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Poles, Zeros and System Response

¾The output response of a system is the sum of two responses: the forced
response and the natural response The forced response is also called theresponse and the natural response. The forced response is also called the
steady-state response or particular solution. The natural response is also called
the homogeneous solution.

¾Although many techniques, such as solving a differential equation or taking
the inverse Laplace transform, enable us to evaluate this output response, these
techniques are laborious and time-consuming.

¾The use of poles and zeros and their relationship to the time response of ap p p
system is a technique which allows us to simplify the evaluation of a system’s
response.
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Definition of Poles and Zeros

Poles of a Transfer Function: The poles of a transfer function arep

(1) the values of the Laplace transform variable, s, that cause the transfer
function to become infinite orfunction to become infinite or

(2) any roots of the denominator of the transfer function that are common to
roots of the numerator.

Zeros of a Transfer Function: The zeros of a transfer function are

(1) th l f th L l t f i bl th t th t f(1) the values of the Laplace transform variable, s, that cause the transfer
function to become zero, or

(2) any roots of the numerator of the transfer function that are common to
roots of the denominator.
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Example ‐ 1 (first order system)
Consider the first order system given below.

Given the transfer function G(s), a pole exists at s = -5, and a zero exists atGiven the transfer function G(s), a pole exists at s 5, and a zero exists at
s = -2.

The unit step response of the system can be determined as
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Example ‐ 1 (first order system) ctd.

1. A pole of the input function generates the form of the forced response,p p g f p
2. A pole of the transfer function generates the form of the natural response,
3. A pole on the real axis generates an exponential response. Thus, the farther

to the left a pole is on the negative real axis, the faster the exponentialto the left a pole is on the negative real axis, the faster the exponential
transient response will decay to zero,

4. The zeros and poles generate the amplitudes for both the forced and natural
responsesresponses.
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Example ‐ 2 (evaluating response using poles)
Given the system below, write the output, c(t), in general terms. Specify the
forced and natural parts of the solution.

By inspection, each system pole generates an exponential as part of the natural
response. The input’s pole generates the forced response. Thus,

Taking the inverse Laplace transform, we getg p g

c(t) ´ K1 + K2e
¡2t + K3e

¡4t + K4e
¡5t
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FIRST ORDER SYSTEMS
We now discuss first-order systems without zeros to define a performance
specification for such a system.

If the input is a unit step (R(s)=1/s) , the Laplace transform of the step responsep p ( ( ) ) , p p p
is C(s), where

Taking the inverse transform, the step response is given by
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FIRST ORDER SYSTEMS ctd.

Here, the input pole at the origin generates the forced response, and the system
pole at –a generates the natural response. Thus, the only parameter needed to
d ib th t i t i Wh t 1/describe the transient response is a. When t = 1/a,
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FIRST ORDER SYSTEMS ctd.
Time Constant: 1/a is called the time constant. Thus, the time constant can
be described as the time for exp(-at) to decay to 37% of its initial value.
Alternately the time constant is the time it takes for the step response to riseAlternately, the time constant is the time it takes for the step response to rise
to 63% of its final value.

¾ The reciprocal of the time constant
has the units (1/sec), or frequency.
Thus we can call the parameter a theThus, we can call the parameter a the
exponential frequency. In addition, a is
the initial rate of change of the

ti l t t 0exponential at t = 0.
¾The time constant can be considered
a transient response specification for a
first-order system, since it is related to
the speed at which the system responds
to a step input.
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FIRST ORDER SYSTEMS ctd.

Rise Time: Rise time is defined as the time for the waveform to go from 0.1
to 0 9 of its final value Rise time is found by solving c(t)=1-exp(-at) for theto 0.9 of its final value. Rise time is found by solving c(t) 1 exp( at) for the
difference in time at c(t)=0.9 and c(t)=0.1. Hence,

Settling Time: Settling time is defined as the time for the response to reach,
d t ithi 2% f it fi l l L tti (t) 0 98 d l i f tand stay within, 2% of its final value. Letting c(t)=0.98 and solving for t, we

find the settling time to be,
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SECOND ORDER SYSTEMS ‐ Introduction
¾ Compared to the simplicity of a first-order system, a second-order system
exhibits a wide range of responses that must be analyzed and described.
¾¾ Changes in the parameters of a second-order system can change the form
of the response.
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Overdamped Response

