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Problem 1. Considering the root-locus given, which is plotted for a unity feedback system for 𝐾 > 0, 

(a) Obtain the open-loop transfer function. (10 pts) 
(b) Obtain the closed-loop transfer function. (5 pts) 
(c) Find the value of gain and closed-loop poles at the 

imaginary axis crossings. (10 pts) 
(d) Write the range of 𝐾 for which the closed loop 

system is stable. (5 pts) 
(e) Write the value of gain that makes the system 

marginally stable. (5 pts) 
(f) What would be the period of oscillation in seconds 

when the system is marginally stable? (5 pts) 
(g) What would be the settling time, peak time and 

percent overshoot at the gain of 𝐾 = 15? (15 pts) 
Method: For 𝐾 = 15, the closed-loop poles appear 
at −7.36, −0.82 ± 𝑗1.81. Show if the 2nd order 
approximation is valid. Then use the formula given 
at the footer. 

(h) Calculate the steady-state error when the input is 𝑟 𝑡 = 0.62𝑢(𝑡)	at the same gain (𝐾 = 15). (15 pts) 
 

Solution 1. Considering it as a unity feedback system,  
(a) The open-loop transfer function will be, 

𝐺 𝑠 =
𝐾

𝑠 + 7 𝑠P + 2𝑠 + 2
=

𝐾
𝑠Q + 9𝑠P + 16𝑠 + 14

 

(b) The closed-loop transfer function for the unity feedback system will be, 

𝑇 𝑠 =
𝐾

𝑠Q + 9𝑠P + 16𝑠 + 14 + 𝐾
 

(a)  The Routh Table, 
𝒔𝟑 1 16 
𝒔𝟐 9 14 + 𝐾 
𝒔𝟏 130 − 𝐾 0 
𝒔𝟎 14 + 𝐾  

 
(b) The range of 𝐾 for which the closed loop system is stable: −14 < 𝐾 < 130.  

Or for positive values of gain: 0 < 𝐾 < 130 
(c) When the system is marginally stable, 𝐾 = 130 
(d) When the system is marginally stable the frequency of oscillation, 𝜔 = P$

[
= 4	rad/s; 𝑇 = 1.57	sec 

(e) For 𝐾 = 15, the closed-loop poles are at −7.36, −0.82 ± 𝑗1.81. Since −7.36 > 5 ∙ −0.82 ; the 2nd 
order approximation is valid. Therefore, the dominant poles of −0.82 ± 𝑗1.81 can be used to estimate the 
time response performance characteristics: 𝑇, ≅

.
)%&

≅ .
cd ef4dg

= .
:.hP

= 4.88	sec.		 

𝑇" =
$

%& '()*
= $

ij ef4dg
= $

'.h'
= 1.736	sec and,  

 

The imaginary axis crossings occur for	𝑲 = 𝟏𝟑𝟎 (see the 
highlighted raw, which is a Row of Zeros (RoZ) for	𝐾 = 130) 
Then the even polynomial is taken from the raw above the RoZ as, 

9𝑠P + 14 + 𝐾 = 0, for	𝐾 = 130 
The poles at imaginary axis crossings: 𝑠P = − '..

n
 è 	𝒔𝟏,𝟐 = ±𝒋𝟒 
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𝜁 = cos 𝜃 = :.hP
:.hP*;'.h'*

= 0.413 è %OS= 100. 𝑒()$ '()* = 24 

(f) 𝐾" = lim
,→:

𝐺 𝑠 = lim
,→:

'v
,w;n,*;'x,;'.

= 'v
'.
= 1.0714; 𝑒,, =

:.xP
';yz

= 0.3; 𝑐,, = 0.62 − 0.3 = 0.32 

 
Ø If we simulate the 3rd order system as it is and get its step response of amplitude of 0.62, we would 

get the following plot. The second figure shows the two plots, output of the 3rd order (blue solid line) 
and its 2nd order approximation (red dashed line) together on the same plane for comparison purpose. 

Ø Please note that the computed transient response vales of the system with 2nd order approximation are 
quite close to that of the simulated 3rd order system.  

