Power Series

A power series 1s a series of the form
ok
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where x 1s a variable and the c.'s are constants called the coefficients of the senies. For each
fixed x, the series (1) is a series of constants that we can test for convergence or divergence.
A power series may converge for some values of x and diverge for other values of x. The
sum of the senes 1s a function
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whose domain is the set of all x for which the series converges. Notice that f resembles a
polynomial. The only difference 1s that f has infinitely many terms.
For instance, if we take ¢, = 1 for all n, the power series becomes the geometric series
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which converges when —1 < x < | and diverges when |x| = 1
More generally, a senes of the form
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1s called a power series in (x — a) or a power series centered at a or a power series
about a. Notice that in writing out the term corresponding to n = 0 in Equations 1 and 2
we have adopted the convention that (x — a)" = 1 even when x = a. Notice also that when
x = a all of the terms are  for n = | and so the power series (2) always converges when

r=d.

EXAMPLE 1 For what values of x is the series >, n!x" convergent?
a={

SOLUTION We use the Ratio Test. If we let a,. as usual, denote the nth term of the series,
then as = n!x". If x # 0, we have
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By the Ratio Test, the series diverges when x # (. Thus, the given series converges only
when x = 0.
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EXAMPLE 2 For what values of x does the series >, [IT] converge?
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SOLUTION Let a, = (x — 3)/n. Then
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By the Ratio Test, the given series is absolutely convergent, and therefore convergent,
when |x — 3| < | and divergent when |x — 3| = 1. Now

r-3|<l & -1<x-3<1 & 2<xr<4

so the senies converges when 2 < x << 4 and diverges when x << 2 orx = 4.

The Ratio Test gives no information when |x — 3| = 1 so we must consider x = 2
and x = 4 separately. If we put x = 4 in the series, it becomes = 1/n, the harmonic
series, which is divergent. If x = 2, the series i1s = (—1)%/n, which converges by the
Alternating Series Test. Thus, the given power series converges for 2 = x < 4.
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3] Theorem For a given power series ), ci(x — a)" there are only three
possibilities: Py

(1) The series converges only when x = a.
(11) The senes converges for all x.

(it1) There is a positive number R such that the series converges if |x —a| < R
and diverges if | x — al = R.

The number R in case (i11) is called the radius of convergence of the power series. By
convention, the radius of convergence 1s R = 0 in case (1) and R = 2 in case (11). The
interval of convergence of a power series is the interval that consists of all values of x for
which the series converges. In case (1) the interval consists of just a single pont a. In case
(i1) the interval is (—oe, %), In case (iii) note that the inequality | x — a| < R can be rewrit-
ten as a — R < x << a + R. When x 1s an endpoint of the interval, that 1s, x = a * R,
anything can happen—the series might converge at one or both endpoints or it might

diverge at both endpoints. Thus, in case (111) there are four possibilities for the interval of
convergence:

(@a—R,a+ R) (@ — R,a+ R] [a— R,a+ R) l[a — R,a + R]



convergence for |[x—a|< R

a—R a a+R

divergence for |[x—a|> R
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We summarize here the radius and interval of convergence for each of the examples
already considered in this section.

SEries Radius of convergence Interval of convergence

Geomelric series 2 R=1 (—1.1)

A=}
Example 1 >onlx R=10 {0}
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Example 2 > — R=1 [2, 4)
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(or sometimes the Root Test) shou

radius of convergence K. The Rato and Root Tests always fa

d be used to determine the

W

1 £ 15 an endpoint of

he tntervalof convergence, so the endpots must be checked wi

1 some offer test



Find the radius of convergence and interval of convergence of the series
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SOLUTION Let a, = (—3)x"/n + 1. Then

Anin | (—3)r+ 1+l CA/m+ 1] _q [n+ 1
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By the Ratio Test, the given series converges if 3 | r| =< 1 and diverges if 3 |x| = 1.

