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Introduction

 Previously, problems dealing with the motion of
particles were solved through the fundamental
equation of motion, _

>F =ma.

» The current chapter introduces two additional
methods of analysis.

« Method of work and energy: directly relates force,
mass, velocity and displacement.

« Method of impulse and momentum: directly
relates force, mass, velocity, and time.



Introduction

Forces and Velocities and Velocities and
Accelerations Displacements Time
Newton’s Second Work-Energy Impulse-
Law Momentum

t, = _
ZF:maG T1+U1_)2 =T2 m\71+ th:mV2

4



Work of a Force

« Differential vector dr is the particle displacement.

« Work of the force is

dU = F edF
A’ =Fds cos«a
= Fydx+ Fydy + F,dz

« Work is a scalar quantity, i.e., it has magnitude and
sign but not direction.

« Dimensions of work are length x force. Units are

1J(joule)=(AN)Am)  1ft-lb=1.3561J



Work of a Force

13 -

« Work of the force of gravity,
dU = Fydx+ Fydy + F,dz

« Work of the weight is equal to product of
weight W and vertical displacement Ay.

* In the figure above, when is the work done by the weight positive?

a) Moving fromy, toy, [ b) Moving from y, to yl] c) Never




Work of a Force
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Spring undeformed

Magnitude of the force exerted by a spring is
proportional to deflection,
F = kx

k =spring constant (N/m or Ib/in.)

Work of the force exerted by spring,
dU = —F dx = —kx dx

Work of the force exerted by spring is positive
when X, < Xy, 1.€., when the spring is returning to
its undeformed position.

Work of the force exerted by the spring is equal to
negative of area under curve of F plotted against X,

Uiyp = =5 (F +Fy) Ax



Work of a Force

13 -

Spring undeformed

As the block moves from A, to A, IS
the work positive or negative?

Positive [ Negative J

As the block moves from A, to A, IS
the work positive or negative?

[ Positive } Negative

Displacement is
In the opposite
direction of the
force



Particle Kinetic Energy: Principle of Work &

E ne rgy « Consider a particle of mass m acted upon by force F
Fi =ma; =m dv
dt
dv ds dv
=m——=mv—
ds dt ds

Fids=mvdv

* Integrating from A, to A, ,

So Vo ) 5
[Feds=m [vdv=2mvj —Zmy;

Up,o=To-Ty T= %mv2 = kinetic energy

« The work of the force F is equal to the change in
kKinetic energy of the particle.

 Units of work and kinetic energy are the same:

2
T =%mv2 :kg(mj :[kgmzjmz N-m=J

13-8 S S



Applications of the Principle of Work and

13 -

« The bob is released
from rest at position A,.
Determine the velocity
of the pendulum bob at
A, using work & Kinetic
energy.

Force P acts normal to path and does no
work.
T1+Ui o =T)

0+WI = 1Vlv%

2 g

Vo = 4/2g|

Velocity is found without determining
expression for acceleration and integrating.

All quantities are scalars and can be added
directly.

Forces which do no work are eliminated from
the problem.



Potential Energy

Spring undeformed

« Work of the force exerted by a spring depends
only on the initial and final deflections of the

spring,

_ 12 2
Ui o =5kxg =5k

N =

« The potential energy of the body with respect
to the elastic force,

Ve = 1kx?

U ,o = (Ve )1 - (Ve )2

* Note that the preceding expression for V, is
valid only if the deflection of the spring is
measured from its undeformed position.

- X9 >
13-10



Conservation of Energy

* Work of a conservative force,
Ui, =V -V,

 Concept of work and energy,
Up,o=T—-T;

« Follows that
Tl +V1 = T2 +V2
E =T +V = constant

T,=0 V; =W/ « When a particle moves under the action of
T, +Vy =W/ conservative forces, the total mechanical
energy Is constant.
T, = %mv% = lVl(ng):Wf V, =0 « Friction forces are not conservative. Total
29 mechanical energy of a system involving
Ta +Vy =W/ friction decreases.

