
=0, ;
0 0o - Q;\lm

where y, = B(t,)—B(t,) and At,=ti—t;.

(5.5)

the observations beforehand.

Note 5.1: In most problems, the period Tj, is not available or not exact. In that case,

w=21/T, angular frequency may be obtained by applying Fast-Fourier transform to

5.1.2 Single model for whole object points’ movement

Kinematic model (5.1) may be established for all object points under a single

model. For pg=p—px object points in the network, which is measured m periods, the

Gauss-Markov model for such a modelling is written as follows

Y, I (t,—t,)1 0.5(t,—t,)I 58 Q, O
: y:2 | (et 0.5(t2.—t1)2| « | poc? 0 ngxz

. . . . 2 x . .

Y., I (t.—t) 0.5(t —t,)l 0 0
where

34

(5.6)




Y : cpex1 (diminished) coordinate (observation) vector for
the ith period (y, =B, —B,),

B, : cpex1 coordinate vector of the ith period;

| : CpeXxCpg identity matrix,

op : cpex1 unknown shift parameter vector,

X : cpex1 vector of unknown velocities,

X : cpex1 vector of unknown accelerations,

cy : a-priori variance of unit weight and

Q,, CpexCpe cofactor matrix belonging to the object points in

the ith period.

5.1.3Testing model parameters

Before publishing the kinematic model of an object point, we should test its
parameters (mostly velocity and acceleration) to learn whether they are significant or

not. Testing procedure is therefore called significancy test.

Let us consider that the velocity estimate x with standard deviation s, is

desired to be tested; for this we set the following hypotheses

Ho: E(x)=0 , Hy: E(%)=0 (5.7)

Then the test statistic follows t-distribution

LI (5.8)
S

X
X

where f is the degrees of freedom of the corresponding model. If T <t;, ., the

estimated value x is not significant. Otherwise, it is accepted that it has a significant-

physical meaning.

35



Note 5.2: For each estimated parameter the same testing procedure given above is
realized. Insignificant parameters may be extracted from the corresponding model,
and the estimation procedure is repeated having established the corresponding
model with the remaining-significant parameters. This will increase the redundancy,
i.e. degrees of freedom, and will result in more precise estimation. In some
applications, for example in GNSS studies with long-time series, the redundancy is
already big, therefore, the testing procedure may be unnecessary: The estimated
values and their standard deviations are declared, for example, as “velocity+tits
standard deviation”. This is called sometimes “velocity with 1-sigma error”: If we
have big redundancy, the accepted one-dimensional t-distribution gets close to
normal-distribution and this interval shows a confidence interval with about 40%
probability. If we declare “velocity with 2-sigma error”, from the normal-
distribution function, we understand that the interval shows a confidence inverval

with a probability more than 95%.

5.1.4 Model test

There may exist different kinematic models for the time-dependent
observations. To verify which model fits better to the observations, we may apply
model test: For example, let us take the model (5.2) and call it model 1. Its alternative
one may be the model without an acceleration parameter, i.e. velocity model; let us
call it model 2. From each model we estimate the unknowns and obtain the weighted
squares of the residuals; i.e. we obtain QQ; and , quadratic forms independently. The

following test statistic follows F-distribution, with f,—f; and f, degrees of freedom,

T = (92_91)/(1:2_1:1)

~F(fpfy, f 5.9
M O/t (fo—fy, ) (5.9)
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where

f1 : degrees of freedom of model 1 and

f, : degrees of freedom of model 2.

We compare T, with the threshold value F ;-

i)

If T,<F model 1 is not necessary. In other words, instead of

H—f,f,1-0?

acceleration and velocity parameters, it is better to consider only velocity

parameter.

Tu2F ¢ :,,, model 1 fits better to the observations: Model 2 does not

ensure the essential information to model the time-dependent

observations.

Testing model 1 against model 2 with the above-mentioned model test practically

may be done with the previous significancy test: If the acceleration’s significancy test

fails, it means that, model 2 (the model with only velocity) should be considered to

model the observations. But, at this point, we should remind that, statistically and

theoretically, “model test” is more correct because the previous testing procedure

neglects the correlations between the estimated parameters.

The given model test procedure may be applied for comparing different types of

models, not only for comparing the velocity model and velocity+acceleration model:

We should just care about that model 1 is to be attained as an augmented model with

additional parameters which are not included in model 2.

