MACHINE DYNAMICS

Homework, May 8, 2019

Name Surname	Signature	
Student Number	Group Number	

QUESTION 1

	body motor/	pulley
2crank3connecting rod for 1^{st} stage4connecting rod for 2^{nd} stage5cross head for 1^{st} stage6piston rod for 1^{st} stage7piston for 1^{st} stage8cross head for 2^{nd} and 3^{rd} stages9piston rod for 2^{nd} stage10piston for 2^{nd} stage11piston rod for 3^{rd} stage12piston for 3^{rd} stage	F3=500 N F2=500 N 82	θ θ β β β β β β β β β β β β β
For each connecting rod: Mconnecting rod=36 kg For each cross head: Mcross head=17 kg	Mcrank=250 kg Mpiston (1st stage)=40 kg	For the given multistage comprosser,
For each piston rod: Mpiston rod=22 kg	Mpiston (2nd stage)=20	a) Obtain the dynamic equivalent model of the system by
$\frac{I_{motor-pulley}=6.5 \text{ kgm}^2}{i=2.7}$ $I_{flywheel}=100 \text{ kgm}^2$ $r_{crank}=120 \text{ mm}$ $I_{connecting rod}=480 \text{ mm}$ For velocity of the piston: $x = r \cos \theta + (L(1 - \frac{r^2}{2L^2} \sin^2 \theta))$ where r is crank rod and L is the connecting rod .	kg Mpiston (3rd stage)=10 kg	 performing <i>mass reduction</i> by considering 2 or 3 substantional points for each link. b) Find the reduced mass moment of inertia to motor shaft? c) Obtain the equation of motion of the system. Note: The bars are homogenous and center of mass of each link is the midpoint. Roadmap: 1. Reduce the each stage to crankpin (The reduced mass moment of inertia to flywheel shaft and motor shaft, respectively.

For the given position of the mechanism; determine the required **tork** for **static equilibrium** of the system by considering the acting static forces F_1 , F_2 and F_3 by ignoring the inertia forces. Use the kinamatic figure by scaling.