Thus, it converges if | x| = 3 and diverges if | x| = 1. This means that the radius of
convergence is R = 3.
We know the series converges in the interval f—-_&, %]- but we must now test for

convergence at the endpoints of this interval. If x = —1, the series becomes

(—3)(—5)" 2 1 1 1 1 1
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which diverges. (Use the Integral Test or simply observe that 1t 1s a p-senes with
pP=1< I.} If x = 1, the series is

(=3(z) _ <
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which converges by the Alternating Series Test. Therefore, the given power series con-

verges when —1 = x = 1. so the interval of convergence is ['—3'1,-&



Find the radius of convergence and interval of convergence of the series

=onlx 4+ 2)
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SOLUTION 1f @, = n(x + 2)%/3™, then

at| |+ D+ 3™
a, 3o n(x + 2)°
(’Hl') x+2] |x+2 .
= — — as n—
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Using the Ratio Test, we see that the series converges if | x + 2|/3 < | and it diverges if
|x+2|/3 > 1. Soit converges if |x + 2| < 3 and diverges if |x + 2| > 3. Thus, the
radius of convergence 1s R = 3.



The inequality |x + 2| < 3 can be written as —5 < x < |, so we test the series at
the endpoints —3 and 1. When x = =3, the seres 1s

which diverges by the Test for Divergence [(—1)n doesn’t converge to 0]. When x = 1,
the series 1s

which also diverges by the Test for Divergence. Thus, the series converges only when
-5 < x < 1, so the interval of convergence 1s (-5, 1).
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Express 1/(1 + x7) as the sum of a power series and find the interval of
COMNVETEENCE.

SOLUTION Replacing x by —x in Equation 1, we have
1 I -

I+ 1-(-9) “
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Because this is a geometric series, it converges when | —.1’1| < |, thatis, x* < 1, or

(x| < 1. Therefore, the interval of convergence is (~1, 1). (Of course, we could have
determined the radius of convergence by applying the Ratio Test, but that much work 1s
unnecessary here.)



Find a power series representation for /(x + 2).

SOWTION In order to put this function m the form of the left side of Equation | we first
factor a 2 from the denominator:
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This series converges when | —x/2| < 1, thatis, | x| < 2. So the interval of convergence

is(-2,2)



Find a power series representation of x*/(x + 2).

SOLUTION Since this function is just x” times the function in Example 2, all we have to do
is to multiply that series by x*

3 0

Loep— =0y = O

X+ r+2 = 2"*' 10 Z’”'

=%13—3|xi+g|15—|—l,515+ v
Another way of writing this series 15 as follows:

n |

-3

i 2“’ '

the interval of convergence 1s (~2, 2).



The sum of a power series is a function f(x) = Z;_ culx — a)* whose domain is the inter-
val of convergence of the series. We would like to be able to differentiate and integrate
such functions, and the following theorem (which we won't prove) says that we can do so
by differentiating or integrating each individual term in the series, just as we would for a
polynomial. This is called term-by-term differentiation and integration.

2| Theorem If the power series = c,(x — a)" has radius of convergence R = 0,
then the function f defined by

f)=ca+alx—a)+clx—af +---= icﬂlix—a]“
m=}

is differentiable (and therefore continuous) on the interval (a — R, a + R) and
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The radii of convergence of the power series in Equations (1) and (11) are both R.



NOTE1 - Equations (1) and (11) in Theorem 2 can be rewritten in the form

(iii) %[E calx — :ﬂ“} =3 Ll [calx — a)"]

a=i}

(iv) j {2 clx — a}"}dx _y J&[I — a)'dx
n={

a=(]

We know that, for imite sums, the derivative of a sum 1s the sum of the derivatives and the
integral of a sum is the sum of the integrals. Equations (111) and (iv) assert that the same 1s
true for infinite sums, provided we are dealing with power series. (For other types of series
of functions the situation is not as simple;

NOTE 2 © Although Theorem 2 says that the radius of convergence remains the same
when a power senes 1s differentiated or integrated, this does not mean that the interval of
convergence remains the same. It may happen that the onginal series converges at an end-
point, whereas the differentiated senes diverges there.



