## GRAM-NEGATIVE BACILLI

Assoc. Prof. Emrah Şefik ABAMOR

## **GRAM-NEGATIVE BACILLI**

It is divided into 3 clinical subgroups:

- 1. Act in the gut
- 2. Act in the respiratory tract
- 3. Those transmitted to humans by animal sources

Gram-negative bacilli associated with the intestinal tract

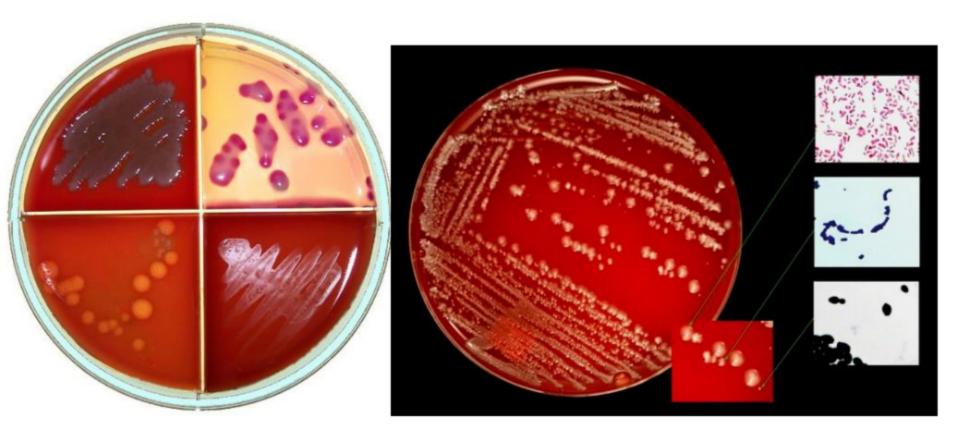
- Pathogens that cause disease both inside and outside the digestive tract
- Pathogens that cause disease only within the digestive tract
- Pathogens that cause disease outside the digestive tract

#### Gram-negative bacilli of the digestive tract

- This group of bacteria is in the Enterobacteriaceae family.
- Many members of the Enterobacteriaceae are found in the large intestine of humans and other animals and constitute a large part of the normal flora in this region.

#### Enterobacteriaceae

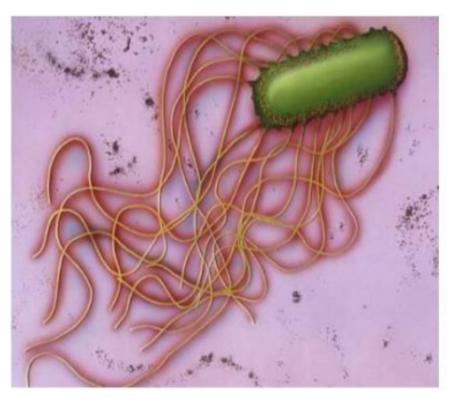
- Escherichia
- Shigella
- Salmonella
- Edwardsiella
- Citrobacter
- Yersinia
- Klebsiella
- Enterobacter
- Serratia
- Proteus
- Morganella
- Providencia

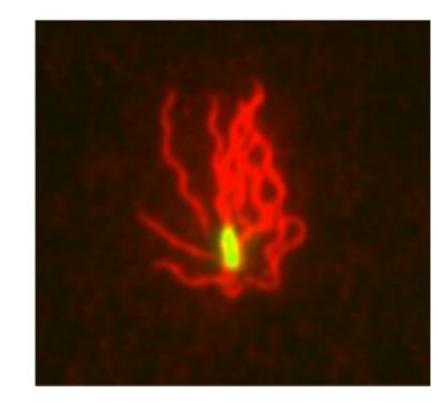



Cins Enfeksiyon Kaynağı veya Yeri Bölüm Sindirim kanalı 18 Escherichia coli, Salmonella 1. Hem içi hem dışında Shigella, Vibrio, Campylobacter, Helicobacter 2. Esas olarak içinde Klebsiella-Enterabacter-Serratia grubu, Proteus-Providencia 3. Sadece dişinda Morganella grubu, Pseudomonas, Bacteroides. Haemophilus, Legionella, Bordetella Solunum kanalı Brucella, Francisella, Pasteurella, Yersinia Hayvansal kaynaklar

