MAT 5120 - ADVANCED ALGEBRA - 2023-2024 SPRING

Homework Assignment 2

Due March 18th 2024

There are 10 questions each worth 10 points.

- (1) Let H be a subgroup of the group G.
- (a) Show that $H \leq N_G(H)$. Give an example to show that it is not necessarily true that $H \subseteq N_G(H)$ if H is not a subgroup.
 - (b) Show that $H \leq C_G(H)$ if and only if H is abelian.
- (2) (a) Let H be a subgroup of order 2 in G. Show that $N_G(H) = C_G(H)$. Deduce that if $N_G(H) = G$ then H < Z(G).
 - (b) Show that $Z(G) \leq N_G(A)$ for any subset A of G.
 - (3) Let G be a finite group and let $x, g \in G$.
 - (a) Show that $|gxg^{-1}| = |x|$.
 - (b) Show that $g \in N_G(\langle x \rangle)$ if and only if $gxg^{-1} = x^a$ for some $a \in \mathbb{Z}$.
 - (4) Let $G = D_8$.
 - (a) Find the centralizer of each element of G.
 - (b) Find the center of G.
 - (c) Find the normalizer of each subgroup of G.
 - (d) Determine all normal subgroups of G.
 - (e) For each normal subgroup N of G, determine the isomorphism type of G/N.
 - (5) Let $G = Q_8$.
 - (a) Find the centralizer of each element of G.
 - **(b)** Find the center of *G*.
 - (c) Find the normalizer of each subgroup of G.
 - (d) Determine all normal subgroups of G.
 - (e) For each normal subgroup N of G, determine the isomorphism type of G/N.
 - (6) Let $G = \langle x, y \mid \underline{x}^4 = y^4 = 1, \ xy = yx \rangle \cong Z_4 \times Z_4$ and let $\overline{G} = G/\langle x^2y^2 \rangle$.
 - (a) Show that $|\overline{G}| = 8$.
 - (b) Exhibit each element of \overline{G} in the form $\overline{x}^a \overline{y}^b$ for some integers a and b.
 - (c) Find the order of each of the elements of \overline{G} exhibited in (b).
 - (d) Show that $\overline{G} \cong Z_4 \times Z_2$.
 - (7) Let $G = D_{16} = \langle x, y \mid x^8 = y^2 = 1, xy = yx^{-1} \rangle$ and let $\overline{G} = G/\langle x^4 \rangle$.
 - (a) Show that $|\vec{G}| = 8$.
 - (b) Exhibit each element of \overline{G} in the form $\overline{x}^a \overline{y}^b$ for some integers a and b.

- (c) Find the order of each of the elements of \overline{G} exhibited in (b).
- (d) Show that $\overline{G} \cong D_8$.
- **(8)** Let $N \subseteq G$ and let $M \subseteq H$. Show that $(N \times M) \subseteq (G \times H)$ and $(G \times H)/(N \times M) \cong (G/N) \times (H/M)$.
- (9) Let $N \triangleleft G$ where p = |G:N| is a prime. Show that for all $K \leq G$, either $K \leq N$ or G = NK where $|K:N \cap K| = p$.
- (10) A subgroup H of a group G is called a maximal subgroup of G if there is no subgroup K of G with H < K < G. Show that if H is a maximal subgroup of G and $H \triangleleft G$, then |G:H| is a prime.