Express 1/(1 — x)° as a power series by differentiating Equation 1. What is
the radius of convergence?

SOLUTION Dnfferentiating each side of the equation
'l i

=l+x+x+x+---=3 1"
| —x =
we get | 1.=1+2.I+3.1'E+"'=En;“'l
“_'ﬂh =]
If we wish, we can replace n by n + 1 and write the answer as
'l ]
=¥ (n+ 1)x"
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According to Theorem 2, the radius of convergence of the differentiated series 1s the
same as the radius of convergence of the onginal series, namely, R = 1.



Find a power series representation for In(1 — x) and its radius of
CONVergence.

SOLUTION We notice that, except for a factor of —1, the derivative of this function is
1/(1 — x). So we integrate both sides of Equation 1:

1

— X

—111{1—,1’]:]*1 dx=J{1+x+xE+---]dx

_x.l I'_’- o _I""+I
=x+ 5+ +'”+C_§un+1 + C
= ¥ + C x| =1
a=1 R
To determine the value of C we put x = 0 in this equation and obtain —In(1 — 0) = C.
Thus, C = 0 and
(1l — 9= x_ X X _ X <
n x) = —x 3 3 =2, x

The radius of convergence is the same as for the original series: R = 1.

Notice what happens if we put x — % in the result of Example . Since In % = —In 2, we
see that
1 1 1 1 S|
In2 =—+ — + + + o=
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Find a power series representation for f(x) = tan 'x.

SOLUTION We observe that f'(x) = 1/({1 + x*) and find the required series by integrating
the power series for 1/(1 + x?) found in Example 1.

tan‘lx=jmdx=‘l‘[1 — x4+ xt— x4+ - )dx
x3 x° x’
=C+x—F +5 5+

To find C we put x = 0 and obtain C = tan™'0 = 0. Therefore

_|= _I' I_.I L _HL
lanx = x-St - ,,“?E.H]EHH

Since the radius of convergence of the series for 1/(1 + x%) is 1, the radius of conver-
gence of this series for tan"x is also 1.



)] as a power series.

(a) The first step is to express the integrand, 1/(1 + x'), as the sum of a power series.
we start with Equation 1 and replace x by —x:

I 1 —E(—I

1+x7 1—-(=x") 5
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Now we integrate term by term:

o '.f.r|+l
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This series converges for | —x' | < 1, that is, for |x| < 1.



Taglor and Maclavrin Series

In the preceding section we were able to find power series representations for a certain
restricted class of functions. Here we investigate more general problems: Which functions
have power series representations? How can we find such representations?

We start by supposing that f is any function that can be represented by a power series

N f=a+ax—a+ax-a'+ax—a’+ax—a'+--- x—a| <R

Let’s try to determine what the coefficients ¢, must be in terms of f. To begin, notice that
if we put x = a in Equation 1, then all terms after the first one are 0 and we get

fla) = ¢

we can differentiate the series in Equation 1 term by term:
2] f'x)=c +2c;(x—a) +3c(x —a) + deslx—a) + - lx—a| <R

and substitution of x = a in Equation 2 gives

f'la) = ¢



Now we differentiate both sides of Equation 2 and obtain
fix)=2c:+2-3c(x —a) + 3 -deglx —a)y* + --- x—a|l=R

Again we put x = a in Equation 3. The result is
f"a) = 2c2
Let’s apply the procedure one more time. Differentiation of the series in Equation 3 gives
f x)=2-3c3+2-3-deylx —a) +3-4-5cslx —a)y + --- |lx —a| <R
and substitution of x = a in Equation 4 gives
f™a) =2+ 3ca = 3c

By now you can see the pattern. If we continue to differentiate and substitute x — a, we
obtain

f{n1|[ﬂ}=2.3.4-----n{.‘n:n!{.‘"

Solving this equation for the nth coefficient ¢, we get

in)
R (a)
n!
This formula remains valid even for n = 0 if we adopt the conventions that ! = 1 and

% = f. Thus, we have proved the following theorem.