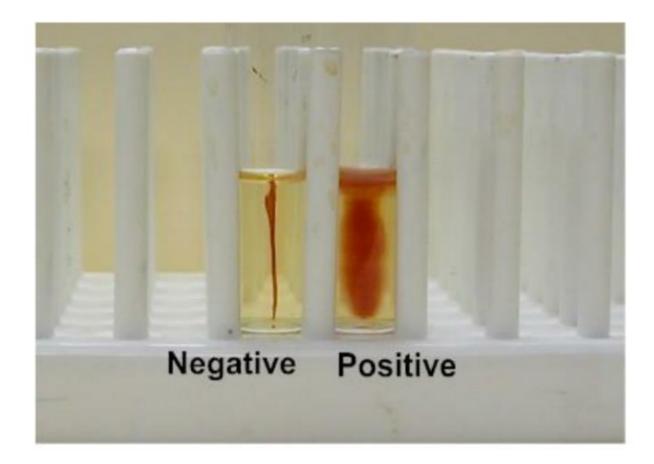
Microorganisms belonging to *Enterobacteriaceae* are the most frequently isolated bacterial group from clinical specimens.

These bacteria;


It is responsible for 70% of all urinary tract infections and 30-35% of all sepsis.




# Features common to the Enterobacteriaceae family:

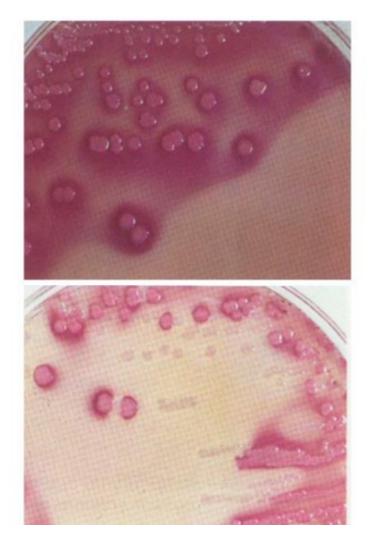

- 1. All are facultative anaerobes.
- 2. All ferment glucose.
- 3. None of them contain cytochrome oxidase.
- 4. It reduces nitrates to nitrites as part of energy production processes.
- ✓ These features distinguish Enterobacteriaceae from non-fermenting organisms.

## They are motile with their flagels. Only *Klebsiella* and *Shigella* are dormant.





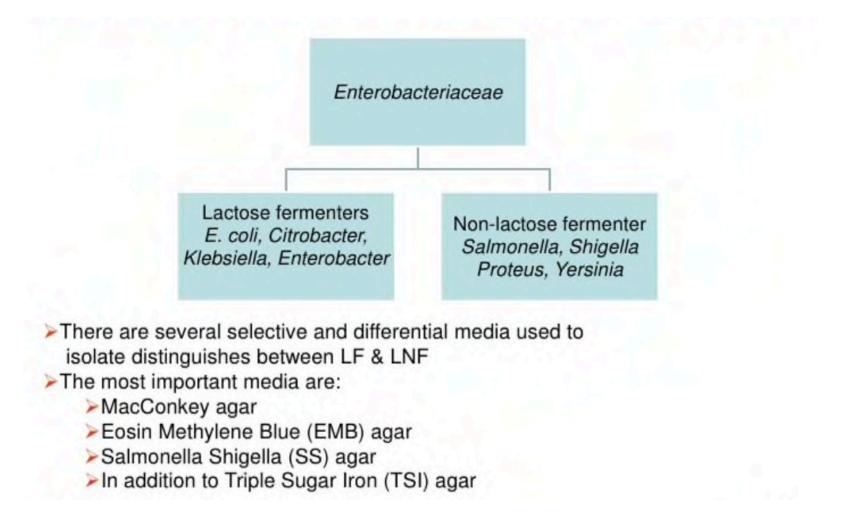
## <u>Movement</u>




| ORGANISM                                                   | DISEASES                                                                              |
|------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Lactose Positive                                           |                                                                                       |
| Escherichia coli                                           | Diarrhea, sepsis, urinary tract infection, neonatal meningitis                        |
| Klebsiella, Serratia, Citrobacter, Enterobacter<br>species | Opportunistic infections (e.g., pneumonia, sepsis, neonatal meningitis)               |
| Lactose Negative                                           |                                                                                       |
| Salmonella species                                         | Diarrhea, typhoid fever, bacteremia; localized infections in bone,<br>meninges, liver |
| Shigella species                                           | Dysentery                                                                             |
| Proteus species                                            | Urinary tract infection                                                               |
| Yersinia species                                           | Plague, diarrhea, mesenteric lymphadenitis                                            |

