50 year Perspective of Automotive Engineering Body Materials and an Analysis of the Future

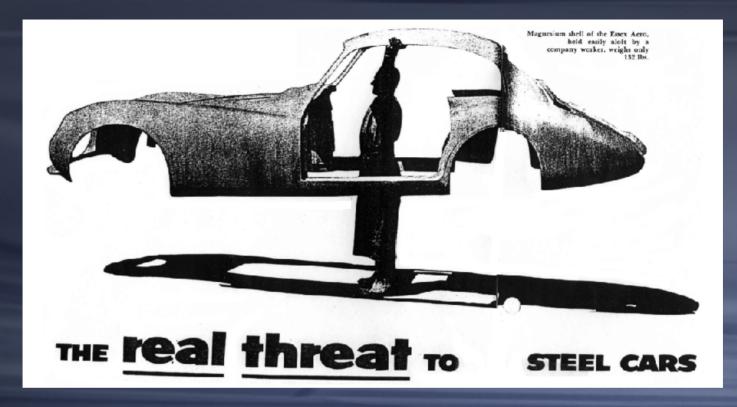
Jody N. Hall

Manager, Global Die Standards & Materials Applications General Motors Manufacturing Engineering

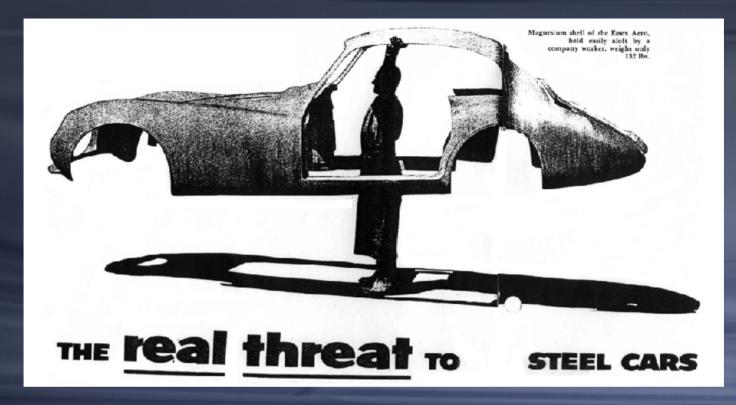
Great Designs in Steel 2008

Steel Becomes the "Material of Choice" for Auto Bodies

Benz Patent Motorwagen 1886 (Replica)


- 1914 Dodge & Budd produce 5,000 all-steel bodies
- All-steel body was lighter, stronger, easier to make
- Most significant advantage was in painting

- Original bodies made of wood & steel
- Quick to tool, easy to change
- Large number of skilled workers


Dodge Brothers Touring Car 1917

"Every time the price of <u>steel</u> goes up, Detroit's auto makers moan in anguish and intensify their search for replacements"

gas "Every time the price of steel goes up, Detroit's auto makers moan in anguish and intensify their search for replacements"

Materials Causing the Biggest Stir in Body Technology

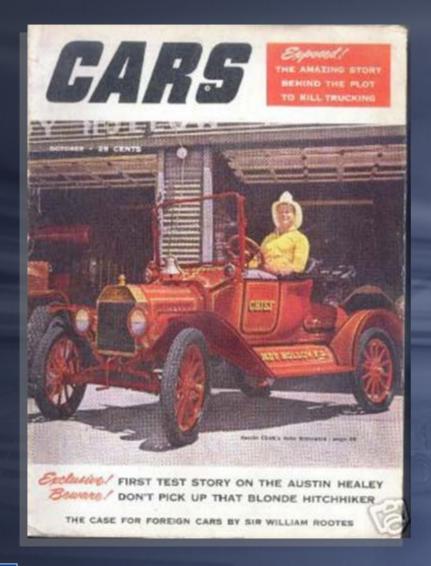
Plastics

-"been getting the big play ... as successor to steel"