[5] Theorem If f has a power series representation (expansion) at a, that 1s, if

flx) = iﬂn(l—ﬂ]" x-al<R

fi=(]

then 1ts coefficients are given by the formula
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substituting

1is formula for ¢, back into the series, we see that 1f  has a power series

expansion at ,

ten 1 must be of the followng form,




The seres in Equation 6 15 called the Taylor series of the function f at a (or about a
or centered at a). For the special case a = 0 the Taylor senes becomes

f{n] )

r
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I f=2

=) ML

This case ases frequently enough that 5 ven the spectal name Maclaurm seres



NOTE © We have shown that if f can be represented as a power series about a, then f 1s
equal to the sum of its Taylor series. But there exist functions that are not equal to the sum
of their Taylor series.

Find the Maclaurin series of the function f(x) = e” and its radius of
COnvergence.

SOLUTION If fi(x) = e*, then f"™(x) = &, so f™(0) = " = 1 for all n. Therefore, the
Taylor senies for f at 0 (that 1s, the Maclaurin series) 1s
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To find the radius of convergence we let a, = x"/n!. Then
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so, by the Ratio Test, the series converges for all x and the radius of convergence is

R =m,



The conclusion we can draw from Theorem 5 and Example 1s that if ¢* has a power
series expansion at (), then

I _ o
¢ zﬂ;. n!

S50 how can we determine whether e does have a power series representation?

Let's investigate the more general question: Under what circumstances 1s a function
equal to the sum of its Taylor series? In other words, 1f f has derivatives of all orders, when
18 It true that
. ")
f =%

= n!

(x —al

As with any convergent series, this means that f(x) is the limit of the sequence of partial
sums. In the case of the Taylor series. the partial sums are

f(a)
|

1!

(x — a)

Talx) = E
=0

=f[a]+%;ﬂ(x—ﬂ]+




Notice that T, 1s a polynomial of degree n called the nth-degree Taylor polynomial of f
at a. For instance, for the exponential function f(x) = e the result of Example 1 shows
that the Taylor polynomials at 0 (or Maclaurin polynomials) with n = 1, 2, and 3 are

. LR
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In general, f(x) is the sum of its Taylor series if

f(x) = lim Tal(x)

M=

If we let

Ri(x) = flx) — Tu(x) so that f{-ﬂ = Tolx) + Ry(x)

then R.(x) is called the remainder of the Taylor series. If we can somehow show that
limg . Ry(x) = 0, then it follows that

lim To(x) = lim [ f(x) — Ra(x)] = f(x) — li_[ll Rilx) = flx)

= f—w =

We have therefore proved the following.



B Theorem If f(x)=Tilx) + Rix), where Ty s the nth-degree Taylor polyno-
mial of f at a and

lm R,(x) =0

=

or | = a| < R, then f is equa tothe sum of it Taylor sries on the intervl
1-a/<k




In trying to show that lim,_... Ra(x) = 0 for a specific function f, we usually use the
following fact.

(9] Taylor's Inequality If | f"*"(x)| = M for |x — a| = d, then the remainder R,(x)
of the Taylor series satisfies the inequahity

M
Rix)| = -[x—a|"" for [x-a|=d
(n+1)
_I.H
10 lim—=0  forevery real number x
n—s= g
This 1s true because we know that the series = x"/n! converges for all x

and so its nth term approaches (.



EXAMPLE 2 Prove that e* is equal to the sum of its Maclaurn senes.

