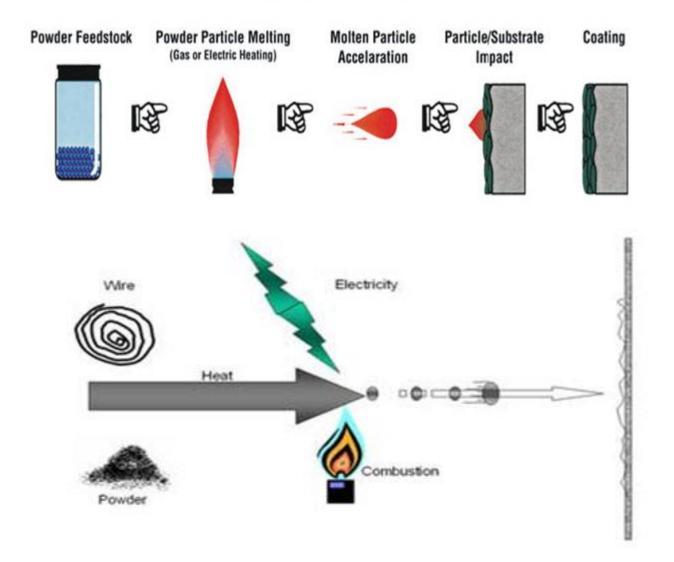
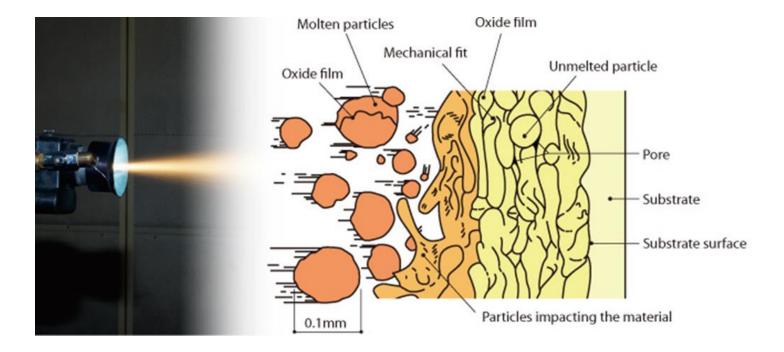
Spray Coatings

- Thermal spray coatings
- Cold (gas) spraying


Prof. Dr. Kerem Altuğ GÜLER


Thermal spray coatings

Fundamentals of the technique:

- Coating material in wire, rod or powder form is passed through a heat source to obtain molten or semi-molten material.
- This material is sprayed to base material (substrate) surface with high pressure gas or air blowing fan.
- Approximate thickness range is between 20 μm to several mm. Depending on the process and feedstock.

Thermal Spray Coating Process

Bonding mechanisms of molten or semi-molten particles:

- <u>Mechanical bonding</u> occur between particle drops and base material or preceding particles.
- Local diffusion or alloying (metallurgical bonding) can occur between base material and coating.
- Bonding with <u>Van der Waals forces</u> can occur.

These bonding types depend on:

- Composition of the base material.
- Composition of the coating material.
- Melting process of the coating material.
- Surface roughness of the base material.
- Particle velocity, size and temperature.

Thermal spray coatings are carried out in three stages:

- Pre spraying treatments: Cleaning, masking, grinding (shot peening).
- Spraying process.
- Post spraying processes. (Surface finish treatments.)

Pre-spraying treatments

- Cleaning of the surface.
- Masking if necessary.
- Grinding of the surface with Al₂O₃ or SiC particles.
 (for improve mechanical bonding)
- Preheating of the base material
 - For remove humidity.
 - Improve binding conditions.
- Decrease thermal expansion differences between the base material and the coating.

Spraying processes

According to energy levels there are two process types.

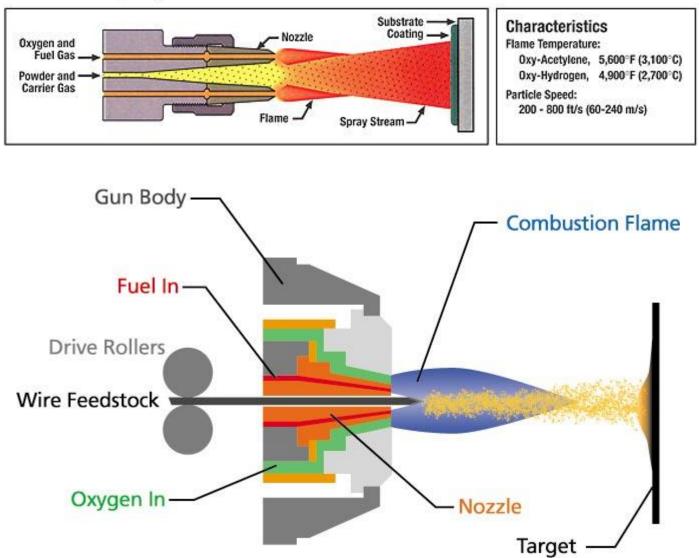
Low energy processes:

- Flame spraying.
- Electric arc spraying.

