YILDIZ TECHNICAL UNIVERSITY
FACULTY OF CIV. ENG. - DIV. OF CIV. ENG.
DYNAMICS
MECHANICS DIVISION

NOTE: Any homework submitted after the deadline will be void.

1) Knowing that at the instant shown the angular velocity of $\operatorname{rod} D E$ is $2.4 \mathrm{rad} / \mathrm{s}$ clockwise, determine (a) the velocity of collar A, (b) the velocity of point B. (Answer: $\boldsymbol{v}_{\boldsymbol{A}}=\mathbf{5 4 0} \mathbf{~ m m} / \boldsymbol{s}$, $v_{B}=457 \mathrm{~mm} / \mathrm{s}$)

2) A 60 -mm-radius drum is rigidly attached to a 100 -mm-radius drum as shown. One of the drums rolls without sliding on the surface shown, and a cord is wound around the other drum. Knowing that end E of the cord is pulled to the left with a velocity of $120 \mathrm{~mm} / \mathrm{s}$, determine (\boldsymbol{a}) the angular velocity of the drums, (\boldsymbol{b}) the velocity of the center of the drums, (\boldsymbol{c}) the length of cord wound or unwound per second. (Answer: $\omega=3 \mathrm{rad} / \mathrm{s}, v_{A}=300 \mathrm{~mm} / \mathrm{s}, 180 \mathrm{~mm}$)

3) Knowing that at the instant shown bar $A B$ has an angular velocity of $10 \mathrm{rad} / \mathrm{s}$ clockwise and it is slowing down at a rate of $2 \mathrm{rad} / \mathrm{s}^{2}$, determine the angular accelerations of bar $B D$ and bar $D E$. (Answer: $\alpha_{B D}=306 \mathrm{rad} / \mathrm{s}^{2}, \alpha_{D E}=737 \mathrm{rad} / \mathrm{s}^{2}$)

4) A $9-\mathrm{kg}$ uniform disk is attached to the $5-\mathrm{kg}$ slender rod $A B$ by means of frictionless pins at B and C. The assembly rotates in a vertical plane under the combined effect of gravity and of a couple \mathbf{M} which is applied to rod $A B$. Knowing that at the instant shown the assembly has an angular velocity of $6 \mathrm{rad} / \mathrm{s}$ and an angular acceleration of $25 \mathrm{rad} / \mathrm{s}^{2}$, both counterclockwise, determine (a) the couple \mathbf{M}, (b) the force exerted by pin C on member $A B$. (Answer: $\boldsymbol{M}=\mathbf{9 9 . 4 ~ N m}, \boldsymbol{T}_{C}=\mathbf{3 0} \mathbf{N}$)

5) A uniform thin plate $A B C D$ has a mass of 8 kg and is held in position by three inextensible cords $A E, B F$, and $C G$. If cord $A E$ is cut, determine at that instant (a) if the plate is undergoing translation or general plane motion, (b) the tension in cords $B F$ and $C G$. (Answer: $\boldsymbol{T}_{\boldsymbol{B F}}=65.2 \boldsymbol{N}, \boldsymbol{T}_{\boldsymbol{C G}}=\mathbf{0}$)

HOMEWORK HOURS

Assoc. Prof. Zafer KÜTÜĞ (GROUP: 2) 25. 12.2018 $10: 30-14: 30] \Rightarrow$ Res. Assist. Yurdakul AYGÖRMEZ
Assoc. Prof. Murat ALTEKİN (GROUP: 3)25.12.2018 $\quad 10: 30-14: 30\} \Rightarrow$ Room: $2-030$

Assist. Prof. Çağrı MOLLAMAHMUTOĞLU (GROUP: 1) 26.12.2018 10:30-14:30 $\} \Rightarrow$ Res. Assist. Yurdakul AYGÖRMEZ
Assist. Prof. Yıldırım Serhat ERDOĞAN (GROUP: 4) $26.12 .2018 \quad 10: 30-14: 30\} \quad \Longrightarrow \quad$ Room: $2-030$
NOTE: Homeworks will be delivered by hand.