« Mechanical energy is dissipated by friction

Into thermal energy. Total energy is constant.
13-11



Prove that a force F(x, v, ) 1s conservative if, and only if, the following relations are satisfied:

For a conservative force, Equation

G}FT _ G}F'r G}F‘- _ G}F_: JF; _ G:’FT

IF,

dy dx dz dy Ix Iz

must be satisfied.

We now write

V. IV

Since = :
dxdy dydx

We obtain in a similar way

F :_‘;_V Fr:_‘;_v pw:_‘;v
' dx - dy ° dz
2v JdF, 9%
dxdy Jdx  Iyox
JF,
JdF, '
dy  dx
JF, JF. JF. JF, <
Jdz  dy dx dz



F.dx+ F,dy + F.dz = —(ﬂdx + ﬂdy + ﬂdz)

ox Ely oz

from which it follows that

aVv aVv IV
A F,= —— F.=—-"" (13.29)
ox dy oz

It is clear that the components of F must be functions of the coordi-

nates x, y, and z. Thus, a necessary condition for a conservative force

is that it depend only upon the position of its point of application.
The relations (13.22) can be expressed more concisely if we write
aV aVv aV

F=Fi+Fj+Fk= —( i+ j+—k)

ox r'iy oz

The vector in parentheses is known as the gradient of the scalar function
V and is denoted by grad V. We thus write for any conservative force

F=—gradV (13.23)



1) The force F = (yzi+zx]/xyk)/xyz acts on
the particle P(x, y, z) which moves in space. (a)
Show that this force is a conservative force. (b)
Determine the potential function associated

with F.



(a) F.o== , .
xXyz XV XVzZ

or, %) _, 95 )

- - - —0
dy  dy dx dx
JdF,
Thus. I, =2
dy  dx

The other two equations derived are checked in a similar way.



AV AV AV

(b)  Recall that F,=——r. F,=——, Fo=—
X ) (?.'-,-‘ v (}:
szl:_cﬁ“_v V=-=Inx+ f(v,2) (1)
X dx
1 JdV
F =—=——— V==Iny+g(z.x) (2)
Ty Ay
F. =%=—3—Lj V=—Inz+h(x,y) (3)



Equating (1) and (2)

Thus,

Equating (2) and (3)

From (3),

—Inx+ f(v.z2)==Iny+ g(z,x)
f(v,2)==Iny+k(z)

g(z,x)==Inx+k(z)

—Inz+h(x,v)=—Iny+ g(z,x)

g(z.x)=—Inz+I(x)

g(z.x)=—=Inx+k(2)

(4)
(3)



Thus,
k(z)=—Inz
[(x)=—Inx
From (4).
f(yv,2)==Iny—Inz
Substitute for f(y,z) in (1)
V=-=Inx—Iny—Inz

V=-Inxy: 4



2.5 m/s Cable

A spring is used to stop a 60 kg package
which is sliding on a horizontal surface.
The spring has a constant k = 20 kN/m
and is held by cables so that it is initially
compressed 120 mm. The package has a
velocity of 2.5 m/s in the position shown
and the maximum deflection of the spring
IS 40 mm.

Determine (a) the coefficient of kinetic
friction between the package and surface
and (b) the velocity of the package as it
passes again through the position shown.

SOLUTION:

 Apply the principle of work and energy
between the initial position and the
point at which the spring is fully
compressed and the velocity is zero.
The only unknown in the relation is the
friction coefficient.

« Apply the principle of work and energy
for the rebound of the package. The
only unknown in the relation is the
velocity at the final position.



Vi vo =0 ~ SOLUTION:
| “ .« Apply principle of work and energy between initial
position and the point at which spring is fully compressed.