High energy processes:

- Plasma spraying.
- Detonation gun spraying (D-gun).
- High velocity oxy-fuel deposition (HVOF).

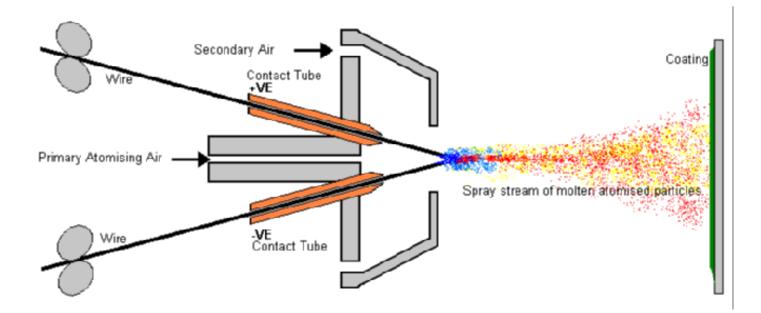
Flame spraying

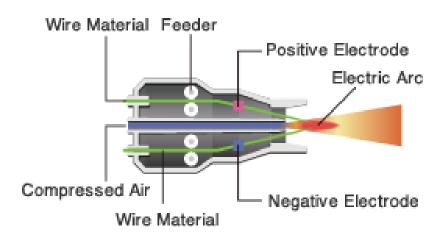

- Flammable gasses are used for coating material melting.
- Acetylene, propane and hydrogen are common gasses.
- Coating material can be in wire or powder form.
- Micro pulverized powder alloys vacuumed with oxygen and sprayed to surface with oxy-acetylene flame.
- Base material temperature does not increase above to 200 °C during spraying.
- Flame temperature is ~3300 °C
- Powder materials: Stainless steel, carbon steel, Ni-Cr alloys, Al alloys, bronzes, ceramics (Al₂O₃, Cr₂O₃, etc.)

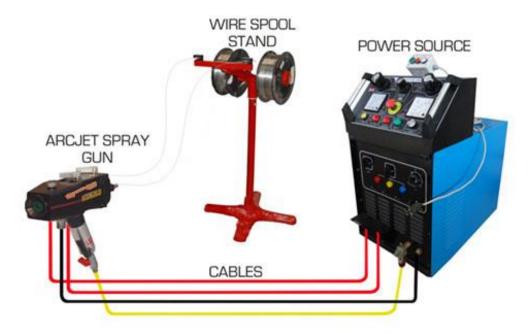
Scope of application:

- Roller bearings.
- Compressor pistons.
- Cam shafts.
- Bushings.
- Sleeves.
- Hydraulic cylinder pistons.

*Coatings with flame spraying are occurred with low density (porous) and low adhesion strength.


Flame Spray Process





Electric arc spraying

- It is a suitable technique for spraying wire shaped metals.
- Wires drive to the gun with an electric motor.
- Electric arc occurs when wires are contacted passing through different polarized (positive and negative) nozzles.
- Molten metal is atomized with effect of the arc then sprayed to substrate with compressed gas or air flow.
- Used wire materials: Stainless steels, Mo, Cu, Zn, Al and bronze alloys.

Scope of application:

- Very suitable for coating of large parts.
- Rollers used in steel, paper, paint and plastic industries.
- Hydraulic pistons and shafts.

Advantages:

- Wide coating alloy usage.
- High spraying velocities.
- Composite coatings can be produced with using two different wires.

Disadvantages:

 Lower adhesion and lower density depositions then high velocity (energy) processes.

Plasma spraying

- Coating material spray to the substrate passing through a plasma.
- Plasma occurs with ionized gas which is effected by electric arc.
- Argon noble gas is generally used.
- Ar is forwarded between W cathode and water cooled Cu anode.