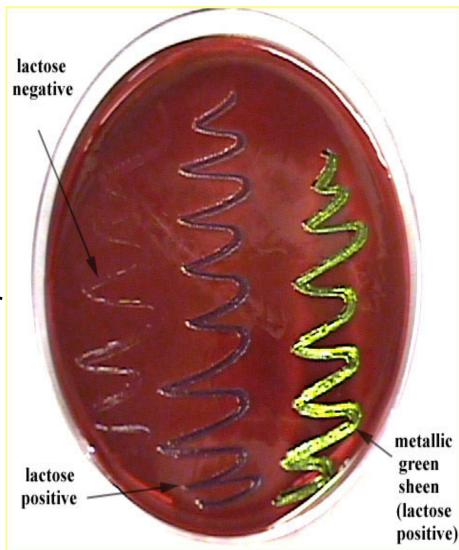
#### Laboratory Diagnosis

- 1. Blood agar
- 2. MacConkey agar and
- 3. EMB agar (Eosin-methylene blue)
- 4. Three sugar-iron agar (TSI)


## Media Used and Colony Characteristics



#### MacConkey Agar


It is a selective-distinctive medium. The only carbohydrate is lactose. Crystal violet and bile salts inhibit the growth of gr(+) bacteria. The indicator is neutral red.

Escherichia, Klebsiella, Enterobacter MacConkey, which ferment lactose, also give a red color. • Eosin-methylene blue (EMB) medium distinguishes organisms based on lactose fermentation.

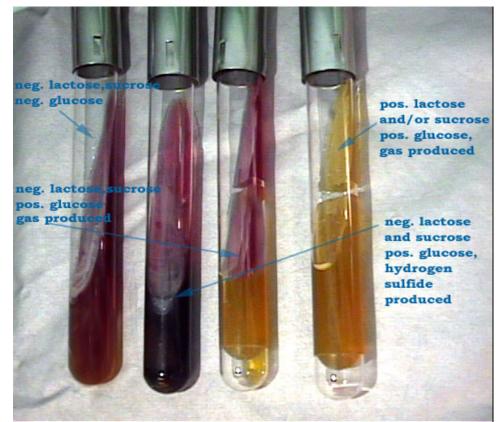


## EMB Agar

- Bacteria that cannot ferment
  lactose (lactose negative) on
  EMB agar are transparent in
  color
- Those that ferment lactose (lactose positive) get a dark color
- E.coli ferments lactose and acquires a distinctive bright metallic color.



## Three sugar-iron Agar (TSI)


- It is used to differentiate Enterobacteriaceae, especially Salmonella, from other enteric bacteria.
- Triple Sugar Iron Agar contains three carbohydrates *(glucose, lactose and sucrose).* Also contains ferrous sulfate for detection of hydrogen sulfide production
- When carbohydrates are fermented, the acid production that occurs is detected by the phenol red indicator.

- The resulting color changes are yellow for acid production and red for alkaline production. To facilitate detection of only glucose fermenting organisms, the glucose concentration is one-tenth the concentration of lactose or sucrose.
- A small amount of acid produced in the oblique part of the tube during glucose fermentation causes the medium to remain red or return to a basic pH.

• In contrast, the acid reaction (yellow) continues at the

bottom of the tube, due to the low oxygen

concentration at the bottom of the tube.



uninoculated

R/R: obligate aerobe

R/Y +: glu ferm, H2S prod'd

R/Y:, only glu ferm

Y/Y +: lac +/or suc ferm, H2S

Y/YG: lac +/or suc ferm, gas

Y/YG: lac +/or suc ferm, gas

Y/Y: lac +/or suc ferm, no gas

Pathogens Found Both Inside and Outside the Digestive Canal

## • Eschericia coli (E.coli)



- To urinary tract infections
- Sepsis
- Neonatal meningitis
- Causes tourist diarrhea

#### General Characteristics of *E.coli*

- It is the most abundant facultative anaerobe in the large intestine and faeces.
- It ferments lactose.
- Antigens:
- 1. 50 H antigen
- 2. More than 150 O antigens
- 3. It has 90K antigen.