SOLUTION If f(x) = e* then f"*'"(x) = &* for all n. If d is any positive number and

| x| = d. then | f"*"(x)| = e* = e". So Taylor’s Inequality. with a = 0 and M = &7,
says that
od
|Rnfx]|5m|x|"+' for |x| =d

a

Notice that the same constant M — ¢ works for every value of n. But, from Equa-

tion 10, we have

o a+1

Ed

- e a4+l — d 73 —
lim o yr |+ e hm e =9
It follows from the Squeeze Theorem that lim, ...| Ry(x)| = 0 and therefore

lim, .. Rx) = 0O for all values of x. By Theorem 8, " is equal to the sum of its
Maclaurin series, that 1s,

[17] et = 22— for all x
a=0 M.
In particular. if we put x = 1 in Eguation 11. we obtain the following expression for the

number £ as a sum of an infinite seres:

-1 11
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Find the Taylor series for f(x) = ¢*ata = 2.

SOLUTION We have {*(2) = ¢” and so, putting @ = 2 in the definition of a Taylor series
(6), we get

fﬁn] } ‘gt
- 2= Y =~
p=0 . n=0 M.
Again 1t can be venfied, that the radius of convergence 1s R = =, As n

Example we can venify that im,_.., R,(x) =0, so

i '!l

€

E =Y —(x-2" forallx

= 1!




Where does it converge?
Find the Maclaurin series for sin x and prove that it represents sin x for all x.

SOLUTION We arrange our computation in two columns as follows:
f(x) = sin x F(0) =0
£'(x) = cos x £10) =1
£(x) = —sin x £7(0) =0

f"(x) = —cos x £1(0) = —1
F9x) = sin x F90) =0

Since the derivatives repeat in a cycle of four, we can write the Maclaurin series as
follows:

0+ L@ SO SO

3 5 1 x 2u+]

e
— — - — L — _1
S TR TR T E’n( y 2n + 1)!
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Since f™"(x) s +sin x or cos x, we know that | f**"(x)| = 1 for all x. So we can

take M = 1 1n Taylor’s Inequalty:

M ‘m-l‘_ MMI
ne ) T )

[ Rix)|

By Equation 10 the right side of this mequality approaches 0 as n— ®, so
|R(x)|— 0 by the Squeeze Theorem. It follows that Ry(x) — 0 as n— %, s sin x

15 equal to the sum of 1ts Maclaurmn senes by Theorem 8.

3 5 7
[15] sinx=r—;l+;!—;1+
x I2n+l
= — for all
2V Gy forallx




We have denoted the sum by g(x) since we don’t yet know whether the series converges
to sinx. The series does converge for all x by the ratio test:

(=1 L2+
r 2 1)!
lim (2(n+1}+ﬂl}. — lim Mmz
n—s 00 (=1) A.?ﬂ+1 n—co (2n + 3)!
(2n + 1)!
. x|
= lim

n—>co (2n+3)(2n +2)



Find the Maclaurin senes for cos x.

SOLUTION We could proceed directly as in Example 4 but it’s easier to differentiate the
Maclaurin series for sin x given by Equation 15:

d d [ . '
EDE."{Zd—[SlIlI]Z— T——t—— 4 -

X dx \ o5 7
4 L D S b _ o oxt i
T T TR TR TR
Since the Maclaurin series for sin x converges for all x, Theorem ' tells

us that the differentiated series for cos x also converges for all x. Thus

2 4 3
= 1 —_ - _|_ - —_ - + -
16 COS X 7 1 6l
e In

= Y (=1)y= for all x

A= {EH]r




Other Maclaurin and Taylor Series

Series can be combined in various ways to generate new series. For example, we can
find the Maclaurin series for e™ by replacing x with —x in the series for e*:

o (=1)" 2 3
REDY "=1-x4=—=4--- (forall x).
&~ n 21 3l

The series for e* and e~ can then be subtracted or added and the results divided by 2
to obtain Maclaurin series for the hyperbolic functions sinh x and cosh x:

X R
i h — — — —
sinh x Z(2n+1}7 X+ 3 + 5 + -+ (forall x)
0o x 1 4
coshx = = Z (Er:}‘ 1+ 5 + - + (for all x).



