WATER INTAKE STRUCTURES

10.1 A transmission curve is constructed between rectangular and trapezoidal channels. Depth of the channel (d) is 1.8 m , the freeboard is 0.4 m , the width of the rectangular channel is 4 m , the trapezoidal channel width is 3 m , side slope is $1 / 1.5$ and $7.5 \mathrm{~m}^{3} / \mathrm{s}$ discharge flows in this channel. The angle of the expanded part is 15°. Find the length of the transmission channel and calculate the head loss.
$10.22 .5 \mathrm{~m}^{3} / \mathrm{s}$ total flowrate flows in a transmission line is with $0.0003 \mathrm{~m} / \mathrm{m}$ bed slope. Side slopes of this trapezoidal channel are $1 / 2$ and the base width of this channel is 1.4 m . Find the size of material (D) that is settled in this channel. (Specific weight of the material is $2.6 \mathrm{t} / \mathrm{m}^{3}, \mathrm{n}=0.016$).
$10.38 \mathrm{~m}^{3} / \mathrm{s}$ total flowrate flows in a settling basin with 15 m base width. The settling velocity of a material is $100 \mathrm{~m} /$ hour and the diameter of this material is $\mathrm{D}=0.5 \mathrm{~mm}$. Find the length of the settling basin to settled all materials down in the basin (Ignore turbulence in the flow).
$10.46 \mathrm{~m}^{3} / \mathrm{s}$ total flowrate flows in three separated settling basins. The mean depth of the one settling basin is 2 m , the width of the walls between basins is 0.35 m . The settling velocity of material is $2 \mathrm{~cm} / \mathrm{s}$ and the size of settled down material is $D=0.09 \mathrm{~mm}$. Find the dimensions of this settling basin (Consider flow is turbulent, take safety coefficient as 1.2).