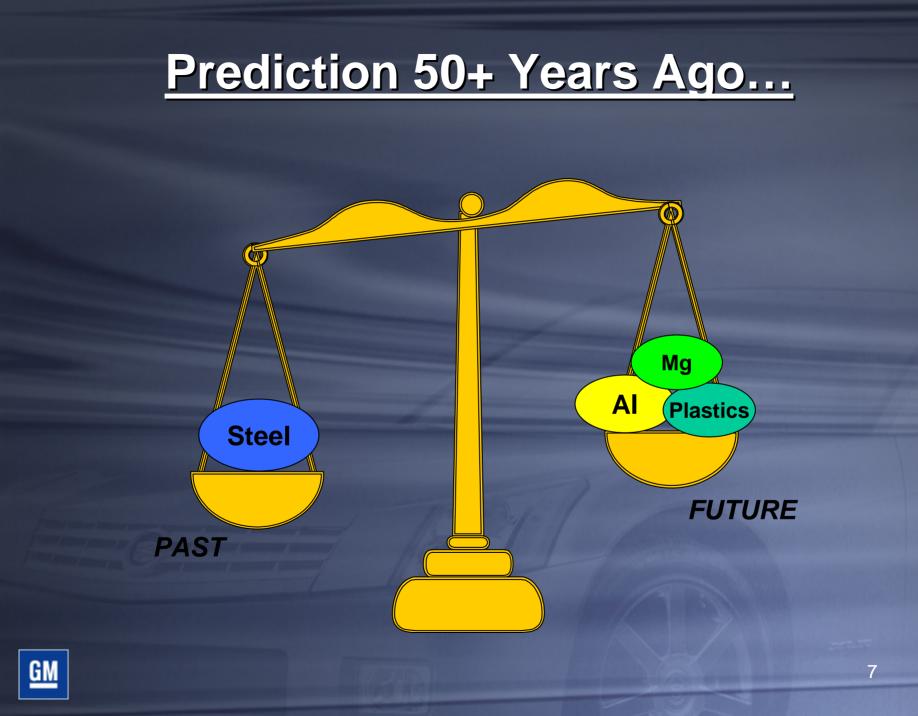
Aluminum Alloys

-"about as strong as steel, less than half the weight"
-"used …since birth of auto"
-"most plentiful metal on earth"

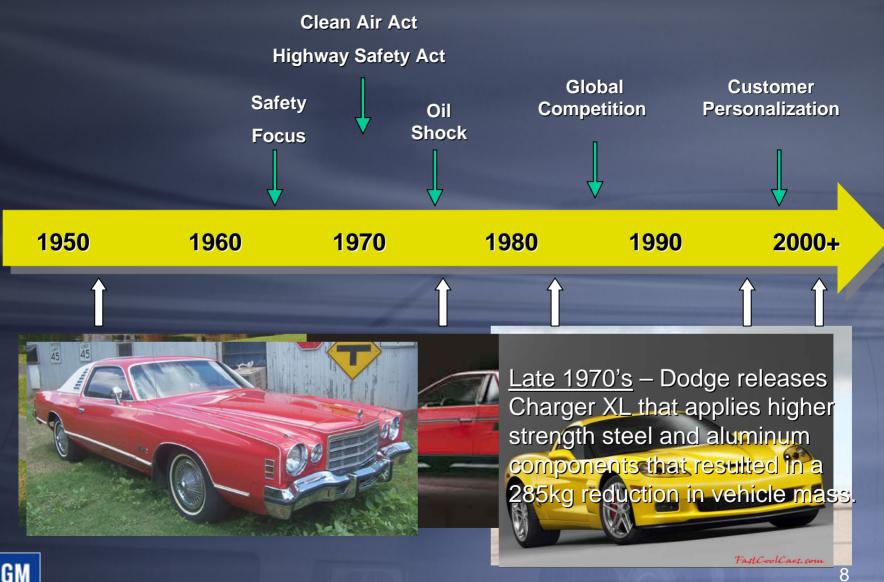
Magnesium Alloys


-"even lighter than aluminum, stronger for its weight than steel"
-"most easily machined and cast"
-"enough in the ocean...