Plasma Spray Process

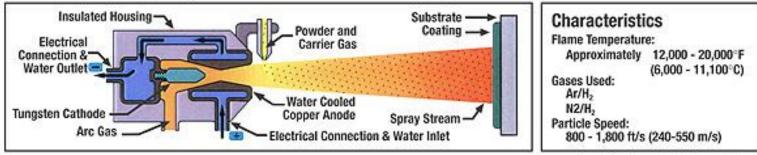
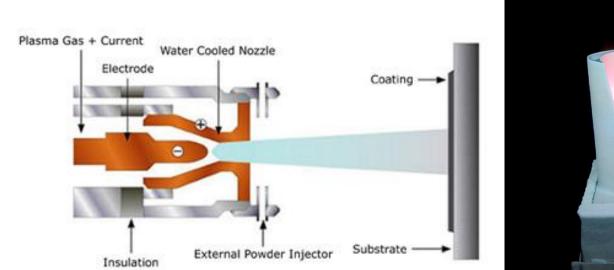
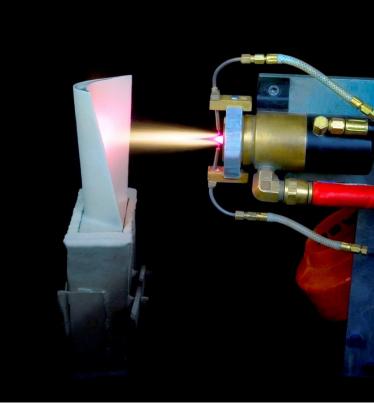
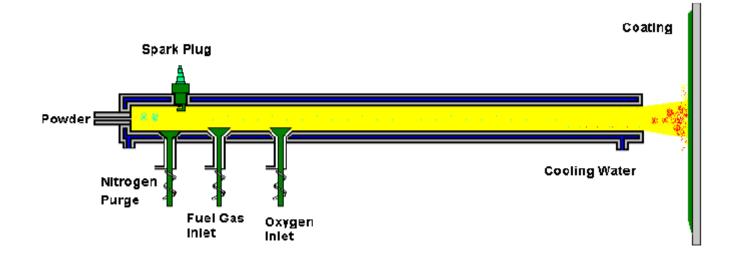




Photo Courtesy of Westaim Ambeon



- Because of concentrated in a very low volume arc temperature can reach very high degrees. (30.000 °C)
- Improve the thermal properties of Ar, H₂, He or N₂ can be added.
- 5-120 kW power provides 125-600 m/s powder velocities.
- Plasma coating can be carried out in air or vacuum atmospheres.
- Plasma coating in air atmosphere is used for:
 - High melting point refractory materials.
 - Ceramics, carbides.
 - High temperature alloys.

- Aircraft engine components and textile machinery parts are coated with this technique.
- Because of high plasma temperature almost every material can be sprayed.
- Coating density is high and adhesion is good.
- Heat transfer to the substrate is very low.

Deposition with detonation gun (D-Gun)

- Oxy-acetylene gas mixture is used.
- Particle velocities can exceed 750 m/s.
- Detonation process repeats 5-10 times per second.
- Every detonation produce a coating with 25 mm diameter and a few micron thickness.
- Deposition of repeated coatings provides uniform thickness and structure.

- <u>All metallic, ceramic and cermet</u> coatings can be deposited.
- There is an advanced technique called Super D-gun and powder velocities increase above 1000 m/s with changing fuel gas mixtures.
- More compact and denser coatings can be produced.

High velocity oxy-fuel spraying (HVOF)

- Fuel gas mixture: Hydrogen, propane, propylene, or acetylene and oxygen.
- The nozzle gas velocity is supersonic.
- HVOF produces high density coatings with good bonding properties.
- Heat transfer to the substrate is low.
- Depends on oxygen-fuel ratio, combustion products can be oxidized or carbonized. Thus, oxide or carbide coatings can be made.

High Velocity Oxy-Fuel Process

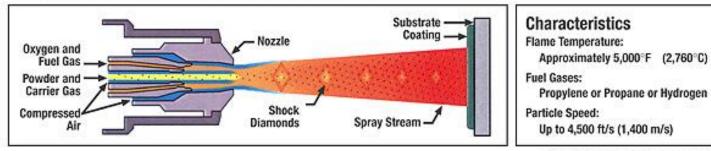



Photo Courtesy of Westaim Ambeon

Post spraying surface finish treatments

- Rough surfaces after coating are grinded.
- High porosity level (15-20 %) of flame spraying is reduced to 1 % with repeated melting process.

Properties of thermal spray coatings

<u>Microstructure</u>: Coating microstructure is not homogeneous. It has different physical and chemical properties. Phase transformations in coating materials can happen during spraying.

Bonding strength: It depends on:

- Coating parameters.
- Properties of coating material.
- Type of substrate (ferrous or non-ferrous)
- Conditions of substrate surface. (Cleaning and roughness degree and geometry.)

Bonding strength	
of WC cermet	Spray technique
61-83 MPa	Plasma, HVOF
172 MPa	D-Gun
310 MPa	Super D-Gun

 Coatings produced with D-gun and super D-gun have superior wear resistance. **Porosity:** It is a characteristic property for thermal spray coatings.

Porosity %	Spray technique
5-15	Plasma
< 2	D-Gun
lower than	HVOF
D-Gun	

Industrial applications of thermal spray coatings

Paper and printing industry:

- Drying cylinder surface. Mo (electric arc), Mo-Ni (plasma)
- Polishing cylinders coated with WC-NiCr or WC-Co using HVOF technique.