#### Pathogenesis of *E.coli*

• <u>The source of E. coli, which causes</u>

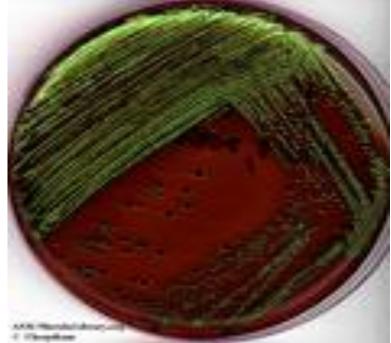
urinary tract infections, is the flora

of the person who has colonized the urogenital region.

 <u>The source of E.coli, which causes</u> <u>neonatal meningitis</u>, is the mother's birth canal.



## Intestinal Pathogens


- 1. Enteropathogenic E. coli (EPEC),
- 2. Enterotoxigenic E. coli (ETEC),
- 3. Enteroinvasive E. coli (EIEC),
- 4. Enteroaggregative E. coli (EAEC),
- 5. Enterohemorrhagic E. coli (EHEC).

#### Pathogenesis of E.coli

- <u>Diarrhea E.coli is transmitted through human</u> <u>feces, contaminated water and food.</u>
- Enterotoxigenic E.coli; usually watery, bloodless and short-term diarrhea
- Enteropathogenic E.coli causes bloody diarrhea

#### Laboratory Diagnosis

- Samples are grown on media such as blood agar,
   EMB agar, or Mac Conkey agar.
- *E.coli* fermenting lactose takes on a green metallic color.



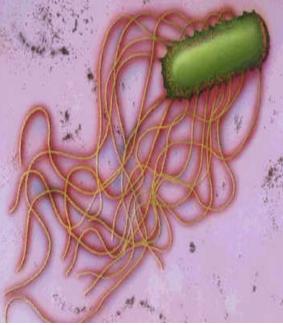
#### TREATMENT

• Treatment with antibiotics;

Antibiotics are selected according to

- 1. Localization of the disease
- 2. resistance of the isolate.
- For urinary tract infection: penicillins such as trimethoprim-sulfamethoxazole or ampicillin are used
- For sepsis: parenteral antibiotic therapy is applied.

#### Protection


- There is no specific protection
- Precautions can be taken by not using uncooked food and untreated water.
- In hospitals, it can be prevented by using antibiotics prophylactically and removing the catheters as soon as they are finished.

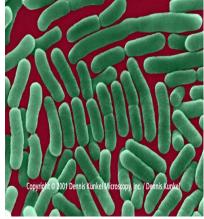
#### Salmonella

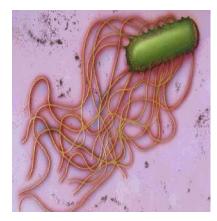
non-fermenting lactose and

• Gram-negative bacilli that produce H<sub>2</sub>S

• They cause enterocolitis, typhoid and




septicemia.


#### Pathogenesis and Epidemiology

- Enterocolitis; It causes inflammation and diarrhea by occupying the epithelial and subepithelial tissues of the small and large intestines.
- Typhoid; It starts in the small intestine and spreads to the liver, gallbladder and spleen. It causes fever and bacteremia.
- **3.** Septicemia; is seen in children with sickle cell anemia, enterocolitis and cancer.

#### Epidemiology

- Salmonella; It is transmitted by food and water in contact with human and animal residues.
- Typhoid (Salmonella typhi) is transmitted only from humans
- 1. The most common animal source:
- 2. Poultry,
- 3. Egg
- 4. Undercooked meat products





