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SPHERICAL TRIGONOMETRY 
A sphere is a solid bounded by a surface every point of which is equally distant from a fixed point 

which is called the centre of the sphere. The straight line which joins any point of the surface with 

the centre is called a radius. A straight line drawn through the centre and terminated both ways by 

the surface is called a diameter. 

 

Figure 1. The section of the surface of a sphere made by any plane is a circle. 

 

Let c be the section of the surface of a sphere made by E plane, O the centre of the sphere. Draw 

OM perpendicular to the plane; take any point A or B in the section and join OB or OA, MA or 

MB. Since OM is perpendicular to the plane, the angle OMA or OMB is a right angle;  

 

Therefore; 
22 )()( OMOAMA   

 

Now O and M are fixed points, so that OM is constant; and OA is constant, being the radius of the 

sphere; hence MA is constant. Thus all points in the plane section are equally distant from the fixed 

point M; therefore the section is a circle of which M is the centre. 

 

Here;  

rOBOA   

'rMBMA   
dOM   

 
22' drr   

The below descriptions can be written for d and r ; 

 If rd  , then plane E does not intersect with sphere 

 If rd  , then plane E is tangent to the sphere 
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 If rd  , then plane E intersects with sphere. This circle formed by intersection is so called 

small circle 

 If 0d , then plane E goes through the center of sphere. This circle formed by intersection 

is so called great circle 

GREAT AND SMALL CIRCLES 
The section of the surface of a sphere by a plane is called a great circle if the plane passes through 

the centre of the sphere, and a small circle if the plane does not pass through the centre of the 

sphere. Thus the radius of a great circle is equal to the radius of the sphere. 

 

 
 

Figure 2. The circles on the sphere 

 

On the globe, equator circle and circles of longitudes are the examples of great circle and, circles 

of latitudes are the example of small circle. 

Latitude: latitude lines are also known as parallels (since they are parallel to one another). The 

lines are actually full circles that extend around the earth and vary in length depending on where 

we are located. The biggest circle is at the equator and represents the earth's circumference. This 

line is also called a Great Circle. There can be infinitely many great circles, but only one that is a 

line of latitude (the equator). Any circle that is drawn and is smaller than earth's circumference is 

called a Small Circle.  

Longitude: longitude lines are also known as meridians. The lines extend in a N-S direction, but 

are used to state locational positions either east or west of a set location. This location is known as 

the Prime Meridian. Each meridian is exactly half of a great circle. Meridians are not parallel - 

the spacing between them is the greatest at the equator (111.2 km) and decreases to zero at both 

poles. Meridians intersect the parallels at right angles. 
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The Prime Meridian runs from the North Pole through Greenwich, England (the Royal Observatory 

outside of London) and to the South Pole. From this location, west longitude values increase from 

0° to 180° halfway around the earth. Same applies to the east. 

A plane intersecting the globe along a great circle divides the globe into equal halves and passes 

through its center. 

 

Figure 3. The great circles 

 

A plane that intersects the globe along a small circle splits the globe into unequal sections. This 

plane does not pass through the center of globe. 

 

 
Figure 4. The small circle 

 

Through the centre of a sphere and any two points on the surface a plane can be drawn; and only 

one plane can be drawn, except when the two points are the extremities of a diameter of the sphere, 

and then an infinite number of such planes can be drawn. Hence only one great circle can be 

drawn through two given points on the surface of a sphere, except when the points are the 

extremities of a diameter of the sphere.  
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Figure 5. Through the centre of a sphere and any two points on the surface only a plane can be 

drawn 

 

If these mentioned two given points are the end points of a diameter, then infinite number of great 

circle can be drawn. 

 
Figure 6. The great circles 

 

The great circle is an imagery line that follows the curve of the earth and represents the shortest 

distance between two points. The spherical distance between two points P and Q on a sphere is the 

distance of the shortest path along the surface of the sphere  

 

The axis of any circle of a sphere is that diameter of the sphere which is perpendicular to the 

plane of the circle; the extremities of the axis are called the poles of the circle. The poles of a great 

circle are equally distant from the plane of the circle. The poles of a small circle are not equally 

distant from the plane of the circle; they may be called respectively the nearer and further pole; 

sometimes the nearer pole is for brevity called the pole. 