5.2 Strain Analysis

5.2.1 Definition

Strain is defined as the ratio of increase or decrease in length to its original
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length. It is a normalized measure for deformation. For instance, let us consider a wire
with L;=100 m length has extended to L,=100.02 m; then the engineering strain, the
so-called nominal strain, is computed as follows

L,—L, 100.02-100
L, 100

g= =2x10" strain=20 pstrain=20 ppm.

This strain may be denoted as

_ Displacement _ dL (5.10)
Original Length L, |

On the other hand, scale factor A, the so-called stretch ratio, is related with the

engineering strain € by

A=1+¢ (511)

which is the one commonly used in geodesy to explain the deformations of the

coordinate axes, for example in similarity and Affine transformations.

In two dimensional, instead of a single strain measure, there exists a strain

tensor,
€., € odx/0x 0dx/o
[ s B (0 /0y (5.11)
€y €, ody/0y 0Ody/dy
where
dx and dy : displacements of a particle in the objectin x and y
directions.

Since we assume the object is continuum, i.e. the object is full of homogeneous

particles, the tensor elements in Eq. (5.11) represent the deformation of the whole
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object. There are some other quantities obtained from the elements of this strain

tensor, such as,

1
Dilation (mean strain): smean=5(axx+syy) (5.12a)
1
Pure shear: spure=§ (Exx—¢yy) (5.12b)
. 1
Simple shear: Ssimple=5 (Exy*eyx) (5.12¢)
1
Total shear: Eshear = \/giu,e + & impie =E(\/(SXX -g,) +(g, + syx)z) (5.12d)
. . . 1
Differential rotation: \V=E(syx—axy) (5.12¢)

In earth sciences, instead of the strain tensor E, symmetrical strain tensor E_,

S

which is derived from Eq. (5.11), is used;

E = 2 (SXV +8vx)/2 _ Ex 8simp|e 1
s (€, +€,)/2 € e € (5.13)

vy simple vy

To show the object deformation in 2D, principal strain components, i.e., the

eigenvalues of E_ are derived from (5.13)

1
Emax = E(gxx te, + \/(gxx - gyy)z + 48§imp|e ) =Emean*+Eshear (5.14a)
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1
Emin = E(gxx + gy~ \/(Sxx —&, )2 + 48§imple ) =Emean—Eshear (514b)

with the direction of the maximum principal axis, clockwise from x-axis (see Note 5.3),

2¢,, €
9= % ata n{ﬂJ = %ata n(L"'GJ (5.14c¢)
€ €

Xx gyy pure

€max Shows the greatest change while g, is the smallest change of length per unit
length. They are plotted on the centroid of the object as shown in Fig 5.1. The negative
sign of any component shows contraction whereas positive sign denotes extension

through the corresponding direction.

SN TN

€max » Emin >0 €max 1 Emin <0

x
>

Extension or Contraction

Y

e
Pt

o=

)

N

8max<0: Emin >0 gmax>0, Emin <0

v N
\

Extension and Contraction

Fig. 5.1. Principal strain components
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Note 5.3: The principle of computation of the principal strain angle 9 is similar to
the one of computation of azimuth: First, “29=atan(&simpie/Epure)=a" is obtained; i) if
Esimple>0 and €pyure>0, 9=2a/2, ii) if Esimple>0 and €pure<0, 3=200+a/2, iii) if €simple<0 and
€pure<0, 9=200+a/2 and iv) if &smple<0 and gpure>0, 9=400+a/2. Without considering
the regions of the angle, direct computation may be realized by

“8 =atan(g e /(€pure — Esnear)) +90°”. However this direct computation is sensitive

shear
to the numerical errors in &smple, €pure @s Well as &snear. Therefore it should be
considered in double precision computing tools. Moreover, if &mpe=0, then “0/0”
vague happens in that formula: For this, the reader should notice the following two
conditions; i) if &simple=0 and €pyre>0, 3=0° and ii) if &simple=0 and gpure<0, 3=90° while

using that direct computation formula.

5.2.2 Strain modelling in geodetic deformation analysis

For the ith object point having dx; and dy; displacements, we may write

dXi=ttenXiteyyi and dyi=t,+e,Xite,Yi (5.15)

which are the fundamental equations for modelling strain of the corresponding object.
In addition to 4 strain parameters (&x, €xy, €yx Eyy) We have two translation parameters
ty and t, in Eq. (5.15), therefore, to obtain these 6 parameters, mathematically we

need at least 3 points.