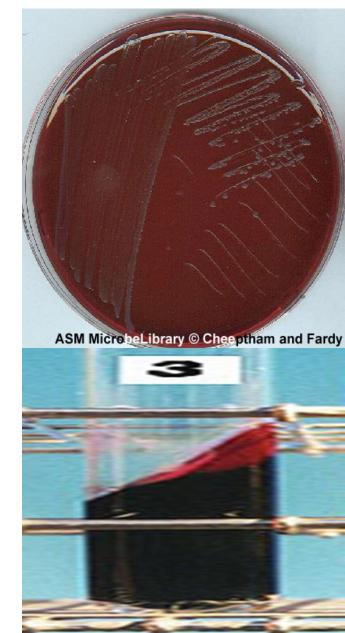
## **Clinical Findings**

- Enterocolitis causes nausea, vomiting, followed by bloody and bloodless diarrhea and abdominal pain after a 12-48 hour incubation period.
- The onset of typhoid and paratyphoid diseases is slow, initially with fever and constipation.
- After the first week, high fever, loss of consciousness, enlarged spleen, leukopenia and anemia are seen.
- Intestinal bleeding and perforation occur after the 3rd week

## Typhoid Symptoms

- fatigue, headache, diarrhea or constipation,
- fever rise,
- decrease in heart rate, decrease in blood pressure,
- red spots that appear on the abdomen and chest a few days after the onset of the disease,
- nose and intestinal bleeding,
- loss of appetite and weight loss,
- stomach ache,
- also in some cases, enlargement of the spleen,

#### **Clinical findings-Continued**


• Septicemia; starts with fever

• Symptoms are often seen in organs such as bones,

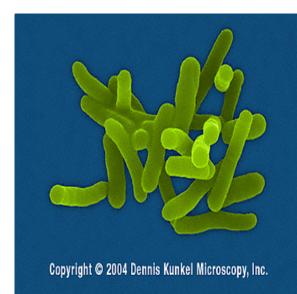
lungs and meninges.

## Laboratory Diagnosis

- Culture from stool sample or blood
- <u>Salmonella</u> grow colonies on MacConkey or EMB agar that do not ferment lactose (colorless).
- In TSI (Three Sugar-Iron) agar, gas and H<sub>2</sub>S' formation is seen.

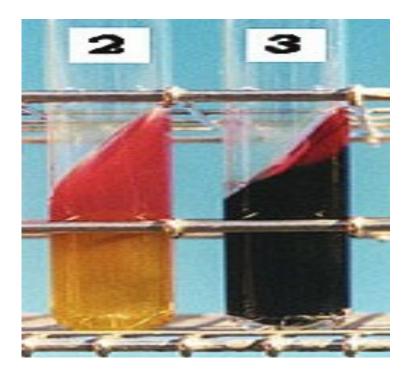


#### **Treatment and Prevention**


- Septicemia caused by enterocolitis
- 1. ceftriaxone or
- 2. Treatment with ciprofloxacin
- for protection
- Public health and personal hygiene measures are necessary.



#### Pathogens in the Digestive Canal


#### SHIGELLA

- Shigella species are gram-negative bacilli that do not ferment lactose.
- It causes shigellosis (dysentery).
- O antigens are found on the cell wall



#### Shigella

- It differs from Salmonella with 3 features;
- 1. Does not produce gas in glucose fermentation
- **2.** Does not produce  $H_2S$
- 3. It is motionless.



Shigella - Salmonella

- Shigellosis is transmitted by the fecal-oral route.
- Infection; Unwashed hands occur through food.
- Shigella, which cause disease only in the digestive tract, invade the mucosa of the distal ileum and colon, causing bloody diarrhea (dysentery).

## **Clinical Findings**

- After an incubation period of 1-4 days, symptoms begin with fever and abdominal cramps, followed by diarrhea with blood and mucus.
- Antibiotics can shorten the duration of the disease.



# Laboratory Diagnosis

- Diagnosis of Shigella;
- 1. Makes lactose non-fermenting (colorless) colonies on MacConkey or EMB agar.
- In three sugars iron agar, it forms alkali in the curved part and acid in the steep part, there is no formation of gas and H2S.
- 3. Slide agglutination is done
- Neutrophil staining with methylene blue in stool



## Treatment and Prevention

- The main treatment for shigellosis is to prevent the loss of fluid and electrolytes and to restore them to an adequate level.
- Antibiotic testing is mandatory.
- For protection;
- 1. proper treatment of sewage waste,
- 2. chlorination of water
- 3. personal hygiene is necessary

## VIBRIO

- Its main pathogen, Vibrio chloerae, is the causative agent of cholera.
- Vibrios are comma-shaped gram-negative bacilli.