Obtain Maclaurin series for the following functions:

sin{xzj s
(a) e \ (b) R (¢) sin“x.

Solution

(a) We substitute —Jrj,f?; for x in the Maclaurin series for e*:

2 24 2 2 4
—.1'1,."'3_ _I_ L I_ _l ":_
¢ = 3+2!(3) 3!(3)+

— Z{—]]”LIE” (for all real x).
3n!



(b) For all x #= 0 we have

x 2 243 245
sin(x?) lGhu}+H}_m)

X X 3! 5!
I5 xﬂ dn+1
=”—§+§—“"Z“3@EEF

Note that f(x) = (sin(x?))/x is not defined at x = 0 but does have a limit (namely
(0) as x approaches (0. If we define f(0) = 0 (the continuous extension of f(x) to
x = (1), then the series converges to f(x) for all x.

(c) We use a trigonometric identity to express sin® x in terms of cos 2x and then use

the Maclaurin series for cos x with x replaced by 2x.

. 1 — cos 2x 1 1 2x)¢ (2
sin”~ x = 5 _E_E(l_ 51 + o _)
_ @0 @ot @
R U T TR RS _)
zbrk

- z{— }”m y 22 (for all real x).



Find the Taylor series for In x in powers of x — 2. Where does the
series converge to Inx?

Solution Note thatift = (x — 2)/2, then

x — 2

]n.r:ln{2+{x—2)]=ln|:2(l—|— )]=In2—|—ln(]+r).

We use the known Maclaurin series for In(1 + #):

Inx =In2 4+ In(l + 1)
2 3 4
=ln2+f—L+— ——————

2 3 4
x—2 (x—=22¢ x-2y (x-2¢
=24+ —=— =57 3x23  ax28 T

oo o gan—1
:[n2+2%{x—2}".

n=I

Since the series for In(1 4+ #) is valid for —1 < ¢ = 1, this series for In x is valid for
—1 = (x —2)/2 = 1, thatis, for0 = x =4,



Find the Maclaurin series for the function f{x) = xcos x.

SOLUTION Instead of computing derivatives and substituting in Equation 7, it’s easier to
multiply the sernes for cos x (Equation 16) by x:

e Iln x '-'n+|
p— _— I_ - — — I -
xeosx =x 2D G E.f " G
Represent f(x) = sin x as the sum of its Taylor series centered at =/ 3.

SOLUTION Acrranging our work in columns, we have

F(x) = sin x f(%) _ %
F(x) = cos x f(%} _ L
F7(x) = —sin x fn(%) . ?
Fr(x) = —cos x f(%) _ L

and this pattern repeats indefinitely. Therefore, the Taylor series at /3 1s

=) ff(f} (I - . F(;}, =) ~(Z) fx_i};+___

3 21 3!
W] 1 } ( )2 1 (
e —|— —_— _—— _— _—— _— —|— - = o=
2 2 - 11! ‘t 2 - 2- T3 2 - 31\
The proof that this series represents sin x for all x 15 very similar to that in Example <.
[Just replace x by x — +7/3 in (14).] We can write the series in sigma notation if we

separate the terms that contain /3 :

= S CUVE(L )t s b (e
SInx = 2 TS R ﬂ_,:, 2(2m + 1! :r_ 3




1

=Xx"=l+x+x'+x+--
a={)

| —x
eI=§D§=1+%+‘;—j+§+---
inz= 317 (zfrlu! =
tan'lng‘,{—l]“ L. :I_I_:_IS_ T



e dv as an infinite series.