Ø Hence, it proves that the 2nd order approximation is valid for this system. 
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Problem 2. A cascaded control system as seen on the right 
has a plant transfer function, 

𝐺" 𝑠 =
1

(𝑠 − 1)(𝑠 − 3)
	

(a) When	the	controller	is	𝐺| 𝑠 = 𝐾,	which is a simple P, i.e. proportional controller, sketch the root locus 
to show that the closed loop system is always unstable. (10 pts) 

(b) When the controller has a zero and a pole as given below sketch the new root locus (10 pts) 

𝐺| 𝑠 =
𝐾(𝑠 + 2)
𝑠 + 20

 

and determine the range of 𝐾 for which the closed loop system is stable. (5 pts) 
(c) Determine the value of 𝐾 and the imaginary poles at 𝑗𝜔 crossings.  (5 pts) 

Hint: When sketching the root locus, if necessary, make use of the asymptotes finding 𝜎~ and 𝜃~ that are 
the intersecting point and angles with the real axis, respectively, with the following formula,  

𝜎~ =
��5��d	ef4dg( ��5��d	�d�fg
#��5��d	ef4dg(#��5��d	�d�fg

  and  𝜃~ =
P�;' $

#��5��d	ef4dg(#��5��d	�d�fg
, where	𝑘 = 0, ±1, ±2, … 

Solution 2. The original system is an open-loop unstable 
system, since the open-loop poles are located in the right 
half of the s-plane. 

(a) The root locus of the system with the following 
open-loop transfer function is plotted, 

𝐺|(𝑠)𝐺" 𝑠 = y
(,(')(,(Q)

  

As seen from the plot, the root locus is in the right 
half of the s-plane for all gain values. Hence, the 
closed loop system is always unstable.  

(b) Now, the system has a new controller, namely a 
lead controller, to make this open-loop unstable 
system stable for some values of the gain. The root 
locus of the system with the following open-loop transfer function is plotted below after finding 𝜎~ and 
𝜃~ that are the intersecting point and angles with the real axis, respectively. 

𝐺|(𝑠)𝐺" 𝑠 =
𝐾(𝑠 + 2)

(𝑠 + 20)(𝑠 − 1)(𝑠 − 3)
 

 

𝜎~ =
��5��d	ef4dg( ��5��d	�d�fg
#��5��d	ef4dg(#��5��d	�d�fg

= (P:;';Q(((P)
Q('

= ('.
P
= −7; 𝜃~ =

P�;' $
P

= ± $
P
 

 

R(s) C(s) 
− + 𝐺|(𝑠) 𝐺𝑝(𝑠) 



𝑇" =
$

%& '()*
	, 𝑇, ≅

.
)%&

, %OS= 100. 𝑒()$ '()*, 𝜁 = (45 %78/'::
$*;45*(%78/'::)

, Good luck!  Şeref Naci Engin   p.4 of 4 

 

 
 

Now, let’s find the breakaway and break-in points so that we can plot the root locus more intuitively, 

𝐺|(𝑠)𝐺" 𝑠 =
𝐾(𝑠 + 2)

(𝑠 + 20)(𝑠 − 1)(𝑠 − 3)
=

𝐾(𝑠 + 2)
𝑠Q + 16𝑠P − 77𝑠 + 60

 

The characteristic equation is then, 1 + 𝐾𝐺 𝑠 𝐻 𝑠 = 0 and 𝐾 = − '
� , � ,

 

∴ 𝐾 = − ,;P: ,(' ,(Q
,;P ,��

;  �y
��
= − �w;'x�*(���;x:

�;P
= 0; 2𝜎Q + 22𝜎P + 64𝜎 − 214 = 0 

The breakaway and break-in points will be the roots of the equation found above, and they are as follows: 
𝜎',P,Q = 1.9; 	−6.45 ± 𝑗3.86 

Since there is only one real root, there is only a breakaway point, no break-in points are found.  
  

(c) The value of 𝐾 and the imaginary poles at 𝑗𝜔 crossings can be found from the Routh-Hurwitz criteria as 
follows. First, let’s get the closed-loop transfer function for this new controller.  

𝑇 𝑠 =
𝐾(𝑠 + 2)

𝑠Q + 16𝑠P + 𝐾 − 77 𝑠 + 2𝐾 + 60
 

 
𝒔𝟑 1 𝐾 − 77 
𝒔𝟐 16  8 2𝐾 + 60   𝐾 + 30 
𝒔𝟏 (7𝐾 − 646)/	8	 0 
𝒔𝟎 𝐾 + 30  

 

The imaginary axis crossings occur for	𝑲 = 𝟔𝟒𝟔
𝟕
= 𝟗𝟐. 𝟐𝟖𝟔 

Then the even polynomial: 8𝑠P + 𝐾 + 30 = 0, for	𝐾 = 92.286 

The poles at imaginary axis crossings: 𝑠P = − 'PP.Phx
h

 è 	𝒔 = ±𝒋𝟑. 𝟗𝟏 
The computed values are very close to those that can be read on the root-locus plot. 
 
 