¾The estimation of the output:

¾The input pole at the origin generates the constant forced response; each of
the two system poles on the real axis generates an exponential natural
response whose exponential frequency is equal to the pole location.response whose exponential frequency is equal to the pole location.
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Undamped Response

c(t) K + K cos(3t Á)¾Th ti ti f th t t c(t) = K1 + K4 cos(3t¡ Á)¾The estimation of the output:

¾The input pole at the origin generates the constant forced response, and the
two system poles on the imaginary axis at ≤j generate a sinusoidal natural
response whose frequency is equal to the location of the imaginary poles.response whose frequency is equal to the location of the imaginary poles.
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Critically Damped Response

¾ The estimation of the output:

¾ The input pole at the origin generates the constant forced response, and
the two poles on the real axis at -3 generate a natural response consisting of
an exponential and an exponential multiplied by time where the exponentialan exponential and an exponential multiplied by time, where the exponential
frequency is equal to the location of the real poles.
¾ Critically damped responses are the fastest possible without the

hovershoot.
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Underdamped Response

c(t) = 1¡ e¡t(cos(
p

8t)+
p

8
8

sin(
p

8t)) = 1¡ 1:06e¡t cos(
p

8t¡ 19:47o)

¾ This function has a pole at the origin that comes from the unit step input
and two complex poles that come from the system.
¾ The poles that generate the natural response are at s 1§ j

p
8¾ The poles that generate the natural response are at

¾We see that the real part of the pole matches the exponential decay
frequency of the sinusoid’s amplitude, while the imaginary part of the pole

h h f f h i id l ill i

s = ¡1§ j
p

8

matches the frequency of the sinusoidal oscillation.
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Underdamped Response ctd.

¾ The transient response consists of an exponentially decaying amplitude¾ The transient response consists of an exponentially decaying amplitude
generated by the real part of the system pole times a sinusoidal waveform
generated by the imaginary part of the system pole.
¾ Th ti t t f th ti l d i l t th i l f¾ The time constant of the exponential decay is equal to the reciprocal of
the real part of the system pole. The value of the imaginary part is the actual
frequency of the sinusoid, as depicted in the figure.
¾¾ This sinusoidal frequency is given the name damped frequency of
oscillation (wd) . Finally, the steady-state response (unit step) was generated
by the input pole located at the origin.
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Summary

Overdamped 
Poles: Two real at ‐s1 and ‐s2

Responses
Natural Response:

Poles: sd≤jwd

c(t) = K1e
¡¾1t + K2e

¡¾2t

Underdamped 
Responses

Poles: ‐sd≤jwd

Natural Response: c(t) = Ae¡¾dt cos(!dt¡ Á)

Undamped 
Responses

Poles: ≤jw1

Responses
Natural Response:

Criticall Damped
Poles: Two real at ‐s1

c(t) = A cos(!1t¡ Á)

Critically Damped
Responses

Natural Response: c(t) = K1e
¡¾1t + K2te

¡¾1t
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Summary ctd.
Step responses for second-order system damping cases:
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The General Second Order System
¾We define two physically meaningful specifications for second-order
systems which can be used to describe the characteristics of the second-
order transient response just as time constants describe the first order systemorder transient response just as time constants describe the first-order system
response.
¾ The two quantities are called natural frequency and damping ratio.

Natural frequency (wn): The natural frequency of a second-order system is
the frequency of oscillation of the system without damping.

Damping ratio (z): The damping ratio of a second-order system is the ratio
of the exponential decay frequency to the natural frequency. The damping

ti i l ti l t th ti f th t l i d t th ti lratio is also proportional to the ratio of the natural period to the exponential
time constant.

Note that the damping ratio is constant regardless of the time scaleNote that, the damping ratio is constant regardless of the time scale.
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The General Second Order System ctd.
¾ The general second-order system can be transformed to show the
quantities z and wn. Consider the general system,

¾Without damping, the poles would be on the jw-axis, and the response
would be an undamped sinusoid. If the poles to be purely imaginary, a = 0.

