

1) (15 pts) D is a region on the complex plane.

Let $D^{*}=\{\bar{z} \mid \forall z \in D\}$. If $f(z): D \rightarrow \mathbb{C}$ is a differentiable function, $f^{*}: D^{*} \rightarrow \mathbb{C}$, show that $f^{*}(z)=\overline{f(\bar{z})}$ is differentiable.
2) Let $u(x, y), v(x, y)$ harmonic functions in region \mathbf{D} on the plane. And let v is a harmonic conjugate function of u.
a) (10 pts) Show that $u^{2}-v^{2}$ is a harmonic function in D .

And show that $2 u v$ is a harmonic conjugate of $u^{2}-v^{2}$.
b) (10 pts) Find the harmonic conjugate function of $u^{3}-3 u v^{2}$.
3) a) (8 pts) Find the values of $(-1-\sqrt{3} i)^{1 / 4}$.
b) (7 pts) Sketch the following region on the complex plane

$$
|z-1+i|<2, \operatorname{Arg}(z)>\frac{\pi}{2}
$$

4) (15 pts) Recall that $\cos z$ for $z \in C$ is defined by $\cos z=\frac{e^{i z}+e^{-i z}}{2}$

Find all complex numbers z satisfying the equation $\cos z=3$.
5) (15 pts) Compute the principle value of $(\sqrt{3}-i)^{i}$.
6) Let γ be the positively oriented circle with radius 1 and center i.

Evaluate the following counter integrals
a) $\mathbf{(1 0 ~ P t s)} \oint_{\gamma} \bar{z} d z=$?
b) (10 Pts) $\oint_{\gamma} \frac{d z}{z^{2}-2}=$?

