KMM 2621 Physical Chemistry for Engineers

Homework 2- The First Law

P1. A sample of argon of mass 6.56 g occupies 18.5 dm³ at 305 K. (a) Calculate the work done when the gas expands isothermally against a constant external pressure of 7.7 kPa until its volume has increased by 2.5 dm3. (b) Calculate the work that would be done if the same expansion occurred reversibly.

P2. A sample of 2.00 mol CH₃OH(g) is condensed isothermally and reversibly to liquid at 64°C. The standard enthalpy of vaporization of methanol at 64°C is 35.3 kJ mol⁻¹. Find *w*, *q*, ΔU , and ΔH for this process.

P3. The constant-pressure heat capacity of a sample of a perfect gas was found to vary with temperature according to the expression $Cp / (J K^{-1}) = 20.17 + 0.4001(T/K)$. Calculate q, w, ΔU , and ΔH when the temperature is raised from 0°C to 100°C (a) at constant pressure, (b) at constant volume.

P4. A sample of 5.0 mol CO₂(g) is originally confined in 15 dm³ at 280 K and then undergoes adiabatic expansion against a constant pressure of 78.5 kPa until the volume has increased by a factor of 4.0. Calculate q, w, ΔT , ΔU , and ΔH .

P5. From the following data, determine $\Delta_{f}H^{0}$ for diborane, $B_{2}H_{6}(g)$, at 298 K:

(1) $B_2H_6(g) + 3 O_2(g) \rightarrow B_2O_3(s) + 3 H_2O(g)$	$\Delta_{\rm r} H^0 = -2036 \text{ kJ mol}^{-1}$
(2) 2 B(s) + $3/2 O_2(g) \rightarrow B_2O_3(s)$	$\Delta_{\rm r} H^0 = -1274 \ {\rm kJ} \ {\rm mol}^{-1}$
(3) H ₂ (g) + 1/2 O ₂ (g)→H ₂ O(g)	∆ _r <i>H</i> ⁰ = −241.8 kJ mol ⁻¹

P6. For the reaction 2 C₆H₅COOH(s) + 13 O₂(g)→12 CO₂(g) + 6 H₂O(g), $\Delta_r U^0 = -772.7$ kJ mol⁻¹ at 298 K, calculate $\Delta_r H^0$.

P7. A vapour at 22 atm and 5°C was allowed to expand adiabatically to a final pressure of 1.00 atm; the temperature fell by 10 K. Calculate the Joule–Thomson coefficient, μ , at 5°C, assuming it remains constant over this temperature range.

P8. The isothermal compressibility of lead at 293 K is 2.21×10^{-6} atm⁻¹. Calculate the pressure that must be applied in order to increase its density by 0.08 per cent.