(a) First we find the Maclaurin series for f(x) = ™" ; Although 1t’s possible to use the
direct method, let’s find it simply by replacing x with —x” in the series for €* given in
the table of Maclaurin senes. Thus, for all values of x,

o - ] 2n 2 4 &
:E[I}"Zz[ X x T
= n! ' n! o213

Now we integrate term by term:

. “ 2 xt f HIEE .
Je dx:b{(l_1!+z!_3r+"'+{_” ! +"')‘ﬁ:
T T 1’ yln+l
=C+x-— - - +oee (=) -
S DA TR TR INEY T T

F
=X

This series converges for all x because the original series for e™* converges for all x.



et —=1-x
Evaluate m .
x—[ I°

SOLUTION Using the Maclaurin series for ¥, we have

(1+i+*"—2+i --)—1—1
et —1—-x , 1! 2! 3! .
lim - = lim 5
21 X x—=0 X
x  x! v
T T T
= lim -
x—=0 x-
_1 (-]- X 1‘2 _1'3
B A TR T
_1
2

because power series are continuous functions.



Obtain the first three nonzero terms of the Maclaurin series for
(a) tanx and (b) In cos x.

Solution

(a) tanx = (sinx)/(cosx). We can obtain the first three terms of the Maclaurin series
for tan x by long division of the series for cos x into that for sin x:







Iz .-'['4 Iﬁ
(b) Incosx = ln(l + (— 1 + 7 o _|_))
X

Observe that the series for tan x can also have been derived from that of In cos x because

we have tanx = —— Incosx.
dx



EXAMPLE 8 Find the Maclaurin series for f(x) = (1 + x)*, where k is any real number.

S0LUTION Arranging our work in columns, we have

flx)=(1+ »* fl0) =1
f(x) = K1 + x*! f'(0) =k
f"(x) = k(k — 1)(1 + x)*° f"(0) = Kk — 1)

"(x) = k(k — 1)k — 2)(1 + 0 f"(0) = klk — 1)(k — 2)

fx)=kk—1)---(k—n+ 1A +0*" F90)=kk—-1)---(k—n+1)

Therefore the Maclaurin series of f(x) = (1 + x)*is

= gl = — vk —p +
3 f (U)x”= 3 Kk—1)«-(k—mn I)XJT
=0 H! n=0 H[



This series is called the binomial series. If its nth term is a,, then

aner| | kk—1 - (k—n+ k- )X”_l' n!

ay (n+ 1)! Kk—1) - (k—n+ 1x"
k
l__
k= n ‘ :

L = o

n+1 1
1 +—
n

Thus, by the Ratio Test, the binomial series converges if | x| < 1 and diverges
if | x| > 1.

The traditional notation for the coefficients in the binomial series is

n n

(;;)_ k(k— 1)(k—2) - (k—n+1)

and these numbers are called the binomial coefficients.



The following theorem states that (1 + 1) is equal to the sum of its Maclauri serie.

THE BINOMIAL SERIES If k is any real number and | x| < 1, then

= [k Kk -1 k(k— 1)(k— 2
(1+x]*=2(ﬂ)x”=]+kx+ (2‘ ]f+ ( 3)1{ }x3+~-
n=0 : .

Although the binomial series always converges when | x| < 1, the question of whether
or not it converges at the endpoints, £ 1, depends on the value of £. It turns out that the
series converges at 1 if —1 < k< 0 and at both gnglpaints if k= (.



1
Find the Maclaurin series for the function f(x) = N and its radius
of convergence. x

SOLUTION We write f(x) in a form where we can use the binomial series:

1 B 1 B 1 _i(l_i)_“
4 —x N\ v 2 4
[4(1 — — 241 ——
N ( 4) AV 1

Using the binomial series with k = —3 and with x replaced by —x/4, we have

L1y _i)‘”zzii (—%)(_1)”
4—-—x 2\ 4 2 o 4

! 4
1 1 1-3 1-3-5 1-3:5+-+++(2n—1)
=— |14+ =x+ +————— B4+ g
2 [1 X T g T Ty~ 8" * ]
We know that this series converges when | —x/4| < 1, that is, | x| < 4, so the

radius of convergence is K = 4.



