

Universidad Carlos III de Madrid www.uc3m.es

MATERIALS SCIENCE AND ENGINEERING

TOPIC 1.1. FAMILIES OF MATERIALS, PROPERTIES APPLICATIONS AND SELECTION CRITERIA.

- Historic evolution of Materials Science and Engineering
- The Science and Engineering of Materials
- Materials Classification
- General properties of Materials
- Going from Structure to Materials Properties
- Materials Selection

Dpt. Materials Sci. and Eng. and Chem. Eng.

Sophia A. Tsipas / Dania Olmos

MATERIALS SCIENCE AND ENGINEERING

Materials Science: basic knowledge about the internal structure, properties and processing of materials.

Materials Engineering: fundamental knowledge applied to materials in order to transform them into useful products required by the society.

CLASSIFICATION OF MATERIALS

Material	Composition	Structure	Properties
Metals	Metals	Crystalline	↑σ _e , ↑σ _t , ↑R
Polymers	Chains of organic molecules	Semi crystalline or amorphous	$\downarrow \sigma_{e}, \downarrow \sigma_{t}, \downarrow \rho$
Ceramics	Metals + no metals	Crystalline or amorphous	↑hardness, ↑brittleness

Composite materials: system or combination of materials that results from the union (not chemical, insoluble between them) of two or more components, creating a new material with specific properties and characteristics, with properties different from the constituent materials .

CLASSIFICATION OF MATERIALS

Functional classification :

- Aerospace
- Biomedical
- Electronic Materials
- Energy Technology and Environment
- Magnetic Materials
- Optical and Photonic Materials
- "Smart" Materials
- Structural Materials

Nature of bonding ↔ properties ↔ type of materials

Type of material	Character of bonding	Examples
Metal	Metallic	Fe, steels
Ceramic and glasses	Ionic/ covalent	Silica (SiO ₂)
Polymers	Covalent and secondary	Polyethylene –(CH_2)-

Dpt. Materials Sci. and Eng. and Chem. Eng.

Metals and Metallic alloys

- Characteristic shine
- Electrical and thermal conductivity
- Workability
- Ductility

http://commons.wikimedia.org/wiki/ File:Reduction_Gear.jpg

http://commons.wikimedia.org/wiki/ File:Under_the_bridge_-_Oresund_Bridge.jpg

Polymers

- Principally based on chains of carbon atoms joined by covalent bonds.

- Thermoplastics
- Thermostable
- Elastomers
- Thermal and electric insulators
- Good specific properties
- Low working temperature

UC3M

Ceramics

- High hardness
- Brittleness
- Electric and thermal insulators
- Workability
- Good thermal and chemical stability.

UC3M

http://perso.wanadoo.es/chyryes/glosario/cer_fun.htm

GENERAL PROPERTIES OF MATERIALS

Composite Materials

- Great range of properties
- Depend on the constituent materials
- General classification as a function of the matrix and the reinforcement
 - Ceramic matrix
 - Metallic matrix
 - Polymeric matrix

FROM STRUCTURE TO PROPERTIES

Structure:

- Distribution of e⁻ affects the electric , magnetic, thermal , optical behaviour, and the corrosion resistance.
- Bonding determines the type of material
- The positioning of atoms in space ⇒ crystalline structure ⇒ influences mechanical properties

Properties

- Mechanical (R_{mecánica}, ductility, R_{impacto}...)
- Physico-chemical (Corrosion resistance, electrical, magnetic, optical...)

Processing

- Moulding process
- Plastic deformation process
- Joining process
- Mechanical working process

śo " ż

FROM STRUCTURE TO PROPERTIES

Structure, Properties and Processing

UC3M

RANSLUCEN LUCALOX "ALUMINA (d) Porous microstructure in polycrystalline Al₂O₃ (a) leads to an

polycrystalline Al₂O₃ (c) leads to a translucent material. Grain boundaries + pores

Translucent Polycrystalline Grain boundaries

William D. Callister Materials Science and Engineering: An Introduction, John Wiley & Sons

J.F. Shackelford, Introduction to Materials Science and Engineering for Engineers; Prentice Hall.

(c)

50 µm

FROM STRUCTURE TO PROPERTIES

Structure, Properties and Processing

Atomic Scale

Al alloys: ductile Mg alloys: relatively brittle

- planes and directions of high atomic density
- easily deformed mechanically
 Ductility

(a) Aluminum

(b) Magnesium

J.F. Shackelford, Introduction to Materials Science and Engineering for Engineers; Prentice Hall.

http://commons.wikimedia.org/wiki/File:149405.jpeg

Al: 12 planes and directions \rightarrow major capacity for de deformation Mg: 3 planes and directions

UC3M

FROM STRUCTURE TO PROPERTIES

	Example of application	Properties
Metals and alloys Foundry products	Automotive motors	Castable, absorber of vibrations
Ceramics and glasses SiO ₂ -Na ₂ O-CaO	Windows	Optically transparent, thermal insulators
Polymers Polyethylene	Packaging and bags	Easily processed in thin layers , flexible and hermetic
Semiconductors Silicon	Transistors and intergraded circuits	Unique electrical properties
Composite Materials WC-Co	Cutting and forming tools	Elevated hardness and relatively good impact resistance

SELECTION OF MATERIALS

• Practical examples. Preliminary considerations

Which material is appropriate? Within a predetermined group, which is the best?

Steps for materials selection: gas cylinder

- Evaluate requirements for storing gases at ↑ P (14 MPa)
- Eliminate materials that do not satisfy the limiting characteristics: (R_{mehanical} and strength): polymers and ceramics
- Choose the one with the lowest cost: metals

SELECTION OF MATERIALS

• Practical examples. Preliminary considerations

Steps for materials selection: Spaceship Evaluate requirements for a pressure container of a spaceship

SELECTION OF MATERIALS

• Practical examples.

Transport ship of the II World War. *Brittle fracture of the steel hull due to low temperatures.*

Causes of materials failures :

- Selection and/or inadequate design
- Improper use during service

EVOLUTION AND SUBSTITUTION

M.F. Ashby, Materials Selection in Mechanical Design, Butterworth-Heinemann

UC3M

http://ocw.mit.edu/OcwWeb/Materials-Science-and-Engineering/3-080Fall-2005/CourseHome/

Dpt. Materials Sci. and Eng. and Chem. Eng.

SELECTION OF MATERIALS

• Property Diagrams

M.F. Ashby, Materials Selection in Mechanical Design, Butterworth-Heinemann