Automotive industry:

- Crank shafts.
- Piston and piston rings.
- Fuel injection nozzles.
- Sensors.

→ Plasma spray technique
 is used for all these parts

Textile industry:

• Al_2O_3 , Al_2O_3 + TiO₂ or Cr_2O_3 ceramic coating for improve wear resistance.

Glass and chemical industry:

- NiCrBSi coatings for glass shaping moulds.
- Al₂O₃ + TiO₂, Cr₂O₃ and ZrSiO₄ coatings for several systems and equipment.

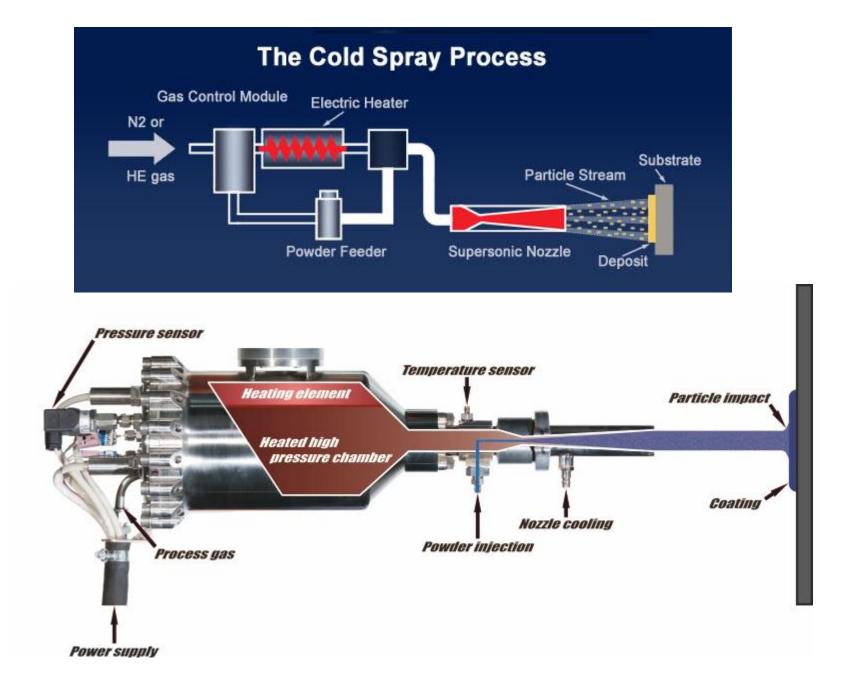
Medicine and biomedical applications:

- Orthopaedic implant prostheses (dental screws, knee and hip prostheses) are coated with plasma spray technique.
- Also hydroxyapatite is successfully applied with this technique.

Iron and steel industry:

- Crushers, pulleys, grits, rollers, transfer cylinders, tuyeres.
 <u>Aerospace industry:</u>
- Thermal barriers coatings for hot gas corrosion.
- * Coating quality is usually assessed by measuring its:
- Porosity,
- Oxide content,
- Macro and micro hardness,
- Bond strength and
- Surface roughness.
- * Generally, the coating quality increases with increasing particle velocities.

Cold (Gas) spraying (CS)


- Solid powders (1 to 50 μm in diameter) are accelerated in a supersonic gas jet to velocity up to 500-1000 m/s.
- During impact with the substrate, particles undergo plastic deformation and adhere to the surface.
- Metals, polymers, ceramics, composite materials and nanocrystalline powders can be deposited using cold spraying.
- <u>Unlike thermal spraying techniques the powders are</u> not melted during the cold spraying processes.

High pressure cold spray (HPCS):

- Gas: N₂ or He
- Pressure: > 1.5 MPa
- Flow rate: > 2m³/min
- Heating power: 18 kW
- Application: Pure metal powders (5-50 μm)

Low pressure cold spray (LPCS):

- Gas: compressed air
- Pressure 0.5-1.0 MPa
- Flow rate: 0.5-2 m³/min
- Heating power: 3-5 kW
- Application: Mechanical mixture of metal and ceramic powders.

Video links

- https://www.youtube.com/watch?v=ah9kLdUFDQY
- <u>https://www.youtube.com/watch?v=mvlEi3LvxD4&t=60s</u>
- https://www.youtube.com/watch?v=Askv3es2QvA
- https://www.youtube.com/watch?v=mWWFy_WUtnY
- https://www.youtube.com/watch?v=b5VE7njZMek
- https://www.youtube.com/watch?v=pvm4R2wBjvA
- https://www.youtube.com/watch?v=AZbKEpF5AUY
- https://www.youtube.com/watch?v=ZTTxi3a2OGI
- https://www.youtube.com/watch?v=73ZaknMhQ5s
- https://www.youtube.com/watch?v=t71hCuE6B2c
- https://www.youtube.com/watch?v=8HiDgcwasCw