T, = 1nvZ = 1(60kg)(25m/s)? =187.50 T, =0

i (U1—>2)f = =W X
<—P 2
= — (60 kg )(9.81m/s )(0.640 m)=—(377 3)
N S Prin = KXo = (20kN /m)(0.120 m) = 2400 N

Prax = K(Xo + Ax) = (20kN/m)(0.160 m)= 3200 N

(U1—>2)e = _%(Pmin + Prax )AX
= —2(2400 N +3200 N )(0.040 m) = —112.0J

Up o= (U1—>2)f + (U1—>2)e = _(377‘]),Uk -112]

T1+Ul—)2 :TZ:

187.51- (377 )y —1121=0 1y =0.20




Prin = kXg = (20kN /m)(0.120 m) = 2400 N
Prax = K(Xg + AX)= (20 kN /m)(0.160 m) = 3200 N

(U1—>2)e = _%(Pmin + F)max )AX
= —2(2400 N +3200 N)(0.040 m) = —112.0J

. ,Z/[_ )C.)(ZZ

Uysz = Aby?
2

A7 .
= %{ZOOOO )(0/]20) Z_, 1(26000)(0,'}50)2
2

= =17 J



vy vo=0 « Apply the principle of work and energy for the rebound
of the package.

T,=0 T3:%mv§ =%(60kg)v32

Uy 3=Ujs3) +Usz), =—(377 )1y +1121

= +36.5J
IW
v <._P T2+U2_)3:T3:
Fz;k-;;t 0+36.5J = 1(60ky)v3

v3 =1.103m/s




The 2-kg block is pressed against the
spring so as to compress it 0.5 m when it
IS at A. If the coefficient of Kinetic
friction between the block and the surface
AB is u; = 0.25, determine the distance
d, measured from the wall, to where the
block strikes the ground. Neglect the size
of the block.

A
k =800 N/m




N
If the work-energy principle is applied between A and B (with & = 5 m)

Ty + Z Usnp =Tp

1

Smvy + [(vg)ﬁ + (VE)A] —F 8= %mvg + [(‘Jg)E + (ve}a]

1 1 1
-m-vﬂz—I—(m-g-hﬂ+§-k'xf)—u-m-g-ﬁ:E-m-vgz—k(m-g-hﬂ +E-k-:~:HE)

S I 6

1 4 1
-2-Dz+(2-9.31-D+E-8Dﬂ-[}.52)—0.25-2-9.81-5-5={2-9.81-3+D)+§-2-v52

1 4 1
ID+[]-|—E'8CIU-U.52—{].25'2-9.81-5'5=2-9.81'3+G+E'2'v33

0+0+100—19.62 = 58.86 + 0 + v§

vg = 4.64m/s



3
8] P «
ISm

If the velocity and motion equations of the block are written

1
y =Yyo + Vo s.ina::.:'t—igl:E (1)

3=0+4.064 ; t ! 9.81- t?
- u 5 2 =

4905t* — 2784t -3 =0
t=1.116=s elde edilir.

X=xp+vgcosat (2)

4 4
d=ﬂ+4.64'g't :ﬂ+4.64'g'1.116:4.14m



A package is projected up a 15° incline
at A with an initial velocity of 8 m/s.
Knowing that the coefficient of Kinetic
friction between the package and the
Incline is 0.12, determine

(a) the maximum distance d that the
package will move up the incline,

(b) the velocity of the package as it
returns to its original position.







(a)

Up the plane from A to B:

T, =lmu§ 1V s =32¥ T,=0
2 2 g g

U, =W sinl5"-F)d F=u N=0.12N
“XF=0 N-Wcosl5°=0 N=Wcosl5®

U,p=-W(ml5®+0.12¢cos15%)d =-Wd(0.3747)
Ty+U, p=Ty: SZE—Wd(U.SMS) =0
g

. 32
(9.81)(0.3747)

d=87lm 4



(b)

Down the plane from B to A: (F reverses direction)
I, =——v, T, =0 d=87lm

Ug =W sinl5°—F)d
=W(sin15°=0.12¢c0s15°)(8.71m )
Uy , =1.245W
T,+U, =T, 0+1.245W = lEvj
. 22
v =(2)(9.81)(1.245)
=24.43

v, =494 m/s

v, =494 m/s 7 15° 4



The 2-kg collar is released from rest at A
and travels along the smooth vertical
guide. Determine the speed of the collar
when it reaches position B. Also, find the
normal force exerted on the collar at this
position. The spring has an unstretched
length of 200 mm.




he‘—' O-bm

Referans noktasi




he=0-6m

Referans noktasi

a)