to provide 100,000,000 tons a year"

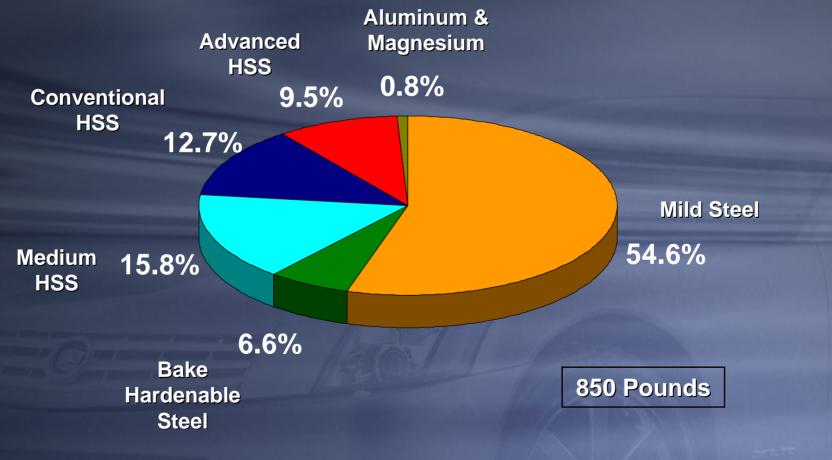


Published October 1953



"The day of the passenger car made primarily of iron and steel is on the wane! Some sources predict that by 1960 a Cadillac will weigh less than a 1953 Chevrolet and a Chevy will probably weigh about as much as a motorcycle."

Key Product Drivers & Resulting Vehicles



Steel Mass Reduction

<u>Current Body and Closure Metallic Material</u> <u>Content by Type for North America</u>

Source: Ducker Worldwide 2007

The Question is ...

Why do these materials continue to fall short of the prediction?

Comparison of Materials by Performance

	Density	Modulus	Tensile Strength	Elongation	Corrosion Resistance
Mild Steel	BASELINE				
Aluminum	4		0	0	0 / +
Magnesium	÷	1	0		0 / -
Polymers & Composites		0/-	-/0/+	-	+

KEY: $\mathbf{0} = \mathbf{equal} + \mathbf{e} \mathbf{better} = \mathbf{worse}$

Comparison of Materials by Manufacturability

SteelAluminumAdvantages:Advantages:• Formability• Formability

- Weldability
- Infrastructure
- Painted Surface
- Castability
- Painted Surface

Magnesium

Advantages:

Castability

<u>Polymer/</u> <u>Composites</u>

Advantages:

- Low cost tooling
- Shorter lead time

Disadvantages:

• Castability

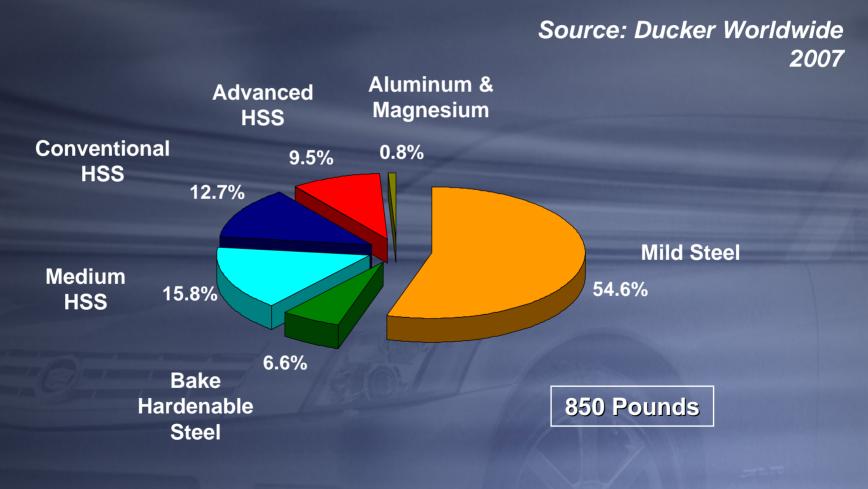
Disadvantages:

