KMM 2621 Physical Chemistry for Engineers

Homework 2- The First Law

P1. A sample of argon of mass 6.56 g occupies $18.5 \mathrm{dm}^{3}$ at 305 K . (a) Calculate the work done when the gas expands isothermally against a constant external pressure of 7.7 kPa until its volume has increased by 2.5 dm 3 . (b) Calculate the work that would be done if the same expansion occurred reversibly.

P2. A sample of $2.00 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ is condensed isothermally and reversibly to liquid at $64^{\circ} \mathrm{C}$. The standard enthalpy of vaporization of methanol at $64^{\circ} \mathrm{C}$ is $35.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Find w, $q, \Delta U$, and ΔH for this process.

P3. The constant-pressure heat capacity of a sample of a perfect gas was found to vary with temperature according to the expression $C p /\left(\mathrm{J} \mathrm{K}^{-1}\right)=20.17+0.4001(T / K)$. Calculate $q, w, \Delta U$, and ΔH when the temperature is raised from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ (a) at constant pressure, (b) at constant volume.

P4. A sample of $5.0 \mathrm{~mol} \mathrm{CO}_{2}(\mathrm{~g})$ is originally confined in $15 \mathrm{dm}^{3}$ at 280 K and then undergoes adiabatic expansion against a constant pressure of 78.5 kPa until the volume has increased by a factor of 4.0. Calculate $q, w, \Delta T, \Delta U$, and ΔH.

P5. From the following data, determine $\Delta_{f} H^{0}$ for diborane, $\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})$, at 298 K :
(1) $\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\Delta_{\mathrm{r}} H^{0}=-2036 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(2) $2 \mathrm{~B}(\mathrm{~s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})$
$\Delta_{r} H^{0}=-1274 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3) $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\Delta_{\mathrm{r}} \mathrm{H}^{0}=-241.8 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

P6. For the reaction $2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{s})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta_{\mathrm{r}} U^{0}=-772.7 \mathrm{~kJ}$ mol^{-1} at 298 K , calculate $\Delta_{\mathrm{r}} \mathrm{H}^{0}$.

P7. A vapour at 22 atm and $5^{\circ} \mathrm{C}$ was allowed to expand adiabatically to a final pressure of 1.00 atm ; the temperature fell by 10 K . Calculate the Joule-Thomson coefficient, μ, at $5^{\circ} \mathrm{C}$, assuming it remains constant over this temperature range.

P8. The isothermal compressibility of lead at 293 K is $2.21 \times 10^{-6} \mathrm{~atm}^{-1}$. Calculate the pressure that must be applied in order to increase its density by 0.08 per cent.