Since the unstretched length of the spring i1s 200 mm, the spring deflection in the first case (A)

X4 = 0.42 + 0.42 — 0.2 = 0.3657m

The spring deflection in the second case (B)

xg = v0.22 + 0.2 — 0.2 = 0.08284m

between A and B

Tﬁ+Vﬁ:TB+VB

i 60, 00 =3 6, 00

1 1 1 1
—.m.vyZ + (m.g. hy +—.k.xf) =—.m.vg® + (m.g. hg +—.k.x32)
2 2 2 2

1

1 1 1
—.2.0% + (2.9.81.0 + > 600. 0.365?2) = E.Z.VBE + (2.9.81.0.6 + > 600. 0.082842)

o

1
0+ (0 +40.118) = = (2)vZ + (11.772 + 2.0589)
2 B

vg = 5.127 m/s = 5.13 m/s



b) While the collar is at point B
0.2
0 = tan~! (55) = 45°
an”" | o5
Force on the spring
Fyp = kxg = 600(0.08284) = 49.71 N

vZ vi 5.132

— =B — 131.43 m/s?
T 702 02 m/s

If a free body diagram for the collar|is drawn at point B

2(781)N

F,{p =497AN ‘1@:/3/.43 e
Ne '

ZFH = ma,,

2(9.81) + 49.71sin45° — Np = 2(131.43)

Ng = —208.09N =208 N |



The 2-kg pendulum bob moves in the vertical plane with a velocity of 6 m/s when 6 = 0°.
Determine the angle 8 where the tension in the cord becomes zero.




If a free body diagram of a pendulum ball is drawn at any 6 position

mg

IfT=0
+N Z Ft = may ; —2(981) cosf = 231;

a; — —9.81cos@
Vz VE
+ ZFH —ma,;  2(981)sing = ma, = m—=2=
p

v2 =19.62sin6



—+— (B)

h=2sin @

| =1 Referans noktasi (A)

between 8 = 0° and any position 8

Tﬂ‘l‘Vﬂ:TB ‘I‘VB

1 2 1 2
E-m-vﬂ —I—m'g'hA:E-m-vB +m-g-hg

1 1
5-2-62 +(2-9.81-0) =--2-(19.625in6) + (2-9.81- 25in6)

36+ 0 = (19.62sin6) + (39.24sin6)
58.86sin 6 = 36

8 =37.71°



Principle of Impulse and Momentum

to
Imp |-, '—-f F dt
t

« Dimensions of the impulse of

a force are
force*time.

« Units for the impulse of a
force are

N-s=(kg-m/32)-s=kg-m/s

13-37

 From Newton’s second law,

- d, .
F = a(mv) mv = linear momentum

[ Fdt =mv, —mvy,

b

L .
[ Fdt =1Imp,_,, =impulse of the force F
b

m\71 + |mp1_>2 = m\72

« The final momentum of the particle can be

obtained by adding vectorially its initial
momentum and the impulse of the force during
the time interval.



Impulsive Motion

 Force acting on a particle during a very short
time interval that is large enough to cause a
significant change in momentum is called an
impulsive force.

mvy < FAt < AT mve
v « When impulsive forces act on a particle,
WAt =0

mv; + > F At = mv,

« When a baseball is struck by a bat, contact
occurs over a short time interval but force is
large enough to change sense of ball motion.

« Nonimpulsive forces are forces for which
F At is small and therefore, may be
neglected — an example of this is the weight
of the baseball.

13-38



5)

A 10 kg package drops from a chute into a 25-kg
cart with a velocity of 3 m/s. Knowing that the cart
Is Initially at rest and can roll freely, determine (a)
the final velocity of the cart, (b) the impulse exerted
by the cart on the package, and (c) the fraction of
the initial energy lost in the impact.




A 10 kg package drops from a chute
into a 24 kg cart with a velocity of 3
m/s. Knowing that the cart is initially at
rest and can roll freely, determine (a)
the final velocity of the cart, (b) the
Impulse exerted by the cart on the
package, and (c) the fraction of the
Initial energy lost in the impact.