 

http://mathworld.wolfram.com/Sphere.html
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Figure 7. The axis of circle 

 

 

The axis of equator which is intersection to a plane passing through the center of the earth is 

called as rotation axis, which is perpendicular to this circle. 

 

 
Figure 8. The Poles and rotation axis 

 

Extremities of the rotation axis on the globe are called as North Pole and South Pole. A pole of a 

circle is equally distant from every point of the circumference of the circle. 

 

The distance between two points on the globe is measured by the arc of great circle passing through 

these two points. This arc is selected as no bigger than half of the great circle. The distance defined 

as mentioned above is called as spherical distance. At the below illustration, the bold line 

represents the spherical distance between A and B.  

 

The diameter of the circle namely 

KG is the axis of circle c, and K 

and G are the poles of this circle 

(c). 
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Figure 9. Spherical Distance 

 

To show that the shortest distance between A and B is the great circle: 

 

Let O be the centre of the sphere, A and B be any two points on the sphere. Infinite number of 

plane can be drawn with A and B. the shortest distanced arc is the intersection of one of those 

planes and sphere. Thus, infinite number of sphere arc can be drawn with these two points. Since, 

if, the small circle is rounded on AB and the great circle is intersected with it, the below illustration 

is obtained. 

 

 

 
Figure 10. The shortest distance on the sphere 

 

If, rr ' ; then dd '  

 

The shortest arc distance drawn between A and B, has the smallest curvature, which means, it 

has the largest radius. The largest arc of a sphere is the great circle, thus, the largest arc passing 

through these two points is smaller than the small circle. 
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By the angle between two great circles is meant the angle of inclination of the planes of the circles. 

Thus, in the figure, the angle between the great circles PA and PB is the angle AOB.  

 

 

 
Figure 11. The angle of inclination of the planes of the circles 

 

Angle APB is equal to angle of inclination of planes E1 and E2. In other words, the angle between 

tangents of PT1 and PT2 is spherical angle. It can be measured by either angle   or arc AB.  

SPHERICAL DISTANCE 
If two points on the sphere are connected with a great circle, this interval can be defined as either 

angle or distance. At the following figure, spherical distance y between A and B subtends to angle 

  at the center of the sphere. 
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Figure 12. The spherical distance 

 

Let r be the radius of sphere, then the equation between y and   can be written as; 

ry .  

Here; the unit of   is radian. To obtain the value in grad or degree, it should be divided to  : 

ry .



  

If the distance is known, then the angle corresponded to it can be calculated as: 

 .
r

y
  

The spherical distance is generally defined as angle unit. For instance; to compute the arc distance 

of 1’, let the radius be 6370000 m,   

mry 96.18526370000*
74677.3437

1
. 




 

This value is so called as nautical mile/geographical mile. 

SPHERICAL SHAPES 

Spherical Lune 

Two great circles on the sphere divide the sphere into four pieces. Each piece is so called spherical 

lune. In other words, the spherical lune is the surface area of a sphere between two planes which 

intersect at the diameter. Moreover, these spherical lunes are equal to each other correspondingly.  

Since the area of the whole sphere is 24 r , then Fa shows the area of the spherical lune defined 

by angle ; 

o

o

o

oa

rr
F 





.

180

.2
.

360

..4 22

  

By re-arranging the equation: 

o

oa

r
F 



.
180

.2 2

  
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By using the abbreviation of   

o

o

a rF


2.2  

o

o




 


 




..2 2rFa    

 

Figure 13. The spherical wedge and spherical lune 

 

Spherical Wedge 

o

oa

V
V .

360
  

The volume of whole sphere, 3..
3

4
rV  and the volume of the spherical wedge is given as 

below: 

o

oa

r

V 



.
360

..
3

4 3

  

3..
3

2
rVa 


  

Spherical Cap 
A spherical cap is the region of a sphere which lies above (or below) a given plane. If the plane 

passes through the center of the sphere, the cap is a called a hemisphere. 
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Figure 14. The spherical cap 

 

Let C be the center of the circle drawn by B; r be the radius of sphere, and AC=h, the area of the 

spherical cap surface is computed with the below equation. 

hrFSC ...2  

As mentioned above, since the sphere is divided into two pieces by a given plane, the volume of 

smaller cap is computed as; 

).3.(.
3

2 hrhV 


 

If the volume is computed by the radius of circle (a), then: 

).3.(.
6

22 hahV 


 

Spherical Segment 
 

A spherical segment is the solid defined by cutting a sphere with a pair of parallel planes. It can be 

thought of as a spherical cap with the top truncated, and so it corresponds to a spherical frustum. 

