DAUGVET DENLEMI VE DÜZGÖN KONVEISSLIM

- Tanim 11.1 BR Bonach uzayi üzerindehio $T: X \rightarrow X$ süretlio operatyru,

$$
\|I+T\|=1+\|T\|
$$

esitligini goracklestiriyorsa, o operytöre Daugavet denblemini saiglar derir.
Lemma 11.2 . Bir sinirli eperatirrün Dauganet eiftigini saghlanasi fain gerek ve jeter kosul onun ermeslenegionin (adjeint) Daugavet donklemin: saglomasi gerckir.
Lemma 11.3. Figer bier Bonach uzayl Ázeriendekie bir sonit, $T: X \rightarrow X$ operatöründin normu T nin spektrumuna aitse, yano $\|T\| \in \sigma(T)$ oluyersa o zoman T Daugavet esohidini saglor.
Hatirlatma: Ber sinill T : $X \rightarrow X$ operatörö iain, $(\lambda-T$) operatörounón x üzerinde terslenenez olmasun saĝtoyon tum. λ kompleks say ilorinun kiumesine T 'ion spektrumu dendr ve o (T) sekilinde gosteriqir. Daha acik selailde,
$\circ(T)=\left\{\lambda \in C:(\lambda-T)^{-1}\right.$ mevaut deg $\left.\left.\mid\right\} /\right\}$.
Lemma 11.13 'ün Koncti: $11 T \| \in \sigma(T)$ olsun. Tinin spetatromo merkezi sifir don ve 11 TIl yorluaph bir diskate uzondigindan, 11 TI Inin, spektrumon sinir nokitasi oldugu sonuw qikar. d'zelde, $\|T\| E O(T)$, T nin yaklasik nokta spelctromudur Her n iain $\left\|x_{n}\right\|=1$ ve $\lim _{n \rightarrow \infty}\left\|T_{x_{n}}-\right\| T\left\|x_{n}\right\|=0$ olacak sekflde bir $\left\{x_{n}\right\}$ vektür dizisi secelim.

$$
\begin{aligned}
\|I+T\| & \geqslant \|(I)+I) x_{n} \| \\
& \geqslant\left\|x_{n}+\right\| T\left\|x_{n}\right\|-\| \| T\left\|x_{n}-T x_{n}\right\| \\
& =1+\|T\|-\| \| T\left\|x_{n}-T x_{n}\right\|
\end{aligned}
$$

- ldeyunden limptip alirsak, $\|I+T\| \geqslant 1+\|T\|$ somecu aikar. Buraden dar Daugavet espttligini saģladị́ görölör.

Lemma 11.4 . Eger bis uzayda alinar u vevevekiourleri $\|u+v\|=\|u\|+\|v\|$
esitliğini saglorsa o zaman her $\alpha, \beta \geqslant 0$ daln

$$
\|\alpha u+\beta v\|=\alpha\|v\|+\beta\|v\|
$$

ezptinje gerctatesic.
Thant. uver veltotyleri $\|$ utwell $=\| u l l$ + llwill esptigini gecheklesin ve $\alpha, \beta \geqslant 0$ dson. Durmun simetrisi geregio $\alpha \geqslant \beta \geqslant 0$ dige forz edebiliciz, θ zaman

$$
\begin{aligned}
\alpha\|u\|+\beta\|v\| & \geqslant\|\alpha u+\beta v\|=\|\alpha(u+\varepsilon)-(\alpha-\beta) v\| \\
& \geqslant \alpha\|u+e\|-(\alpha-\beta)\|v-\| \\
& =\alpha(\|u H+\| v \|)-(\alpha-\beta)\|v\| \\
& =\alpha\|u\|+\beta\|,\|
\end{aligned}
$$

senvcura vessisiz.
Sonva 11.5. Eeger ber Bonach uzagi yzeriendekii sinrli T oper a touroü Daugavet esathagini sagllugersa o zoman her $\alpha \geqslant 0$. kin αT operatyrä de ayn sekiolde Daugavet esptigini saglar.