Find the Maclaurin series for

Solution Here r = —(1/2):

Y = (14+x)"12
X

-t ()

I Ix3 5, 1x3x3 ,

R R T T TR
o0
I x3x5x.--x(2n=1)
_ EREYL n
=14) (-1) o o,

This series converges for =1 < x < 1. (Use the alternating series test to get the
endpointx = 1.)



Find the Maclaurin series for sin~! x.

Solution Replace x with —¢? in the series obtained in the previous example to get

] m]:x:?nxﬁx---x{h—l}z
—3 | H
.-"l_ll,z +Z Wyl :

(=1 <t < 1).

n=]

Now integrate ¢ from 0 to x:

o dy x — 1 x3x5%x.-x(2n—1
sin"x:f =f I+ XoXoxX X }rz“ dr
o V1=t2 Jo 2n!

n=1|

0
_ I X3x5x--x(2n—=1) 4,44
=x+), (20 + 1) '

=_I_|_'__|___I‘—|—*-* {—]{I{l}.



Si“‘rzgﬂ(_”n {zj:ll)! T ;j ; B ?:
msx=§ﬂ(—1)“ (i;! —1- ‘; i - “; +
tan 'x = 20(—1]” 2:;2:[1 =x— A; - .15'5 — ‘g + -

kk—1) ,  kk=Dk-2)

R
P 0
[1+X)—E(ﬂ)x—1+kx+ T T

X+




— < r 3
X —sinx and (b) lim (e** = D In(l +x }‘

Evaluate (a) lim

=0 x? t+0 (1 =cos3x)?
Solution
X =sinx ]
a) lim —~
() r—() _1'3 [ﬂ:|

r =) X
.T:J' IS n
T
= lim = :
1= X



O = s 302 0

2 3 i
(1+(2.r)+(2‘r) . +~-—1) (x3—’i+~~~)

(€ = 1)In(1 +x%) [c}]

. 2! 3! 2
= lim ;
=0 ( ( {31)2 (3.1'}4 ))
[ A
2! 4!
NS TE R
= |lim . ;
x—=l) ?IE_? I4
2 4!
24+ 2x + 2 8
= Im _ - = -

You can check that the second of these examples is much more difficult if attempted
using I'Hopital’s Rule.



Find the first three nonzero terms in the Maclaurin series for (a) e*sin x
and (b) tan x.

SOLUTION
(a) Using the Maclaurin series for e* and sin x in Table 1, we have

X = — 1+X+XE+X3-I—-‘.§~ —i3—|—1..i-\
¢ s TR Y

We multiply these expressions, collecting like terms just as for polynomials:

l+x+58 +58° + -+
1

X X — X+

1 l
x+ Xtz x4
_ls__l'd_._,..
+ X T FX

x+ ¥+ + -

. |
Thus e'sinx=x+x"+3x +---



(b) Using the Maclaurin series in Table  we have

X3+x5
y—— ...
sin x 3! !
tan x = = > :
cosx X x
2! 4!

We use a procedure like long division:

X+

1.3 2 5 .
X+ X T

oz o4 e —
5 X -I—H_r ]X

X—

3. 1 5.
X T X

1.3 15,
X T+ X

o3 1.5 4,
3 X X T+
13 _ 1.5,
3 X Ex+

Thus tanx=x+3x° + =



Although we have not attempted to justify the formal manipulations used in Exam-
ple  they are legitimate. There is a theorem which states that if both f(x) = 2 ¢,x" and
g(x) = £ byx" converge for | x| < R and the series are multiplied as if they were polyno-
mials, then the resulting series also converges for | x| < R and represents f(x)g(x). For

division we require by # 0; the resulting series converges for sufficiently small | x|.
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For x=e the given series diverges.

For x=-e the given series diverges.

Please show it .
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