- Lower formability than steel
- Weldability

Disadvantages:

- Formability
- Elevated temperature stamping & hemming
- Weldability

Disadvantages:


- Cycle Time
- Infrastructure
- Difficult to repair
- Painted
 Surface 13

<u>Comparison of Materials by</u> Other Important Characteristics

	Cost (Est. \$/lb.)	Availability (Annual Metric Ton Production)	Environment (Primary Production Emissions reported by industry)
Mild Steel (Baseline)	\$0.50	110 Million	 easy to recycle Emissions = 2.3 – 2.7 kg CO₂/kg
Aluminum (Al)	\$1.00	2.5 Million	 easy to recycle Emissions = 13.9 – 15.5 kg CO₂/kg
Magnesium (Mg)	\$1.50	0.5 Million	 easy to recycle Emissions = 18.0 – 24.8 kg CO₂/kg
PMC	\$1.20 - 6.50	Unknown	 difficult to recycle Emissions = 2.5 – 23.0 kg CO₂/kg

<u>Current Body and Closure Metallic Material</u> <u>Content by Type for North America</u>

Comparison of Materials by Performance

	Density	Modulus	Tensile Strength	Elongation	Corrosion Resistance
Mild Steel			- BASELINE -		
Aluminum	÷	-	0	0	0/+
Magnesium	÷	1	0	-	0 / -
Polymers & Composites	÷	0 / -	-/0/+	-	+
HSS/AHSS	0	0	++	0/-	0

Comparison of Materials by Manufacturability

<u>Steel &</u> HSS/AHSS

Advantages:

- Formability
- Weldability
- Infrastructure
- Painted Surface

<u>Aluminum</u>

Advantages:

- Formability
- Castability
- Painted Surface

Magnesium

Advantages:

Castability

<u>Polymer/</u> <u>Composites</u>

Advantages:

- Low cost tooling
- Shorter lead
 time

Disadvantages:

Castability

Disadvantages:

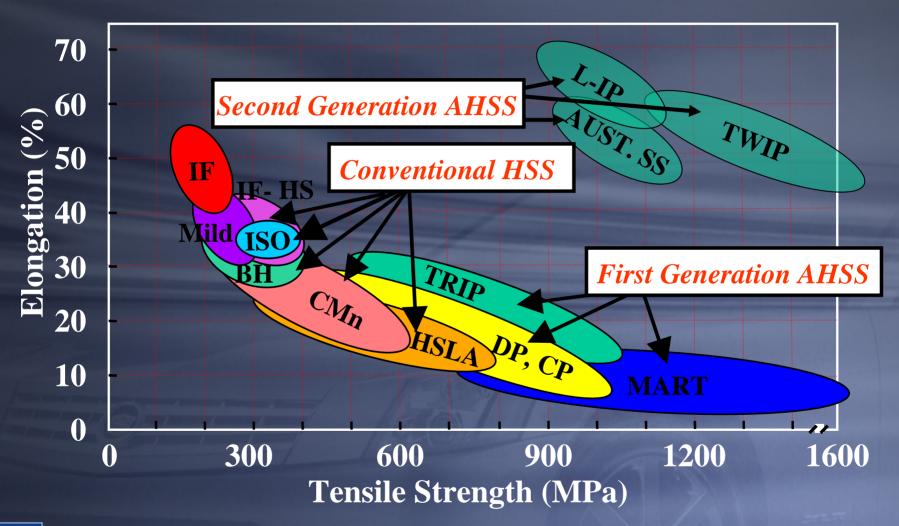
- Lower formability than steel
- Weldability

Disadvantages:

- Formability
- Elevated temperature stamping & hemming
- Weldability

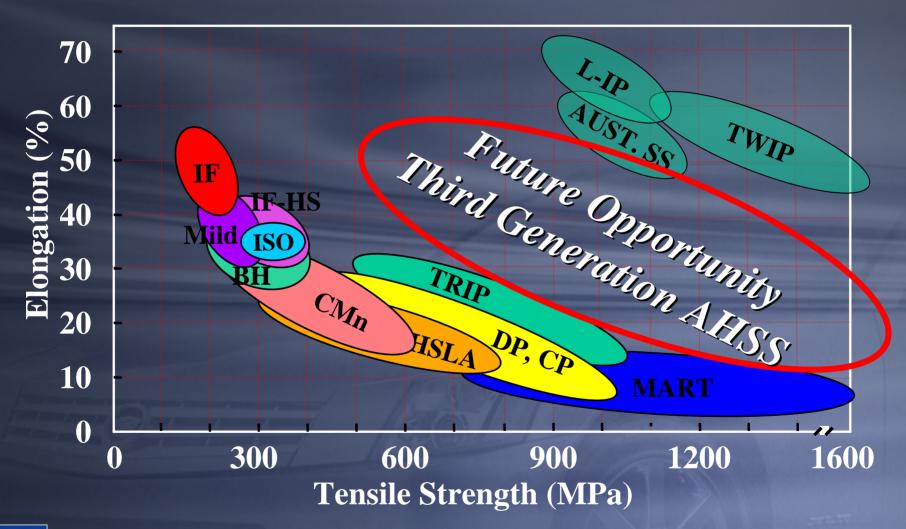
Disadvantages:

- Cycle Time
- Infrastructure
- Difficult to repair
- Painted
 Surface ¹⁷



<u>Comparison of Materials by</u> <u>Other Important Characteristics</u>

	Cost (Est. \$/lb.)	Availability (Annual Metric Ton Production)	Environment (Primary Production Emissions reported by industry)
Mild Steel (Baseline)	\$0.50	110 Million	 easy to recycle Emissions = 2.3 – 2.7 kg CO₂/kg
Aluminum (Al)	\$1.00	2.5 Million	 easy to recycle Emissions = 13.9 – 15.5 kg CO₂/kg
Magnesium (Mg)	\$1.50	0.5 Million	 easy to recycle Emissions = 18.0 - 24.8 kg CO₂/kg
PMC	\$1.20 - 6.50	Unknown	 difficult to recycle Emissions = 2.5 – 23.0 kg CO₂/kg
HSS/AHSS	\$0.55	Included in Mild Steel	 easy to recycle Emissions = 2.3 – 2.7 kg CO₂/kg



Steel Strategy

<u>GM</u>

20

<u>GM</u>

What's the same?

- Other than prediction of lightweight material usage and the elimination of steel (by some)
- Relative amongst materials:
 - Cost
 - Performance
 - Manufacturability
 - Availability
- Fuel Cost
- Strategy for material implementation