Gelecek lemma ito derk norm sartini tarmliyor ve onlorden binkincisi dyzgün kenveksligin tanmi iadn kullandiyer. Gonelde of duğu gibi ber X Banach vzayinn kafali birim tgpulyuvar. (bail) U_{x} seklignde gosteribir.
Lemmae 11.6. Bir x Banach uzayi ían asajidekiles deiletir.
(1) Her $0<\epsilon L 2$ iain $x, y \in U_{x}\|x-y\| \geq e$ olacak sekilde bir $0<\delta<1$ varsa, o zaman $\left\|\frac{x+y}{2}\right\|<1-\delta$ olvor
(2) Uxiten alinon $\left\{x_{n}\right\}$ ve $\left\{y_{n}\right\}$ diriloi $\lim _{n \rightarrow \infty}\|x n t a n\|=2$ sortini saĝlarsa, o zaman $t \lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|=0$ olur. Kanit. $(1) \Rightarrow(2) U_{x}$ 'ten alizan $\{x n\}$ ve $\{y n\}$ dizaliesto $\lim _{n \rightarrow \infty}\left\|x_{n}+y_{n}\right\|=2$ sartini saģlasin. $O L \in<\frac{1}{2}$ seklinde bw
ayarlama yaparsak ve $0 \angle 8 L 1$ alacak sekolde bir d seGersek a zaman (1) saplane Sindp her $n \geqslant n_{0}$ indn $\left\|x_{n+y n}\right\|>1-\delta$ sartini sag̣layan bir n o seaelim. (1) 1,0 aullanarak her $n \geq n_{0}$ iah $\left\|x_{n}-y_{n}\right\| L E$ sonvcuna vasiriz. Yani; $\lim _{n \rightarrow}\left\|x_{n}-y_{n}\right\|=0$ olv.
$(2) \Rightarrow(1)$ E马er (1) doĝro olmasaydi e roman $x n, y_{n} \in U_{x}$ $\left\|x n-y_{n}\right\|>\epsilon$ ve $\left\|\frac{x_{n}+y_{n}}{2}\right\|>1-\frac{1}{n}$. sartlarini saglayan bir $\epsilon>0$ bulunordu. Bu da $\lim n \rightarrow a\left\|x_{n+y n}\right\|=2$ gerebtioirdi. (2) $\|$ den biz $\lim _{n \rightarrow \infty}\left\|x_{n}-y_{n}\right\|_{\equiv}=0$ sabobiz ve bu her n ian $\left\|x_{n}-y_{n}\right\|>G$ olmasiyla selisir.
Tonim 11.7. Bir Banach uzayi Lenma 11.6^{\prime} da ki, dak idardelerden her hagei birini sagllyerse dizzoun konvetastin derts.
Tanim 11.8. Bor Bonach uzayl ejer her $\epsilon \geq 0$ irin $\left\|x_{n}\right\| \geq 1,\|y\| \geq 1$, ve $\|x-y\|<\delta$ oldogunda $\|x+y\| \geq\|x\|+\|y\|-\epsilon\|x-y\|$ esitsieliQind gerek, tirecek bir $\mathcal{L}>0$ sablipe dyzaon polrüzsöz diye adiondialis.
Lemma l1.9. Bre Panach vzayarin düzoón konveks okabihnest icuin gesetz ve jeter kosul norm duallnin düzgin pulribzsizz olmasider.

Benzer sekilde, bue Barach vzayi dizzon purtizsyz (uni sormly smooth) olabimesi iain gerele ve yeter kopul narm dualiah duzzoon konwetss olmasidie.

Auzzoún sünetit hronelas Banach vzaylari iain Lemman 11.3 iun tersi diescudur.
Teorem 11.10. Eyes X düzoin sürelliyse ve $T \in L(X)$ Dayaget esptigini sageliyossa a zoman $\|T\| \in \sigma(T)$.
Koont. X dirzoun söreklir olsur ve $T \neq O \in L(X)$ Pangavet deskleni-
 Catöninon de Daugavet Denklemini sashadgér gothotur. Yent; $11 T$
$\|I+s\|=\sup \|x+5 x\|=1+\|s\|=2$
olur. Böglece $\lim _{n \rightarrow \infty}\left\|x_{n}+5 x_{n}\right\|=2$ fartinx saĝlayon bir birien veletor dizisi $\left\{x n_{n}\right\}$ vordir X duzyön süreklo olduaundaan $\lim _{n \rightarrow \infty}\left\|S x_{n}-x_{n}\right\|=0$ sonvcuna ulasiriz. Sonua olarak $\left\|m_{n \rightarrow \infty}\right\| \frac{T}{\|T\|} x_{n}-x_{n} \|=0$ ve $\lim _{n \rightarrow \infty}\left\|T x_{n}-\right\| T\left\|x_{n}\right\|=0$ vasioiz. Bu da $\|$ TU'nin, T'rin yaklasik nokta spektrumurdes eldêuunu gơstertr.