SOLUTION:

Apply the principle of impulse and
momentum to the package-cart system
to determine the final velocity.

Apply the same principle to the package
alone to determine the impulse exerted
on it from the change in its momentum.



SOLUTION:

 Apply the principle of impulse and momentum to the package-cart
system to determine the final velocity.

(Mp+ M )vo

mp\71+2|mp 152 :(mp +mc)\72

X components: M pV; €05 30° + 0 = (M, +mg I
(10 kg )(3 nVs )cos 30° = (10 kg + 25 kg v,

V2 - 0742 m/S




« Apply the same principle to the package alone to determine the impulse
exerted on it from the change in its momentum.

Nll>\"|

L "y

X F./

MpVy+ 2 IMp 3o =MV,

x components: My, €0s 30° + F,At =myv,

(10 kg )(3 Vs )cos 30° + F, At = (10 kg v, F,At=-1856N-s

y components:  —m,v;sin30°+ Fy At =0

— (10 kg )(3 m/s )sin 30° + FyAt = 0 FyAt=15N s

SImp,,,=FAt=(-1856 N-s)i +(15N-s)j  FAt=23.9N-s




To determine the fraction of energy lost,

m, Vi =1(10 kg + 25 kg)(0.742m/s)’

T,=im v/ =1(10 kg)(Bm/s) =45
T, :%(
T -Tp _45)-963) __o
T, 45 ]

(mp +me)vo

=9.63J



6)

/ 12 m/s
The jumper approaches the takeoff line from 10 m/s F_\v'_j()

the left with a horizontal velocity of 10 m/s, p— e

remains in contact with the ground for 0.18 s, P

and takes off at a 50° angle with a velocity of 4" .

12 m/s. Determine the average impulsive | \"’h‘ll“

force exerted by the ground on his foot. Give L) —

your answer in terms of the weight W of the =
athlete.




SOLUTION:

12 m/s
10 m/s /<50 « Draw impulse and momentum diagrams
i g , ‘* of the jumper.
r\ iﬁﬁi} / » Apply the principle of impulse and
y L?/ momentum to the jumper to determine
the force exerted on the foot.

The jumper approaches the takeoff
line from the left with a horizontal
velocity of 10 m/s, remains in contact
with the ground for 0.18 s, and takes
off at a 50° angle with a velocity of 12
m/s. Determine the average impulsive
force exerted by the ground on his
foot. Give your answer in terms of the
weight W of the athlete.



Given: v, =10 m/s, v,= 12 m/s at 50°, — 2
At=0.18s
Find: F,, In terms of W

= Take-

off line \ | . ) §

%Vg At

Use the impulse momentum equation iny to find F,,
mv, + (P - W)At =mv, At=0.18s



mv, + (F

— W)At =mv, At =0.18 s

avg

Use the impulse momentum equation in x and y to find F,,

)(0.18) = ﬂaz)(cos 50°) 0+ (Fu4-y ~W)(0.18) = WE(12)(Sin 50°)
g

avg—x

W 10) + (-F
g

_10-(@2)(cos 50°) F _yy o {2)(sin50%
avg—x (981)(018) gy (981)(018)
Fag = —1.295W i +6.21W j F.vex IS POsitive, which means we

guessed correctly (acts to the left)



Impact

13 -48

Oblique Central Impact

Impact: Collision between two bodies which
occurs during a small time interval and during
which the bodies exert large forces on each other.

Line of Impact: Common normal to the surfaces
In contact during impact.

Central Impact: Impact for which the mass
centers of the two bodies lie on the line of impact;
otherwise, it Is an eccentric impact..

Direct Impact: Impact for which the velocities of
the two bodies are directed along the line of
Impact.

Oblique Impact: Impact for which one or both of
the bodies move along a line other than the line of
Impact.



Direct Central Impact

VB

« Bodies moving in the same straight line,
Vo> Vg .

« Upon impact the bodies undergo a
period of deformation, at the end of which,
they are in contact and moving at a
common velocity.

A period of restitution follows during
which the bodies either regain their
original shape or remain permanently
deformed.