¾ By definition, the natural frequency, wn, is the frequency of oscillation ofp
this system. Since the poles of this system are on the jw -axis

!n =
p

b =) b = w2
n

§j
p

b
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The General Second Order System ctd.
¾Assuming an underdamped system, the complex poles have a real part, s,
equal to –a/2. The magnitude of this value is then the exp. decay frequency.

=) a = 2³wn

¾ The general second-order transfer function finally looks like,

¾ Solving for the poles of the general transfer function yields,
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Second‐order response as a function of damping ratio
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Underdamped Second‐Order Systems
Now, we have generalized the second-order transfer function in terms of z
and wn.

We now going to analyze the step response of an underdamped second-orderg g y p p p
system which is a common model for physical problems and has a unique
behavior. Let’s begin by finding the step response.

The transform of the response, C(s), is the transform of the input times the
transfer function, or (assuming that z<1, the underdamped case)( g z p )
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Underdamped Second‐Order Systems ctd.

Expanding by partial fractions, and taking the inverse Laplace transform
produces,produces,

where Á = tan¡1(
³p

1¡ ³2
)
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Underdamped Second‐Order Systems ctd.
A plot of this response appears in the following figure, for various values of
z, plotted along a time axis normalized to the natural frequency.

We now see the relationship between the value of z and the type of response
obtained:
The lower the value of z, the more oscillatory the response.
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Underdamped Second‐Order Systems ctd.
Some specifications are defined as follows,

1. Rise time, Tr:1. Rise time, Tr:
The time required for the waveform to go from 0.1 of the final value to 
0.9 of the final value.

2. Peak time, Tp:
The time required to reach the first, or maximum, peak.

3. Percent overshoot, %OS:
The amount that the waveform overshoots the steady state, or final, 
value at the peak time, expressed as a percentage of the steady-state 
value. 

4. Settling time, Ts:
The time required for the transient’s damped oscillations to reach and 
stay within ≤2% of the steady-state value.stay within ≤2% of the steady state value.
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Underdamped Second‐Order Systems ctd.
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Evaluation of Tp for Underdamped Systems
Tp is found by differentiating c(t) and finding the first zero crossing after 
t = 0. We can differentiate the output in the frequency domain,

Completing squares in the denominator we haveCompleting squares in the denominator, we have

=)

Setting the derivative equal to zero yields
Each value of n yields the time for local maxima or minima. Letting n=0 
yields t=0 the first point on the curve that has zero slope The first peakyields t=0, the first point on the curve that has zero slope. The first peak,
which occurs at the peak time, Tp, is found by letting n=1.
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Evaluation of %OS for Underdamped Systems
The percent overshoot is given by

The term c is found by evaluating c(t) at the peak time c(Tp)The term cmax is found by evaluating c(t) at the peak time, c(Tp)

For the unit step input, we know cfinal=1. Substituting these results, we get

Notice that the percent overshoot is a function only of the damping ratio.
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Evaluation of %OS ctd.
The equation

allows us to find %OS for given z, the inverse of the equation allows one to 
solve for z for given %OSsolve for z for given %OS.
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Evaluation of Ts for Underdamped Systems
Using the definition, the settling time is the time it takes for the amplitude of 
the decaying sinusoid in c(t) to reach 0.02, 

This equation is a conservative estimate since we are assuming that cos( )=1This equation is a conservative estimate, since we are assuming that cos(.)=1
at the settling time. Solving for t gives,

We can verify that the numerator of this equation varies from 3.91 to 4.74 as 
z varies from 0 to 0.9. Thus, we can approximate it by

31



Evaluation of Tr for Underdamped Systems
A precise analytical relationship between rise time and damping ratio, z, can
not be found. However, using a computer and c(t), the rise time can be 
found The following figure gives a relation between natural frequencyfound. The following figure gives a relation between natural frequency, 
damping ratio and rise time.
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Example‐3
Given the transfer function below, find Tp, %OS, Ts and Tr