Bir operatörón Danganet dentloudn saylomas, icm perele ve yeter kosulan a opesatüton eslonighin Daugavet denklendn: soglonaesi oldugendon ve bir operatörön spectromo ile onin adjointinin specktromo ayn oldugundan (Teorem b.14) siradaki soruco elde edoriz.
Sonua II.II. Dyzzoth kytenveths vega bir dirgouth püryrsÿz Boneach ulay, yzerindekii bir sürekto Toperatöryươn Davgavet derblendi' raģlomas, iain genele ve jeter kosul onun normu \|TII) min, $\sigma(T)$ speltiomundae bulunmasidir.
Sonva 11.12 . Bir düzgoth kanveks veya bir dügeon pörs"zsöz Bonach uzag, üzerindelmi bir kat, tekil (strictly singulor) T operatöra"nün Daugaxet denkleumi sag̣lamasi iah gerele ve yeter leospul onan normu $\| T 11$) nin, T 'nin bir d'zdeg̀eri (eigenvalue) olmasidir.
Senua 11.13. $1 \angle p L Q$ igin bir kate tehel operatör $T: L_{p}(N) \rightarrow L_{q}(N)$ Daugavet dentlonini saylamasz íain gerek we yeter kosul ozon normu 11 TII min, T'uin bir öz dejer ol moside.
Teoren II.14. Bir dyzzgön honveks veya bir düzauth potùzzo'z Borach uzagi üzerindeki bor söreklo $T_{0} x \rightarrow x$ operatör x Dargawet Denlulemin: sapplusen. ve her n iahn $a_{n} \geq 0$ olacak seloplde $f(x)=\sum_{n=0}^{\infty} a_{n} \lambda$ n bir kurvet serisio alakm. Ejer $f(\| T 11)<\infty$, o zaman surcetio operator $f(T)$ Dauganet derblemihi soĝler ve $\|f(T)\|=f(\|T\|)$. Yeni";

$$
\|I+f(T)\|=1+\|f(T)\|=1+f(\|T\|)
$$

eide edain. ourulde asáaidalai sawalarn elde ederio:
(1) Her bit $n=0,1,2, \ldots$ imin T^{n} eperatyrü Daugavet deiklemini Saplar ve $\left\|T^{n}\right\|=\|T\|^{n}$, yoni;

$$
\left\|I+T^{n}\right\|=1+\left\|T^{n}\right\|=1+\|T\|^{n} \text {. }
$$

(2) Negatid katsayisiz her hongi $p(\lambda)=a_{0}+a_{1} \lambda+\ldots .+a_{0} \lambda^{n}$ poltnono icin, $P(T)$ operotön"̆ Dangavet derklemini saýler ve $\|P(T)\|=P(\|T\|)$. Konit. Bur Bonach X suayi üzoinde bir süreleio T: $X \rightarrow X$ oporatórö alakim ve $f(\lambda)$ yuhridalei ďzellibleri saỳlesin. Sonua 11.11 2a koll onarole $\lim _{n \rightarrow a}\left\|T_{x_{n}}-\right\| T\left\|x_{n}\right\|=0$, sayleyen bir birin veltorler dizisi $\left\{x_{n}\right\}$ oldugün konitlazabiliriz. Asaÿdiki den klemler kolayca kantlonabilar.

$$
T^{k+1} x_{n}-\|T\|^{k+1} x_{n}=T\left(T^{k} x_{n}-\|T\|^{k} x_{n}\right)+\|T\|^{k}\left(T x_{n}-\|T\| x_{n}\right)
$$

Yukuridakin denkleni ve tünuevorim plkeshi kullonanak her $k=0,1, \ldots$, ian

$$
\lim _{n \rightarrow 0}\left\|T^{k} x_{n}-\right\| T\left\|^{k} x_{n}\right\|=0
$$

sonucunce vlasinz. Saudo $\lim _{n \rightarrow \infty}\left\|f(T) x_{n}-f(\|T\|) x_{n}\right\|=0$ olduýono kentllagacagiz.
$\epsilon>0$ olsen. $\sum_{i=\mu+1}^{\infty} a_{i}\|T\|^{i} L \epsilon$ olacok sekplde bir m tarsayesi bulalmue her $n \geq n_{0}$ iann $\sum_{p_{0}}^{m} \dot{a}_{i}\left\|T^{i} x_{n}-\right\| T\left\|^{p} x_{n}\right\| L E$ olacek setelde bir n_{0} bulalm. Sonvata biz her $n \geq n_{0}$ iam

$$
\begin{aligned}
& \| f(T) x_{n}-f(\|T\|) x_{n}\|=\| \sum_{i=0}^{\infty} a_{i}\left(T^{i} x_{n}-\|T\|^{i} x_{n}\right) \| \\
& \leq \sum_{i=0}^{m} a_{i}\left\|T^{p} x_{n}-\right\| T\left\|^{p} x_{n}\right\|+\sum_{i=n+1}^{\infty} a_{i}\left\|T^{p} x_{n}-\right\| T\left\|^{p} x_{n}\right\| \\
& \leq \epsilon+2 \sum_{i=\mu+1}^{\infty} a_{i}\|T\|^{i}<3 \epsilon
\end{aligned}
$$

olvr. Buraden lim\|f(T)$x_{n}-f(\|T\|) x_{n} \|=0$ elde ederpz Sonvala f (IITII) reel sayisi, $f(T$ 'rin yaklasik noktar spektrumanda bulonun. $\| f(T 2 \| \leq f(\|T\|)$ ve $f(T)$ 'inin spektrumu sifir merkealo ve $\|f(T)\|$ yori Gapli kapali distate yer aldig'mden, $\|f(T)\|=f(\| 1 T 1)$ elde ederiz. Simdi Sowa 11.11, : lullon orata $F(T)$ operatötünón Dowgareat derkleurni segladigine gulnöröz.