« Wish to determine the final velocities of the
two bodies. The total momentum of the
two body system is preserved,

' '
mAVA + mBVB = mBVB + mBVB

« A second relation between the final

velocities is required.
13-49



Direct Central Impact

fP(I't

+ & =
e = coefficien t of restitution
» Period of deformation: mav — [ Pdt = mpu C[Rdt u-v)
mu det VA —u
A + —
0<e<l
» Period of restitution:  mau—[Rdt =muVvis
o _ _ _ Vg — U
« Asimilar analysis of particle B yields €= TRy
—Vp
« Combining the relations leads to the desired Vg —VA =e(vp —Vg)
second relation between the final velocities.
« Perfectly plastic impact, e = 0: v =V, =V’ MAVA +MgVg =(Ma +mg V'
« Perfectly elastic impact, e = 1: VB —VaA =Va —Vp

Total energy and total momentum conserved.
13-50



Oblique Central Impact

» » Final velocities are
unknown in magnitude

and direction. Four

mava equations are required.

MV

« No tangential impulse component;  (vp), =(Va),  (vg); =(vg),
tangential component of momentum
for each particle is conserved.

« Normal component of total mA(VA)n +mg (Vg )n = mA(V'A)n + mB(Vis)n
momentum of the two particles is
conserved.

- Normal components of relative (vg), —(Va), =el(va), —(vg), ]

velocities before and after impact
are related by the coefficient of

restitution.
13-51



/)

The coefficient of restitution between the two
collars is known to be 0.70. Determine (a)
their velocities after impact, (b) the energy
loss during impact.

I m/s .5 m/s

]
|

(]|
o
i
bt
B
JS



Impulse-momentum principle (collars A and B):

Zmv, +ZImp,_, = Zmyv,

A B -+ A e > B
—_— —_—
"mp. ﬂ}; mﬁ%
Horizontal components *.: m,v, + myv, =m,V, + myvy
Using data, (5)(1) +(3)(=1.5) =5v}, +3v;
or v +3vp =0.5

Apply coefficient of restitution.

Fa I3
Vg =V, =elv,—vg)

v, =1, =0.70[1=(=0.5)]

-, »

(@) Solving Eqgs. (1) and (2) simultaneously for the velocities.

v, =—0.59375 m/s

vy =1.15625 m/s

I

_'_-;-j .r_",.. '

LYUA Mg g
(1)
(2)

v, =059 m/s — 4

vp =1.156 m/s — 4



Kinetic energies: T, —%”M‘A - ;m v ——{5}(]} +— (3}( 1.5)> =5.8751]

T, = %mﬂ (V)" + %mg{v; ) = (5}(4159375)2 +E{3)(l 15625)* =2.8867 ]

(b)  Energy loss: I-7,=299] 4



Two identical cars A and B are at rest on a
loading dock with brakes released. Car C, of
a slightly different style but of the same
weight, has been pushed by dockworkers and
hits car B with a velocity of 1.5 m/s.
Knowing that the coefficient of restitution is
0.8 between B and C and 0.5 between A and
B, determine the velocity of each car after all
collisions have taken place.

1.5 m/s




Mmy=mg=m-=m
Collision between B and C:

The total momentum is conserved:

JB Ve V=0

Are=1.Sm(s
B (=

3 = —

f P s
S "l\"B + HHC = mvB +"2\C

vp +ve=0+1.5

Relative velocities:

(vg —ve)ege) = ("'27 = "’;z )
(—1.5)(0.8) = (v'C - v;,)

’

-1.2= ""c —Vg
Solving (1) and (2) simultaneously,

vy =1.35 m/s
v =0.15 m/s

Since vy > v, car B collides with car A.

(1)

(2)

v =0.150 m/s ~— <4



Collision between A and B:

Relative velocities:

| || '
Un g Ve0  Up=hismf

7 L4 ’
mv, +mvg =mv, +mvg

’ »
vy +vp=0+1 35

(4 =Viea =05 =V})
v, —vj =0.675

Solving (3) and (4) simultaneously,

2v), =1.35+0.675

Since v <vp <V}, there are no further collisions.