The surface of the spherical segment (excluding the bases) is called a zone.  

http://mathworld.wolfram.com/Sphere.html
http://mathworld.wolfram.com/Parallel.html
http://mathworld.wolfram.com/Plane.html
http://mathworld.wolfram.com/SphericalCap.html
http://mathworld.wolfram.com/Frustum.html
http://mathworld.wolfram.com/Zone.html
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Figure 15. The spherical segment 

 

Let 
1r  be the radius of the circle drawn by A, 

2r  be the radius of the circle drawn by B, r be the 

radius of sphere, h be the distance between 
1M  and

2M , 

The area of the spherical segment is computed as below: 

12 FFF   

22 ...2 hrF   

11 ...2 hrF   

12 ...2...2 hrhrF    

).(..2 12 hhrF    

hrF ...2  

The volume of the spherical segment is computed as below: 

)33.(.
6

22

2

2

1 hrrhV 

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SPHERICAL TRIANGLES 

 

Spherical Trigonometry investigates the relations which subsist between the angles of the plane 

faces which form a solid angle and the angles at which the plane faces are inclined to each other. 

 

Suppose that the angular point of a solid angle is made the centre of a sphere; then the planes which 

form the solid angle will cut the sphere in arcs of great circles. Thus a figure will be formed on the 

surface of the sphere which is called a spherical triangle if it is bounded by three arcs of great 

circles; this will be the case when the solid angle is formed by the meeting of three plane angles. 

If the solid angle be formed by the meeting of more than three plane angles, the corresponding 

figure on the surface of the sphere is bounded by more than three arcs of great circles, and is called 

a spherical polygon. 

 
 

Figure 16. Spherical Triangle and its elements 

 
 

Figure 17. General Spherical Triangle  
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The length of arc BC; 

COBrBC ˆ.  

Here; the unit of angle COB ˆ is radian. Similarly, for the arc lengths of AB and AC; 

BOArAB ˆ.  

COArAC ˆ.  

 

As seen from the formulas, since the same r (radius of sphere) is used to compute the lengths of 

every great circle, r should be taken as unit. Thus, the length of a great circle is equal to the 

central angle that subtends the arc from the center.  Therefore, sides of the great circles can be 

defined as angles.   

 

The computations and formulas given for the great circle cannot be implemented to solve a small 

circle. 

 
Figure 18. ABC is not spherical triangle 

 

If any sides of the circle are no bigger than 180 degree, this circle is so called Euler spherical 

triangle. 

 

The three arcs of great circles which form a spherical triangle are called the sides of the spherical 

triangle; the angles formed by the arcs at the points where they meet are called the angles of the 

spherical triangle.  

 

Let ABC be any spherical triangle, and let the points 'A , 'B , 'C  be those poles of the arcs BC, CA, 

AB respectively which lie on the same sides of them as the opposite angles A, B, C; then the 

triangle ''' CBA  is said to be the polar triangle of the triangle ABC. 

 

Since there are two poles for each side of a spherical triangle, eight triangles can be formed having 

for their angular points poles of the sides of the given triangle; but there is only one triangle in 

which these poles ''' CBA  lie towards the same parts with the corresponding angles A, B, C; and 

this is the triangle which is known under the name of the polar triangle.  The triangle ABC is called 

the primitive triangle with respect to the triangle ''' CBA . 



E n g i n e e r i n g  C a l c u l a t i o n s                                                  | 16 

 

 

If three great circles are drawn from points A, B, C among AB, BC, and CA; let O be the center of 

a sphere, and suppose a solid angle formed at O by the meeting of three plane angles. Let AB, BC, 

CA be the arcs of great circles in which the planes cut the sphere; then ABC is a spherical triangle, 

and the arcs AB, BC, CA are its sides. Three intersection points are found symmetric to center of 

sphere O. In this case, Euler Spherical Triangles are formed. Let 'A , 'B  and 'C  denote the 

intersection points of the great circles from the sphere center. 

 

The 8 Euler Spherical Triangles can be formed as: 

 

ABC ; BCA' ; CAB' ; 'ABC  

''' CBA ; ''CAB ; ''BCA ; CBA ''  

 

                
Figure 19. The eight spherical triangles 

 

 

The triangles, which are symmetric to the center of O and equal to each other, are so called polar 

triangle. 