For modelling strain of the studied object, the structural properties of the
object should be known priorily. From such a prior information the object is divided
into the different blocks as demonstrated in Fig 5.2. For each block we consider

different strain model (see Note 5.4).
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Fig 5.2. Object blocks and their principal strain components

Note 5.4: Object blocks should be considered at the design stage so that each block
has its own object points characterizing the deformation to be monitored. An
attempt for deciding object blocks considering only the observed displacements

may yield wrong interpretations.

Now suppose that our object consists of one block; then all object points are

included in a single strain model. For this, our Gauss-Markov model is set as follows

dx, 1 X, y; 0 O :X
dy, 01 0 0 x, v sy
E = : : 8** —E{de}=Mx (5.16a)
dx,_ 10x, vy, 0 0 gxy
dyp@ 010 0 T gyx

yy

with the 2pgx2pg matrix of weights of displacements,
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deldx1 (ldxldy1 e deldxp® dx;dype
Quyey, deldxp® dysdyp,
P= G(Z) . : : —P= Gé Qes (5.16b)
dXpg BXpg dep®dyp®
o dYpg
where
de and Qee vector of displacements and its cofactor matrix

belonging to the object points &, respectively,
from Eqg. (2.15),

M : 2pex6 coefficient matrix and

X : 6x1 unknown parameter vector.

Solving model (5.16) by least-squares method, the parameter vector x is
estimated and so we get strain parameters &, €y, € and g,, for the object. By using
them the principal strain parameters in Eq. (5.14) are obtained and they are plotted on

the centroid of the object under-consideration as shown in Fig 5.3.

Fig 5.3 Principal strain parameters for an object

For more blocks, their independent strain models may be considered in a single

Gauss-Markov model: For instance, for two object blocks (Block | and Block IlI) we

43



establish the following Gauss-Markov model;

d M 0 ) x Q Q.o )
E ®, :( | ]( Ij ) P=G(2) ®,®, ®,®, (517)
d®" 0 Mn X Q®u®. Q®u®u
From the solution of model (5.17), we obtain x; and x;, parameter vectors including the

blocks’ strain parameters.
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APPENDIX A: GLOSSARY

Absolute deformation network: Mutlak deformasyon agi
Acceleration: ivme

Block: Blok

Confidence level: Gliven diizeyi

Contraction: Kiiglilme

Constraint equations: Kosul denklemleri

Current period: Mevcut periyot

Current time: Mevcut zaman

Deformation: Deformasyon

Degrees of freedom: Serbestlik derecesi

Diminished observation: Kiciltilmis olci

Direction vector: Yon vektori

Displacement: Yerdegisim

Extension: Genisleme

Gauss-elimination method: Gauss-eliminasyon yontemi
Global test: Global test

Identical: Esdeger

Identity matrix: Birim matris

Implicit hypothesis method: Kapal hipotez yontemi
Initial period: Baslangi¢ periyodu

Initial time: Baslangi¢c zamani

Kinematic model: Kinematik model

Localization: Yerellestirme

Lower bound of the non-centrality parameter: Dis merkezlik parametresinin sinir degeri
Minimum detectable displacement: Belirlenebilir en kiiglik yerdegisim
Minimum constrained: Zorlamasiz

Monitoring: izleme

Model test: Model testi

Non-central: Merkezsel olmayan

Non-centrality parameter: Dis merkezlik parametresi
Non-identical: Esdeger olmayan

Object: Nesne
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Object block: Obje blogu

Object point: Obje noktasi

Partial trace minimum: Kismi iz minimum

Period: Periyot

Pooled variance factor: Birlestirilmis varyans ¢arpani
Power of the test: Test giicu

Principal strain parameters: Asal gerinim parametreleri
Reference block: Referans blogu

Reference point: Dayanak noktasi

Relative confidence ellipse: Bagil giiven elipsi
Relative deformation network: Bagil deformasyon agi
Rotation: Donuklik