G(s) =
100

s2 + 15s + 100
=

!2
n

s2 + 2³!n + !2
n

=) wn = 10; ³ = 0:75

Tp =
¼

!n

p
1¡ ³2

= 0:475s

(³ =
p

1 ³2)%OS = e¡(³¼=
p

1¡³2) £ 100 = %2:8375

Ts =
4

³!n
= 0:533s

³!n

Using the table in the previous figure, the normalized rise time is app. 2.3s
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Pole Location and Response
We can conclude from the pole plot for a general, underdamped second-
order system

that the radial distance from the origin to the pole is the natural frequency, 
wn , and the cos(θ)=z. Now, we can evaluate peak time and settling time in 
terms of the pole locationterms of the pole location. 

where wd is called the damped frequency of oscillation, and sd is called the
34

where wd is called the damped frequency of oscillation, and sd is called the 
exponential damping frequency.



Pole Location and Response ctd.

Therefore,

• Tp is inversely proportional to the imaginary part of the pole. Since horizontal 
lines on the s-plane are lines of constant imaginary value, they are also lines of 
constant peak timeconstant peak time.

• Ts is inversely proportional to the real part of the pole. Since vertical lines on 
th l li f t t l l th l li f t tthe s-plane are lines of constant real value, they are also lines of constant 
settling time.

• Finally, since z =cos(θ), radial lines are lines of constant z. Since percent 
overshoot is only a function of z, radial lines are thus lines of constant percent 
overshoot, %OS.
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Pole Location and Response ctd.
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Pole Location and Response ctd.
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Example‐4
Given the pole plot, find z, wn ,Tp, %OS and Ts

³ = cos(μ) = cos[tan¡1(7=3)] = 0:394

!n =
p

72 + 32 = 7:616

Tp =
¼

!d
=

¼

7
= 0:449s

%OS = e³¼=
p

1¡³2 £ 100 = %26

Ts =
4

¾d
=

4

3
= 1:333s
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Example‐5
Given the system, find J and D to yield %20 overshoot and a settling time of 
2s for a step input of torque T(t),

)=)

=) =)

=) =)

=) =) 39



Systems with Additional Poles and Zeros
• If a system has more than two poles or has zeros, we cannot use the formulas 
to calculate the performance specifications that we derived.
• However, under certain conditions, a system with more than two poles can beHowever, under certain conditions, a system with more than two poles can be 
approximated as a second-order system that has just two complex dominant 
poles.
•We saw that the zeros of a response affect the residue or amplitude of a•We saw that the zeros of a response affect the residue, or amplitude, of a 
response component but do not affect the nature of the response—exponential, 
damped sinusoid, and so on.

St ti ith t l t ith l t ( 1 j2 828) ti l• Starting with a two-pole system with poles at (-1≤j2.828), we consecutively 
add zeros at -3, -5, and -10. The results, normalized to the steady-state value, 
are plotted in the figure below
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Analysis and Design of Feedback Systems
An Introduction

• Consider the system shown in the figure below which can model a control• Consider the system shown in the figure below, which can model a control 
system such as the antenna azimuth position control system.

• The closed-loop transfer function is

where K models the amplifier gain, that is, the ratio of the output voltage to the 
input voltage.
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Analysis and Design of Feedback Systems
An Introduction ctd.

For K between 0 and a2/4, the system is overdamped with real poles located at

For gains above a2/4, the system is underdamped, with complex poles located 
at

For gains above a2/4, as K increases, the real part remains constant and theFor gains above a /4, as K increases, the real part remains constant and the 
imaginary part increases. Thus, the peak time decreases and the percent 
overshoot increases, while the settling time remains constant.
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Example‐6

For the system find the peak time, percent overshoot, and settling time.

The closed-loop transfer function of the system is

=) =)=) )
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Example‐7

Design the value of gain, K, for the feedback control system so that the 
ill d i h 10% hsystem will respond with a 10% overshoot.

The closed-loop transfer function of the system is

=) =) =)

A 10% overshoot implies that z = 0.591. Thus, K = 17.9.

Although we are able to design for percent overshoot in this problem, we 
could not have selected settling time as a design criterion because, regardless 
of the value of K, the real parts, -2.5, of the poles of the system remain theof the value of K, the real parts, 2.5, of the poles of the system remain the 
same.
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