4)

v, =1.013 m/s — 4

vp =0.338 m/s ~— <



9)

At an amusement park there are 200-kg
bumper cars A, B, and C that have riders with
masses of 40 kg, 60 kg, and 35 kg,
respectively. Car A is moving to the right
with a velocity of 2 m/s and car C has a
velocity of 1.5 m/s to the left, but car B Is
Initially at rest. The coefficient of restitution
between each car is 0.8. Determine the final
velocity of each car, after all impacts,
assuming cars A and C hit car B at the same
time.




Assume that each car with its rider may be treated as a particle. The masses are:

m, =200+40 =240 kg,
myg =200+ 60 =260 kg,
m. =200+35=235 kg.

Assume velocities are positive to the right. The initial velocities are:
vy=2m/s vy=0 vo.=-1.5m/s
Let v/, v}, and v,. be the final velocities.

(@) Cars A and C hit B at the same time. Conservation of momentum for all three cars.
m,v, +m3v3 + M-V = rr:}dl'.{’_ﬁl +11+1r1131,”'_E + mcv;:
(240)0(2)+ 0+ (235)(-1.5) = 24(}1»; + 2601»; + 2351»‘:: (1)
Coefficient of restition for cars A and B.

v, =V, =e(v, —vy) =(0.8)(2—0)=1.6 2)

Coefficient of restitution for cars B and C.
Ve —vg =e(vg —ve) =(0.8)[0—(-1.5)]=1.2 (3)
Solving Egs. (1), (2), and (3) simultaneously,
Vi =-1288m/s v, =0312m/s v =1512 m/s
v, =1.288 m/s -— 4
vy =0312 m/s — 4

v, =1.512 m/s — 4



10) A ball is thrown against a frictionless,

vertical wall. Immediately before the ball
strikes the wall, its velocity has a magnitude
v and forms an angle of 30° with the
horizontal. Knowing that e=0.90 and
v=10 m/s, determine the magnitude and
direction of the velocity of the ball as it
rebounds from the wall. Note that the
direction of the velocity of the ball as it
rebounds from the wall should be shown in a
figure.



SOLUTION:

» Resolve ball velocity into components
normal and tangential to wall.

 Impulse exerted by the wall is normal
to the wall. Component of ball
momentum tangential to wall is
conserved.

« Assume that the wall has infinite mass
so that wall velocity before and after
Impact is zero. Apply coefficient of
restitution relation to find change in
normal relative velocity between wall
and ball, i.e., the normal ball velocity.

A ball is thrown against a frictionless,
vertical wall. Immediately before the
ball strikes the wall, its velocity has a
magnitude v and forms angle of 30°
with the horizontal. Knowing that

e = 0.90, determine the magnitude and
direction of the velocity of the ball as
It rebounds from the wall.



SOLUTION:

» Resolve ball velocity into components parallel and
perpendicular to wall.

Vv, =Vvcos30° =0.866V vy =Vvsin30° = 0.500v

« Component of ball momentum tangential to wall is conserved.
Vi =V, =0.500v

« Apply coefficient of restitution relation with zero wall
velocity.

0-v;, =e(v, - 0)
v/, =-0.9(0.866v)=—0.779v

V' =-0.779v A, + 0.500Vv /,

v/ =0.926v tan 1(@)
0.500

(¢]




11)

The magnitude and direction of the
velocities of two identical frictionless balls
before they strike each other are as shown.
Assuming e = 0.9, determine the magnitude
and direction of the velocity of each ball
after the impact.




vy = 40 ft/s

The magnitude and direction of the
velocities of two identical
frictionless balls before they strike
each other are as shown. Assuming
e = 0.9, determine the magnitude
and direction of the velocity of each
ball after the impact.

SOLUTION:

 Resolve the ball velocities into components
normal and tangential to the contact plane.

 Tangential component of momentum for
each ball is conserved.

 Total normal component of the momentum
of the two ball system is conserved.

 The normal relative velocities of the
balls are related by the coefficient of
restitution.

« Solve the last two equations simultaneously
for the normal velocities of the balls after
the impact.