Engineering Strategy

Materials

Manufacturing

22

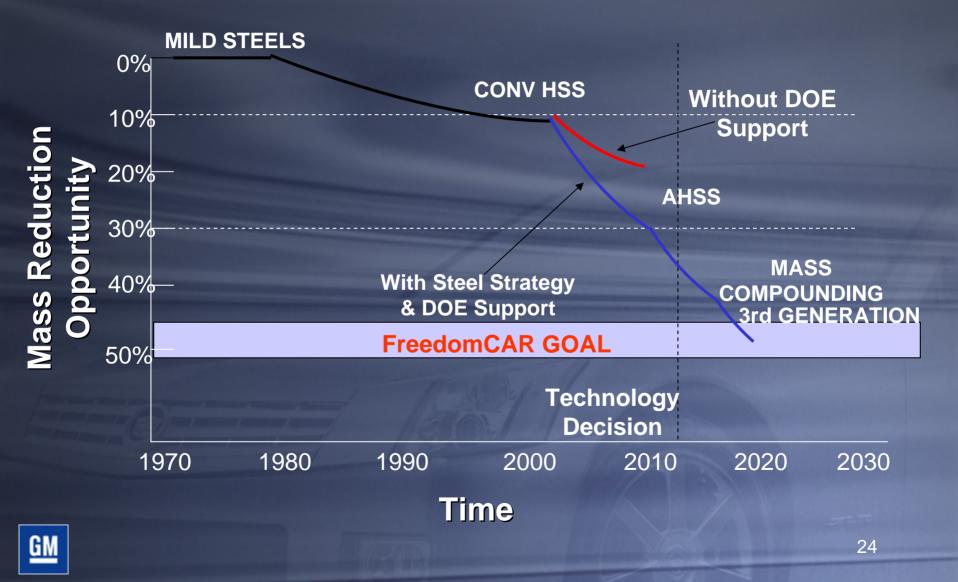
Design

Business Strategy

Manufacturability & Cost:

- material
- design

GM


manufacturing

Government Regulations

- Fuel Economy
- Crash Performance
- Emissions
- & <u>Customer Requirements</u>
- Cost
- Quality/Styling
- Features

Steel Mass Reduction Opportunities

Global Market

North America

- Well developed
- Consumer dema Latin America,
 - Diverse mar
 - New market
 - Lead in alter particularly
 - Primary cha Pri cost ar
 - Opportunity

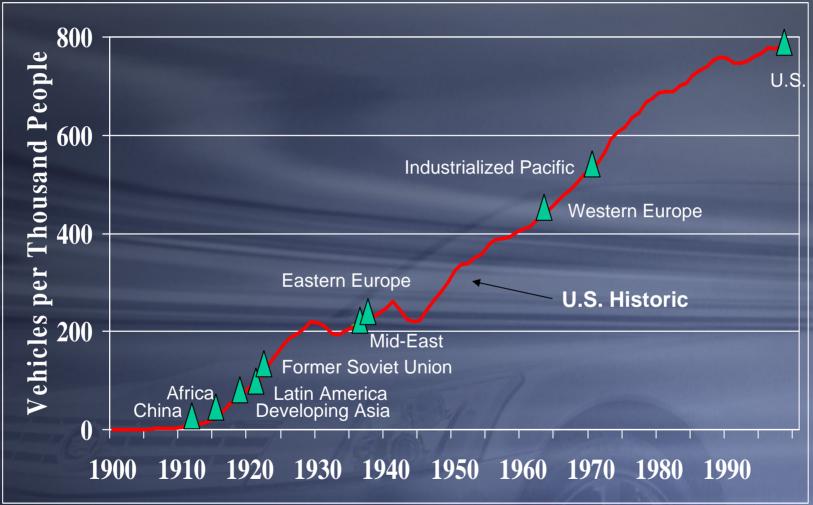
Europe

ut

R

Τť

er

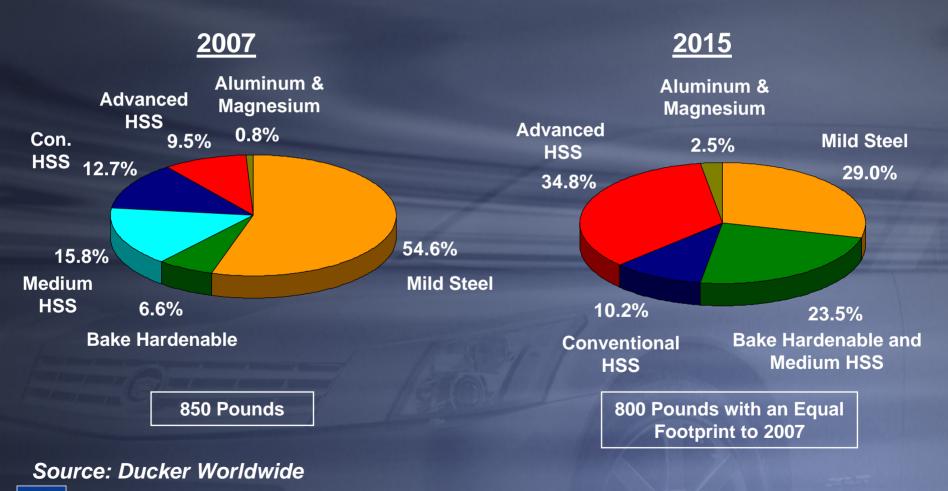

pe

- Well developed market
 - C Asia Pacific
 - Fast growing diverse market
 - Infrastructure still developing
 - Primary challenges are new fuel economy/emission regulations

Global Transportation Growth

Source: Joe Carpenter, DOE

GM


China, with 13 vehicles per 1000 people, is where the U.S. was in 1913 China's population is currently 4 times the population of the U.S. ²⁶

What materials will be used to meet these demands?

