Yıldız Technical University
 Civil Engineering Department
 Construction Management Division

Engineering Economy- 2

Uniform-series Present Worth

Factor

$$
\begin{aligned}
& P=A \frac{(1+i)^{N}-1}{i(1+i)^{N}} \\
& P=A(P / A, i \%, N)
\end{aligned}
$$

- When A, i and N are known, calculation of \mathbf{P} value: The equivalent present worth P of a uniform series A end of period cash flows N at an interest rate i.

Example -1

- How much money should you be willing to pay now for a guaranteed $\$ 600$ per year for 9 years starting next year, at a rate of return of 16% per year?

Capital Recovery Factor

P is known

$$
\begin{aligned}
& A=P \frac{i(1+i)^{N}}{(1+i)^{N}-1} \\
& A=P(A / P, i \%, N)
\end{aligned}
$$

- When P, i and N are known, calculation of value of A: the present worth P is known and the equivalent uniform-series amount A is sought throughout a period N at an interest rate i.
- The payback of house and car credits are some of the examples of capital recovery factors.

Example - 2

- Company A borrows 450 ooo TL for buying laboratory equipment at a rate of return of \%1o per year for 8 years starting next year. What should the company pay annually throughout the credit period?

$\mathrm{A}=\mathrm{P}(\mathrm{A} / \mathrm{P}, \% 10,8)$
$\mathrm{A}=450000 * \frac{0,10(1+0,10)^{8}}{(1+0,10)^{8}-1}$

$$
A=P \frac{i(1+i)^{N}}{(1+i)^{N}-1}
$$

$\mathrm{A}=450000^{*} 0,1874$
$\mathrm{A}=84330 \mathrm{TL}$

Uniform Series Compound Amount

- When A, i and N are known, calculation of F value: The equivalent future worth F of a uniform series A end of period cash flows N at an interest rate i.

Example - 3

At the end of each year, 4500 TL is deposited throughout 8 years at an interest rate of $\% 10$ per year. What is the amount of the money which can be withdrawn at the end of $8^{\text {th }}$ year?

Sinking Fund Factor

$$
F \text { is known }
$$

- When F, i and N are known, calculation of A value: This function determines the A value for n years, given F in year n , at a given interest rate.
- These calculations are performed for determining the periodically deposited amount required to replace the fixed assets.

Example-4

- At the present time, a father proposes to give 1000 TL to his son who wants to collect 7000 TL at the end of $7^{\text {th }}$ year. He deposits this money to a bank. On the other hand, the son is planning to deposit equal amount of money earned by working at a part time job at the end of each year. If the interest rate is \%10 per year, how much money should he earn?

Arithmetic Gradient Factors

An arithmetic gradient is a cash flow series that either increases or decreases by a constant amount. The amount of the increase or decrease is the gradient.

Gradient uniform series

Gradient

Uniform Series

$$
A=A_{1}+G(A / G, i \%, N)
$$

Gradient uniform series

Example - 5

- A textile company wants to buy a manufacturing machine whose economic life is years. The engineers predict that the operating and maintenance expenses of this machine will be $\$ 1000$. These expenses are expected to increase $\$ 250$ each year uniformly and it is assumed that these expenses occurred at the end of the year. If the company wants to deposit an amount of money at \%12 interest rate to compensate these expenses. Then how much money should they deposit?

$$
\begin{aligned}
& \mathrm{P}=\mathrm{A}(\mathrm{P} / \mathrm{A}, 12 \%, 5)+\mathrm{G}(\mathrm{P} / \mathrm{G}, 12 \%, 5) \\
& \mathrm{P}=1000^{*} 3,6048+250^{*} 6,3970 \\
& \mathrm{P}=\$ 5204,05
\end{aligned}
$$

Example - 6

- A company wants to deposit money to a bank at \%10 interest rate. The money deposited at the end of first year is $\$ 1200$, and it will decrease by $\$ 200$ per year for 4 years. What is the amount of money will the company earn at the end of $5^{\text {th }}$ year?

Composite Cash Flows

- Carrying all inflows and outflows one by one or
- Grouping approach

Composite Cash Flows

$$
\begin{aligned}
& \mathrm{P}=\mathrm{F}(\mathrm{P} / \mathrm{F}, \% 12,1)+\mathrm{A}_{1}(\mathrm{P} / \mathrm{A}, \% 12,3)^{*}(\mathrm{P} / \mathrm{F}, \% 12,1)+\mathrm{A}_{2}(\mathrm{P} / \mathrm{A}, \% 12,3)^{*} \\
& (\mathrm{P} / \mathrm{F}, \% 12,4)+\left(\mathrm{A}_{3}+\mathrm{G}(\mathrm{~A} / \mathrm{G}, \% 12,5)\right)^{*}(\mathrm{P} / \mathrm{A}, 12 \%, 5)^{*}(\mathrm{P} / \mathrm{F}, 12 \%, 7) \\
& \mathrm{P}=50(\mathrm{P} / \mathrm{F}, \% 12,1)+100(\mathrm{P} / \mathrm{A}, \% 12,3)^{*}(\mathrm{P} / \mathrm{F}, \% 12,1)+150(\mathrm{P} / \mathrm{A}, \% 12, \\
& 3)^{*}(\mathrm{P} / \mathrm{F}, \% 12,4)+(150+50(\mathrm{~A} / \mathrm{G}, \% 12,5))^{*}(\mathrm{P} / \mathrm{A}, 12 \%, 5)^{*}(\mathrm{P} / \mathrm{F}, 12 \%, 7) \\
& \mathrm{P}=50^{*} 0,8929+10^{*} 2,400^{*} 0,8929+15 \mathrm{o}^{*} 2,4018^{*} 0,6355^{+} \\
& \left(15 \mathrm{O}^{*}+50^{*} 1,7746\right)^{*} 3,6048^{*} 0,4523 \\
& \mathrm{P}=\$ 877,29
\end{aligned}
$$

Composite Cash Flows

Example 2: In order to satisfy the equivalent of these two cash flows, what should be the value of C ?

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{A}_{1}(\mathrm{P} / \mathrm{A}, \% 12,6)-\mathrm{A}_{2}(\mathrm{P} / \mathrm{A}, \% 12,2) \\
& \mathrm{P}_{1}=300^{*} 4,1114-200^{*} 1,6901 \\
& \mathrm{P}_{1}=\$ 895 \cdot 4
\end{aligned}
$$

$$
\mathrm{P}_{2}=\mathrm{A}(\mathrm{P} / \mathrm{A}, \% 12,2)+\mathrm{F}(\mathrm{P} / \mathrm{F}, \% 12,5)
$$

$$
\mathrm{P}_{2}=\mathrm{C} * 1,6901+\mathrm{C} * 0,5674
$$

$$
\mathrm{P}_{2}=2,2575 \mathrm{C}
$$

$$
\mathrm{P}_{1}=\mathrm{P}_{2}
$$

$$
\mathrm{C}=\$ 396.73
$$