SOLUTION:

t » Resolve the ball velocities into components normal and
tangential to the contact plane.
(Vo), =Vac0s30°=26.0ft/s (Vo) =Vvasin30°=15.0ft/s

(vg), =—Vg cos60°=-20.0ft/s (vg), =Vgsin60°=34.6ft/s

« Tangential component of momentum for each ball is

MA(VA)n conserved.
m4(Va); (V:A)t = (VA )t = 15.0ft/S (Vi3 )t = (VB )t = 34'6ﬂ/5
FAt  -FAt » Total normal component of the momentum of the two
+ Q- ; comp
ball system is conserved.

ma(Va), + Mg (Vg ), =Ma(Va), + ma(ve),
m(26.0)+ m(—20.0) = m(v} ), + m(vg),

(Vi )y +(va), = 6.0




« The normal relative velocities of the balls are related by the
coefficient of restitution.

(Va)y = (v ) =el(va), = (ve), |

=0.90[26.0 — (- 20.0)| = 41.4

 Solve the last two equations simultaneously for the normal
velocities of the balls after the impact.

(Vp), =-17.71t/s (vg), =23.71t/s

Vp =—17.74 +15.04,

Vi, = 23.2ft/s  tan 1(@j — 40.3°
17.7

Vg =23.71, +34.6,

U v =41.9ft/s tan ‘{EJ ~ 55.6°
23.7




12)

A 600-g ball A is moving with a velocity of
magnitude 6 m/s when it is hit as shown by a 1-kg
ball B which has a velocity of magnitude 4 m/s.
Knowing that the coefficient of restitution is 0.8 and
assuming no friction, determine the velocity of each
ball after impact.




N I—so' / QUe\-,
Wale\ ), 8 )t e )\/

®
AN %
> £
- 40° 4\)
Va)y Waln
Before After
v, =6m/s
(v,), =(6)(cos 40%) =4.596 m/s
(v,), =—6(sin 40°) =-3.857 m/s

vg =(vg), =—4 m/s
(vg), =0



f-direction:

Ball A alone;

Momentum conserved:

Ball B alone:

Momentum conserved:

m,(v,), =m,(v,), —3857=(),
(vy), =—3.857 m/s

my (vg),=mg (Vg),

v}), =0

(2)



n-direction:
Relative velocities:
[(Vf’. )rr - (IJB )n ]E = (L"; ).rr - (1’; }n
[(4.596) — (—)1(0.8) = (v), —(v),
6.877 = (v‘; ), — (v;}n (3)

Total momentum conserved:

o (VA )Jr + Mg (VB }Jr =my (V;_ }Jr + Mg (V;S' )Jr
(0.6 kg)(4.596 m/s) + (1 kg)(—4 m/s) = (1 kg)(vy), + (0.6 kg)(v}}),
—1.2424 = (v‘; ), +0-6(‘"’:1 ), (4)
Solving Eqgs. (4) and (3) simultaneously,
(v, =5.075 m/s
(viy), =1.802 m/s

Velocity of A:

LV
v,),]
3.857
" 5.075
B=372°  B+40°=772°
v, =/(3.857)% +(5.075)°
= 6.37 m/s

tan S

v, =637 mis 7 77.2° 4



13)

O
The amusement park ride consists of a 200-kg car \ \
'l
| ) )

and passenger that are traveling at 3 m/s along a
circular path having a radius of 8 m. If at t = 0, the
cable OA is pulled in toward O at 0.5 m/s, determine V /

the speed of the car when t = 4 s. Also, determine the
work done to pull in the cable. /



Conservation of Angular Momentum. Att = 4 s,
r, =8 —05(4) = 6m.

(Ho)1 = (Hp),
Fivy = rm(vs),
8[200(3)] = 6[200(v,),]
(v7); = 4.00m/s
Here, (v2), = 0.5 m/s. Thus
vy = V(05)F + ()2 = V4002 + 052 = 4031 m/s = 403 m/s  Ans.

Principle of Work and Energy.
h+22U1,=T1T

%mmﬂﬁ)+2Ukzzéamm4mn2

SU,_, =1725] Ans.