<u>NORTH AMERICAN</u> LIGHT VEHICLE METALLIC MATERIAL TRENDS

Body and Closure Metallic Material Content by Type

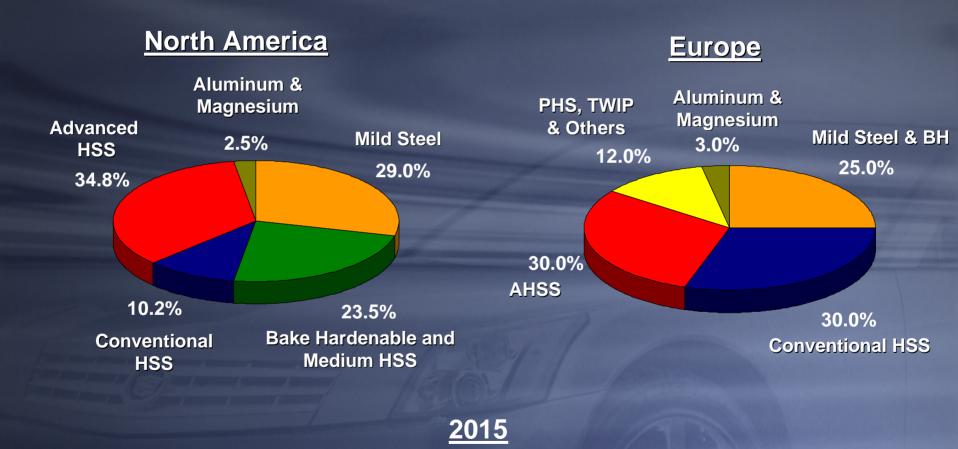
28

<u>GM</u>

NORTH AMERICAN LIGHT VEHICLE METALLIC MATERIAL TRENDS

North American Light Vehicle Material Content Per in Pounds

	1975	2005	2007	2015	Change From 1975 to 2015
Mild Steel	2,180	1,751	1,748	1,314	Down 866 lbs.
High Strength Steel	140	324	334	315	Up 175 lbs.
Advanced HSS	-	111	149	403	Up 403 lbs.
Other Steels	65	76	76	77	Up 12 lbs.
Iron	585	290	284	244	Down 341 lbs.
Aluminum	84	307	327	374	Up 290 lbs.
Magnesium		9	9	22	Up 22 lbs.
Other Metals	120	150	149	145	Up 25 lbs.
Plastic/Composites	180	335	340	364	Up 184 lbs.
Other Materials	546	629	634	650	Up 104 lbs.
Total Pounds	3,900	3,982	4,050	3,908*	Up 8 lbs.


<u>GM</u>

Source: Ducker Worldwide

* Same vehicle mix and average footprint as 2007

NORTH AMERICAN LIGHT VEHICLE METALLIC MATERIAL TRENDS

Body and Closure Metallic Material Content by Type

Why is this reasonable?

- No real changes in basic trends over past 50 years
- "Cash is King" customer paying less than before & demanding more
- Infrastructure not ready
- Availability Infrastructure of metal production
- Global Differences in Needs

What could 'disrupt' this prediction

- Fuel Cost & Availability
- Material Cost & Availability
- Economic Stability
- Government Regulations
- Technological Discoveries/Advances

Conclusions

- Always be a need/desire to push to lightweight materials for the auto industry
- Doesn't mean no steel
- Current prediction is mainly some form of steel

Best value to customer (performance/cost)

 However, disruptive event(s) is as likely, or even more likely, than ever before

