KMM2621 Physical Chemistry for Engineers
 Homework 1 : Properties of gases

P1. Calculate the pressure exerted by $1.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}$ behaving as (a) a perfect gas, (b) a van der Waals gas when it is confined under the following conditions: (i) at 273.15 K in $22.414 \mathrm{dm}^{3}$, (ii) at 500 K in $150 \mathrm{~cm}^{3}$.

P2. Clyinder of compressed gas typically filled to a pressure 200 bar. For oxygen, what would be the molar volume at this pressure and $25^{\circ} \mathrm{C}$ based on (a) the perfect gas equation, (b) the van der Waals equation. For oxygen, $a=1.364 \mathrm{dm}^{6} \mathrm{~atm} \mathrm{~mol}^{-2}$, $\mathrm{b}=3.19 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~mol}^{-1}$.

P3. A vessel of volume $22.4 \mathrm{dm}^{3}$ contains $2.0 \mathrm{~mol}_{2}$ and $1.0 \mathrm{~mol}_{\mathrm{N}}$ at 273.15 K initially. All the H_{2} reacted with sufficient N_{2} to form NH_{3}. Calculate the partial pressures and the total pressure of the final mixture.

P4. Derive an expression for the compression factor of a gas that obeys the equation of state $p(V-n b)=n R T$, where b and R are constants. If $V_{m}=10 b$, what is the numerical value of the compression factor?