- V. chloerae are differentiated according to O cell wall antigen
- 1. O1 group members cause epidemic disease
- 2. Non-O1 organisms are not pathogenic

## Vibrio cholerae

- 1. Water
- 2. foods
- transmitted by human-induced faecal contamination.
- The main animal stores are sea creatures such as mussels and



oysters.

#### Pathogenesis of Vibrio chloerae

- The most common organism is O1 V. chloerae
- The pathogenesis of cholera depends on the colonization of the organism in the small intestine and the secretion of an enterotoxin called choleragen.
- This exotoxin can produce symptoms of cholera even if V. cholerae is not present in the gut.

## **Clinical Findings**

- Large volume of watery diarrhea is the main indicator of cholera.
- There are no leukocytes or erythrocyte cells in the stool.



 Loss of fluid and electrolytes leads to heart and kidney failure.

#### Laboratory Diagnosis

- Vibrio cholerae oxidase positive
- In TSI agar, there is no gas or  $H_2S$ output, while acid in the curved and vertical part due to the fermentation of sucrose.



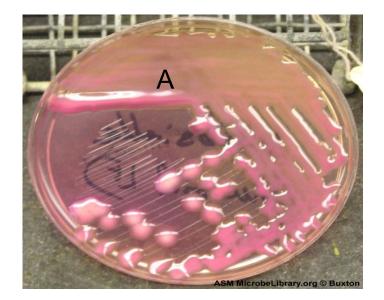
#### Treatment and Prevention

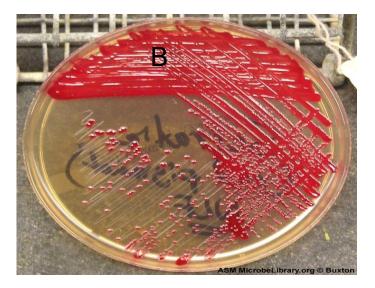
- Fluid and electrolyte loss should be met immediately orally or intravenously.
- Antibiotics such as tetracycline are used but cannot prevent the spread of major epidemics.
- Cleanliness of water and food should be provided.
- Vaccine; Prevents the disease by 50% for 3-6 months, but cannot prevent transmission

#### Pathogens Outside the Digestive Canal

- 1. Klebsiella
- 2. Enterobacter
- 3. Serratia Group are Pathogens
- They are opportunistic pathogens
- Causes nosocomial infections such as pneumonia and urinary tract infections.
- It is commonly found in the large intestine, soil and water.

## Pathogens Outside the Digestive Canal


Klebsiella pneunomiae (A) has


a very large capsule that gives its colonies a striking slimy

appearance.

Serratia marcescens (B) gives

red pigmented colonies

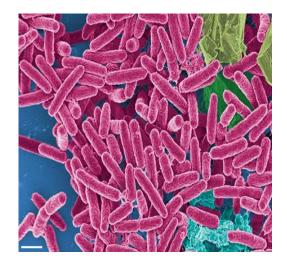




- Klebsiella pneumoniae is a non-opportunistic pathogen.
- It is generally seen in conditions such as advanced age, chronic respiratory failure, diabetes or alcoholism.
- Enterobacter and Serratia infections occur mainly in hospitalized patients

- In infections caused by these organisms, except for pneumonia caused by Klebsiella
- 1. A thick and bloody sputum
- 2. Necrosis
- 3. abscess formation is observed
- Therefore, it is difficult to separate these organisms from each other.

• Therefore, biochemical tests are used to distinguish


Klebsiella, Enterobacter, Serratia Group Pathogens

from each other.

• The choice of the drug to be used in the treatment depends on the results of the susceptibility tests.

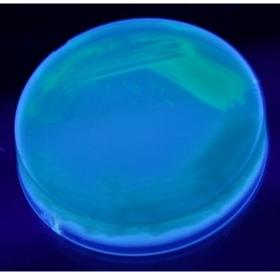
### PSEUDOMONAS

- Pseudomonas aeruginosa usually causes infection when host defenses are reduced.
- The incidence of *Pseudomonas cepacia and Pseudomonas*
  - *maltophilia* is low.



#### PSEUDOMONAS

- *Pseudomonas* are aerobic gram-negative bacilli.
- They do not ferment glucose
- It is oxidase-positive
- It has the ability to reproduce in a medium containing small amounts of nutrients such as tap water.
- Resists disinfectants.