Quadratic form: Karesel bigim

Sensitivity: Duyarlilik

Shift parameter: Sifir eki

Significance level: Yanilma olasiligi

Significancy test: Anlamlilik testi

Significant: Anlaml

Stable: Duragan

Strain: Gerinim

Strain tensor: Gerinim tensori

Subsidence: Cokme

Test statistic: Test buyukluga

Threshold value: Karsilastirma degeri

Trace minimum: Tdm iz minimum

Translation: Oteleme

Undeformed: Deforme olmamis

Uplift: Yikselme

Velocity: Hiz
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APPENDIX B: THRESHOLD VALUES (F and t-distributions)

Table B1. Threshold values for F-distribution (*) for 0.=5% (Fa ,1-a)

b

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100

1] 161.45 18.51 10.13 7.71 6.61 5.99 5.59 5.32 5.12 4.96 4.35 4.17 4.08 4.03 4.00 3.98 3.96 3.95 3.94
2 | 199.50 19.00 9.55 6.94 5.79 5.14 4.74 4.46 4.26 4.10 3.49 3.32 3.23 3.18 3.15 3.13 3.11 3.10 3.09
3 | 215.71 19.16 9.28 6.59 5.41 4.76 4.35 4.07 3.86 3.71 3.10 2.92 2.84 2.79 2.76 2.74 2.72 2.71 2.70
4 | 224.58 19.25 9.12 6.39 5.19 4.53 4.12 3.84 3.63 3.48 2.87 2.69 2.61 2.56 2.53 2.50 2.49 2.47 2.46
5 | 230.16 19.30 9.01 6.26 5.05 4.39 3.97 3.69 3.48 3.33 2.71 2.53 2.45 2.40 2.37 2.35 2.33 2.32 2.31
6 | 233.99 19.33 8.94 6.16 4.95 4.28 3.87 3.58 3.37 3.22 2.60 2.42 2.34 2.29 2.25 2.23 2.21 2.20 2.19
7 | 236.77 19.35 8.89 6.09 4.88 4.21 3.79 3.50 3.29 3.14 2.51 2.33 2.25 2.20 2.17 2.14 2.13 2.11 2.10
8 | 238.88 19.37 8.85 6.04 4.82 4.15 3.73 3.44 3.23 3.07 2.45 2.27 2.18 2.13 2.10 2.07 2.06 2.04 2.03
9 | 240.54 19.38 8.81 6.00 4.77 4.10 3.68 3.39 3.18 3.02 2.39 2.21 2.12 2.07 2.04 2.02 2.00 1.99 1.97
10 | 241.88 19.40 8.79 5.96 4.74 4.06 3.64 3.35 3.14 2.98 2.35 2.16 2.08 2.03 1.99 1.97 1.95 1.94 1.93
20 | 248.01 19.45 8.66 5.80 4.56 3.87 3.44 3.15 2.94 2.77 2.12 1.93 1.84 1.78 1.75 1.72 1.70 1.69 1.68
30 | 250.10 19.46 8.62 5.75 4.50 3.81 3.38 3.08 2.86 2.70 2.04 1.84 1.74 1.69 1.65 1.62 1.60 1.59 1.57
40 | 251.14 19.47 8.59 5.72 4.46 3.77 3.34 3.04 2.83 2.66 1.99 1.79 1.69 1.63 1.59 1.57 1.54 1.53 1.52
50 | 251.77 19.48 8.58 5.70 4.44 3.75 3.32 3.02 2.80 2.64 1.97 1.76 1.66 1.60 1.56 1.53 1.51 1.49 1.48
60 | 252.20 19.48 8.57 5.69 4.43 3.74 3.30 3.01 2.79 2.62 1.95 1.74 1.64 1.58 1.53 1.50 1.48 1.46 1.45
70 | 252.50 19.48 8.57 5.68 4.42 3.73 3.29 2.99 2.78 2.61 1.93 1.72 1.62 1.56 1.52 1.49 1.46 1.44 1.43
80 | 252.72 19.48 8.56 5.67 4.41 3.72 3.29 2.99 2.77 2.60 1.92 1.71 1.61 1.54 1.50 1.47 1.45 1.43 1.41
90 | 252.90 19.48 8.56 5.67 4.41 3.72 3.28 2.98 2.76 2.59 1.91 1.70 1.60 1.53 1.49 1.46 1.44 1.42 1.40
100 | 253.04 19.49 8.55 5.66 4.41 3.71 3.27 2.97 2.76 2.59 1.91 1.70 1.59 1.52 1.48 1.45 1.43 1.41 1.39

*) Square root of F value for a=1 and b in the first row yields ty 1./
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