KMM2621 Physical Chemistry for Engineers Homework 1 : Properties of gases

P1. Calculate the pressure exerted by 1.0 mol H₂S behaving as (a) a perfect gas, (b) a van der Waals gas when it is confined under the following conditions: (i) at 273.15 K in 22.414 dm³, (ii) at 500 K in 150 cm³.

P2. Clyinder of compressed gas typically filled to a pressure 200 bar. For oxygen, what would be the molar volume at this pressure and 25°C based on (a) the perfect gas equation, (b) the van der Waals equation. For oxygen, a =1.364 dm⁶ atm mol⁻², b= $3.19 \times 10^{-2} \text{ dm}^3 \text{ mol}^{-1}$.

P3. A vessel of volume 22.4 dm³ contains 2.0 mol H₂ and 1.0 mol N₂ at 273.15 K initially. All the H₂ reacted with sufficient N₂ to form NH₃. Calculate the partial pressures and the total pressure of the final mixture.

P4. Derive an expression for the compression factor of a gas that obeys the equation of state p(V - nb) = nRT, where b and R are constants. If $V_m = 10b$, what is the numerical value of the compression factor?