Sindi yerel düzouth konueks Bonach uzaykari ÿzerme dolar operatöteri tortssaccapiz. Bun yapabilmek ikun asapidakio lemmaya ibhtilyacimiz var. Bu lenma'men ispati lemma 11.6 'ninblyle beszerdn. Lenmall.is Bir Bonach uzayindato bir birims veletör iain asagidakio ifadeter denctir.
(1) Her bir $\theta<\epsilon \leq 2$ iain, $\|y\| \leq 1$ ve $\|x-y\| \geq \epsilon$ olopta $\left\|\frac{x y y}{2}\right\|<1-\delta$ gerelatirecek sekilde $0 \angle f L 1$ sarthi saghlagon bir fvordr.
(2) Fêer $\left\{x_{n}\right\} \subseteq U_{X}$ ve $\lim _{n \rightarrow \infty}\left\|\frac{x+x_{n}}{2}\right\|=1$ ise o comon $\lim _{n \rightarrow \infty}\left\|x-x_{n}\right\|=0$ 。
Tonm 11.16. Br Bonach uzayna yukerdaki ifadelerden birthi sayplyonsa ona bir birim x vettöroinde yeel dïzoún honveks derir.

Eger her birim rektörïnde yeeel düzgün konvetisse o Aonach bzayina yerel dizzoun kannulks dendr.

Yerel dözzön konicks Boreach vrayberinin keshlitide dízzann monveks olvasi perelomedye' bilinger-
Teeren 11.18. Ber youl dizzoón konvelas Bohach vzayi utzorindelaso bor $T: X \rightarrow X$ kompalet sperotoris Dauganet denderind sapplonaese lain gerele se yeter kaiul onun normu IITI'nin, T'nim bir düdegderi olmaside.
Monit. Yeter surti her hangi bir Bonach uzayi ran dogroder ve operatörün kompabtligindon bagimsiadir. Aslinda, eger IITII, T'nin bir ördeperi ise oremen Teorem 11.10^{\prime} o Laultonarak bre $\|I+T\|=1+I \pi \|$ elde cedriz.

Tersi iain, T aifir olnagen bir eperatör olson ive Daugavet denklevini saptasin. Sonv, 11. 'sten ber $S=\frac{T}{\|T\|}$ kerpalt oporatörounsin de Daugaret denblowini sofladigum bitryoron ve $\sup \|x\|=1\|x+S x\|=7+\|S\|=2$. $\lim _{n \rightarrow \mapsto}\left\|x_{n}+S_{\text {zan }}\right\|=2$ olacale selailde bor birim ve tforler diausi $\left\{x_{n}\right\}$ a lusturalin.
shon kempalktigen, kullonoriak her $x \in X$ imin $\lim _{n \rightarrow \infty}\left\|s_{x_{n}-x}\right\|=0(* *)$ renvana viaririz.

$$
\left\|x_{n}+S x_{n}\right\| \leq\left\|x_{n}\right\|+\left\|S x_{n}\right\|=1+\left\|S x_{n}\right\| \leq 2
$$

Yokoridation ve $(* *)$, 0 kolloneraks $\|x\|=\left|\left.\right|_{m \rightarrow \infty} \| x_{n}\right|=1$ som una ulasiriz. Dakes, asagidaknder yourknarik

$$
\left\|x_{n}+S x_{n}\right\|-\left\|S x_{n}-x\right\| \leq\left\|x_{n}+x\right\| \leq 2
$$

ien $n \rightarrow \infty x_{n}+x \|=2$ veya $\lim _{n \rightarrow \infty}\left\|\frac{x+x_{n}}{2}\right\|=1$ soncuna vlasiriz
 elde ederiz. Böylece $I E r_{n \rightarrow 0}\left\|5 x-5 x_{n}\right\|=0$ ve sonuctae $S x=x$ veya denk olvak $\frac{T}{\|T\|} x=x$ elde ederdz. Nikayetunde $T x=113 \| x$, buda $\|T\|$ inen, Tinin biz özdeperi olligunu göstorns