 

Area of a Spherical Triangle & Spherical Excess 
To compute the area of ABC triangle, equations of spherical lune are used. 

 

To find the area of a Lune: 

A Lune is that portion of the surface of a sphere which is comprised between two great semicircles. 
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Figure 20. The spherical lune 

 

Let ACBDA, ADBEA be two lunes having equal angles at A; then one of these lunes may be 

supposed placed on the other so as to coincide exactly with it; thus lunes having equal angles are 

equal. Then it may be shown that lunes are proportional to their angles. Hence since the whole 

surface of a sphere may be considered as a lune with an angle equal to four right angles, we have 

for a lune with an angle of which the circular measure is A, 

 

.2

A

SphereofSurface

LuneofArea
  

 

Suppose r the radius of the sphere, then the surface is 2..4 r ; 

 

Area of lune: 22 ..2..4.
.2

rAr
A




 

 

To find the area of a Spherical Triangle: 

 

Let ABC be a spherical triangle; produce the arcs which form its sides until they meet again two 

and two, which will happen when each has become equal to the semicircumference.  
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Figure 21. The area of spherical triangle 

 

The triangle ABC now forms a part of three lunes, namely, CAABA' , ABBCB' , and BCCAC ' . 

Now the triangles ''BCA  and BAC '  are subtended by vertically opposite solid angles at O, and we 

will assume that their areas are equal; therefore the lune BCCAC '  is equal to the sum of the two 

triangles ABC  and ''BCA . Hence if A, B, C denote the circular measures of the angles of the 

triangle, we have: 

 

 
2

' ..2 rFFF BCAABC 


  

2

' ..2 rFFF CABABC 


  

2

' ..2 rFFF ABCABC 


  

 

Hence, by addition:  

 

).(.2.3 2

''' 


 rFFFF ABCCABBCAABC  

 

From the above illustration, 

 

ABCABCCABBCA FrFFF  2

''' ..2  

 

By re-arranging the equation: 

 

).(.2..2.2 22 


 rrFABC  

 

Therefore: 

 

).(2  


rFABC  
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If the angles are given in degrees: 

 

2.
180

rF
o

o

ABC


 
  

 

The expression )180( o   is called the spherical excess of the triangle and denote by  ; 

)180( o   

 

2.rFABC



  

 

Hence, if the equation is re-arranged as to  ; 

 

 .
2r

FABC  

 

The sum of three angles of the spherical triangle is not constant, and is proportional to the area of 

spherical triangle. Since area is getting bigger, the excess is getting bigger as well. Just the contrary 

is also valid similarly. If the radius of a sphere is infinite, then it will be a plane. Thus, the excess 

will be 0 and the sum of the angles will be o180 . The area of small spherical triangles can be 

supposed to the plane triangles which have the same side lengths. These triangles are assumed as 

small spherical triangles when considering their sides are so small comparing with the radius of 

sphere. For instance, for the triangles having the sides up to 100 km are assumed as this. 

Polar Triangle and Trihedron 
The triangles, which are symmetric to the center of O and equal to each other, are so called polar 

triangle. 

 
Figure 22. The polar triangle 
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Theorem: Let ABC be any spherical triangle, and let the points 'A , 'B , 'C  be those poles of the 

arcs BC, CA, AB respectively which lie on the same sides of them as the opposite angles A, B, C; 

then the triangle ''' CBA  is said to be the polar triangle of the triangle ABC. 

 

Theorem: The angles of the spherical triangle are the supplementary of the sides of the polar 

triangle. Or; the sides of the spherical triangle are the supplementary of the angles of the polar 

triangle. 

 

if A, B, C, a, b, c denote respectively the angles and the sides of a spherical triangle, all expressed 

in circular measure, and A’, B’, C’, a’, b’, c’ those of the polar triangle 

 
oaA 180'       

oAa 180'  
obB 180'       

oBb 180'  
ocC 180'       

oCc 180'  

 

If three corners of a spherical triangle are connected to the center of this sphere, a trihedron is 

formed. O –center of the sphere- is the apex; OA, OB and OC are the sides; AOB, BOC and COA 

are the faces of the trihedron. Since any spherical triangle has a trihedron, reverse is valid as well. 

Angles between the sides of the trihedron are sides of the spherical triangle. 