#### PSEUDOMONAS

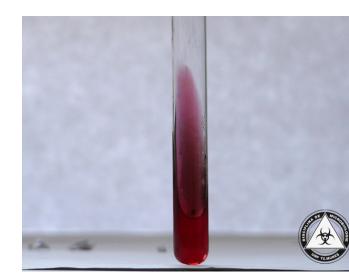
Pseudomonas aeruginosa; produces

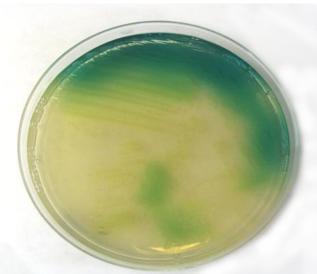
two pigments useful for diagnosis;

- Pyocyanin; able to dye the pus in the wound blue
- *Pyoverdine* is a yellow-green pigment that gives color under UV light.

➢In the laboratory, these pigments form a blue-green color on agar.




- Pseudomonas aeruginosa in patients with extensive burns
- those with chronic respiratory disease such as cystic fibrosis
- 3. in immunocompromised patients
- 4. In people whose neutrophil count is below 500/mL
- 5. They are opportunistic pathogens that cause infections in hospitalized patients, such as catheterized cases.


## **Clinical Findings**

- Pseudomonas aeruginosa can cause urinary tract infections, pneumonia and sepsis by passing into the blood from wound infections with the endotoxins it produces.
- It spreads to the skin with its exotoxins and causes black, necrotic lesions.
- May cause corneal infections in contact lens wearers.

#### DIAGNOSIS

- Pseudomonas aeruginosa
- It produces colorless colonies on MacConkey or EMB agar.
- It is oxidase positive.
- Metallic reflection on TSI agar
- Presence of blue-green pigment and fruity odor in standard agar is used for prediagnosis.





## DIAGNOSIS AND TREATMENT

- Diagnosis is determined by biochemical reactions
- Treatment
- 1. ticarcillin
- 2. penicillin
- 3. penicillin + gentamicin
- 4. Amikacin is used
- For protection, the neutrophil count should be 500/mL, special care should be applied to the burned tissue.

#### **Respiratory Gram-Negative Rods**

| Species        | Major Diseases                                                                   | Laboratory Diagnosis                                            | Factors X and V<br>Required for<br>Growth | Vaccine Available | Prophylaxis for<br>Contacts |
|----------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|-------------------|-----------------------------|
| H. influenzae  | Meningitis <sup>1</sup> ; otitis media,<br>sinusitis, pneumonia,<br>epiglottitis | Culture; capsular<br>polysaccharide in<br>serum or spinal fluid | +                                         | +                 | Rifampin                    |
| B. pertussis   | Whooping cough (pertussis)                                                       | Fluorescent antibody on<br>secretions; culture                  | -                                         | +                 | Azithromycin                |
| L. pneumophila | Pneumonia                                                                        | Serology; urinary<br>antigen; culture                           | -                                         | 7                 | None                        |

<sup>1</sup> In countries where the *H. influenzae* b conjugate vaccine has been deployed, the vaccine has greatly reduced the incidence of meningitis caused by this organism.

## **Respiratory Gram-Negative Rods**

- HAEMOPHILUS
- *H. influenzae* is a small gram-negative bacillus with a polysaccharide capsule.
- Serological typing is based on capsular polysaccharide antigens.
- Type b causes meningitis and sepsis
- Unencapsulated strains cause sinusitis and middle ear inflammation.



- It only infects humans.
- It enters the body through the upper respiratory tract, causing asymptomatic colonization or infections such as otitis media, sinusitis, and pneumonia.
- Ceftriaxone is used to treat *Haemophilus influenzae*.
- Diphtheria toxoid vaccines are used specifically to protect children from the disease.

## Bordetella

- Bordetella pertussis causes whooping cough.
- *B. pertussis* are small, coccobacillus, encapsulated gramnegative bacilli.
- It is transmitted only by droplet infection of the human pathogen *Bordetella pertussis*.
- The organism attaches to the ciliary epithelium of the upper respiratory tract, followed by the death of epithelial cells

## Bordetella Pathogenesis

- Pertussis symptoms:
- mild upper respiratory tract discomfor
- Paroxysmal cough lasting 1-4 weeks
- Lymphocytosis is seen in which the lymphocyte is increased to 70%



#### Bordetella Diagnosis

• The organism is isolated from the pasopharyngeal

swab taken during the paroxysmal stage.

• Bordet-Gengou medium with a high blood content is

used for isolation.

## Bordetella – Typing, Prevention and Treatment

- Typing; by agglutination with antiserum or staining with fluorescent antibody
- Protection; For this, a cell-free vaccine containing 5 antigens purified from the organism or a vaccine consisting of inactivated organism are used.
- Treatment; erythromycin reduces the number of

organisms

# Legionella

- Legionella are gram-negative bacilli that stain poorly with gram stain.
- It causes pneumonia.
- Legionella mainly settle in ambient water sources such as ventilation system and water cooler dispensers.
- The entrance gate is the respiratory tract and pathological changes are seen in the lung.

#### Gram-negative bacilli of animal origin

- These organisms, which are transmitted from animals, cause disease in humans.
- In this way, diseases that exist in animals but can also be transmitted

to humans are called zoonotic



diseases.

## Gram-negative bacilli of animal origin

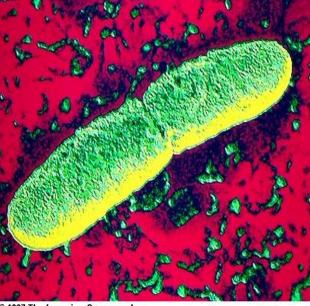
| Species                | Disease                                           | Source of Human<br>Inflection | Mode of Transmission<br>from Animal to Human | Diagnosis                                         |
|------------------------|---------------------------------------------------|-------------------------------|----------------------------------------------|---------------------------------------------------|
| Brucella species       | Brucellosis                                       | Pigs, cattle, goats, sheep    | Dairy products; contact with animal tissues  | Serology or culture                               |
| Francisella tularensis | Tularemia                                         | Rabbits, deer, ticks          | Contact with animal tissues; ticks           | Serology                                          |
| Yersinia pestis        | Plague                                            | Rodents                       | Flea bite                                    | Immunofluorescence or culture                     |
| Pasteurella multocida  | Cellulitis                                        | Cats, dogs                    | Cat or dog bite                              | Wound culture                                     |
| Bartonella henselae    | Cat-scratch disease and<br>bacillary angiomatosis | Cats                          | Cat scratch or bite; bite of cat flea        | Serology or Warthin-Starry silver stain of tissue |

#### Brucella

- causes brucellosis
- The organism is transmitted to the body either from contaminated milk and dairy products or through the skin by direct contact in a workplace such as a slaughterhouse.
- It settles in lymph nodes, liver, spleen and bone marrow

## Brucella Diagnosis, Treatment and Prevention

- For diagnosis; Pre-typing is done by slide agglutination test with Brucella anti-serum.
- The organism is isolated from the serum sample taken from the patient by antibody titer.
- In the treatment, rifampin is used in addition to tetracycline.
- Vaccination of animals and milk pasteurization are important for protection.
- There is no vaccine for humans.


## Franciella tularensis

- *F.tularensis* is a gram-negative bacillus with a single serotype.
- It is the causative agent of tularemia.
- Streptomycin is used in its treatment.
- Avoid touching ticks and wild animals.



## Yersinia pestis

- Is the cause of the plague
- Small gram-negative bacilli with bipolar staining
- Mice are first infected with these bacteria by the bite of a kind of flea.
- Bacteria, which are then passed on to humans who come into contact with mice, cause swelling in the lymph nodes.



© 1997 The Learning Company, Inc.

## Yersinia pestis

- Clinical manifestations
- pain, swelling in the lymph nodes
- high fever
- myalgia
- weakness
- septic shock
- pneumonia



#### *Yersinia pestis*- Diagnosis-Treatment

- for diagnosis
- 1. smear or culture of pus from blood or bubo

(swollen lymph nodes)

- 2. fluorescent antibody staining
- For treatment; streptomycin used alone or in combination with tetracycline

#### Yersinia pestis- Protection

• The spread of rats in big cities should be controlled

and dead wild rodents should not be touched.

• A vaccine consisting of formalin-killed organisms

provides partial protection.