 

 
 

Figure 23. The trihedron 

 

Specifications of Spherical Triangles 
 

The letters A, B, C are used to denote the angles of a spherical triangle, and the letters a, b, c are 

used to denote the sides.  

 

1. Theorem: The sum of the angles of the spherical triangles is between 180 and 540 degrees, 

and the sum of its sides is between 0 and 360 degrees.  

For a ABC spherical triangle: 
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oo CBA 540180   
oo cba 3600   

 

Proof: On the sphere, the biggest spherical triangle is a little smaller than the hemisphere. 

Let the area of the hemisphere be 2..2 r ; then 

 

).(2  


rF  

).(..2 22   CBArr  
oCBA 540.3    

 

Since a hemisphere is not a spherical triangle, it cannot involve this value. 

Moreover, to have a positive area value; the expression should be written as below. 

 
oCBA 0   

oCBA 180  

 

To find the limits of the sum of the sides; polar triangle can be used: 
oAa 180'  
oBb 180'  
oCc 180'  

 

 By addition: 

 
ocbaCBA 540'''   

 

The polar triangle is also a spherical triangle, and o180 and o540 , which are limits of angles 

can be written instead of )'''( CBA  . Then, the following expression is obtained 

 
oo cba 3600   

 

 

2. Theorem: For any two of the three plane angles which form the solid angle at O are together 

greater than the third. Therefore any two of the arcs AB, BC, CA, are together greater than 

the third side. From this proposition it is obvious that any side of a spherical triangle is 

greater than the difference between the other two sides. 

 

 

cba                            Or             bac   

acb                 cba   

bca                      acb   
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Figure 24. The trihedron 

 

 

Proof: For a OABC trihedron, let the relation between two sides be bc  . Let A1 be on 

OA side, and B1 be on OB side. Consider that a line is drawn on AOB face starting from 

OA line with the same angle value of AOC. Let D1 be the intersection point of this line.  

Let C1 be taken on OC line as OD=OC1.  

On the newly formed A1B1C1 plane triangle; 
 

111111 DBDABCCA   

The triangles ODBandODA 111  are equal to each other. ODBODA 111   

Thus, DACA 111   

Then, 111 DBBC   

 

Since The 1OB side is common for 111 COBandODB triangles, ODOC 1 , and considering 

the above inequation, the below can be written 

 

 

ODBOCB 111   

 

Extending the inequation adding 11OCA to the left side, and ODA1  to the right side: 

 

DOADOBCOBCOA ˆˆˆˆ
111111   

Or: 

BOACOBCOA ˆˆˆ   

 

If the arcs are written for these angles, which are subtended to them; then 

 

cba   

bac   
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3. Theorem: For any two of the three plane angles which form the solid angle at O are smaller 

than the third one by adding 180 degrees. 

 

CBA o  180  

ACB o  180  

BAC o  180  

 

Proof: If the relationship between spherical triangle and polar triangle are implemented to 

the inequations noted at 2nd specifications, 

 

cba   

'180'180'180 CBA ooo   

 

By re-arranging; 

'180'' CBA o   

 

4. Theorem: The angles at the base of an isosceles spherical triangle are equal. 

 

 
 

Figure 25. The isosceles triangle 

 

 

If; cb  ; then CB   

Or 

If; CB  ; then cb   

 

Proof: Let ABC be a spherical triangle having AB =AC; let O be the center of the sphere.  

Let D be the midpoint of arc BC. Then, the spherical triangles ABD and ACD are 

symmetrically equal to each other. Thus, CB  . 

If ocb 90 , A will be the pole of the great circle of BC, and moreover oCB 90  and 

aA  

 

Since CB  ; by using the polar triangle specifications given below; 
obB 180'  
ocC 180'  
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It can be noted that: '' cb  , which means this polar spherical triangle is also an isosceles 

spherical triangle. It can be also expressed by '' CB  . 

cb   

 

5. Theorem: If one angle of a spherical triangle be greater than another, the side opposite the 

greater angle is greater than the side opposite the less angle. 

 

If CB  ; then cb  ; 

Or: 

If cb  ; then CB   

 

Proof: Let ABC be a spherical triangle having CB  .  At B make the angle CBD equal to 

the angle BCD; Let D the intersection point on arc AC. The spherical triangle divides into 

two namely, ABD and DBC.   

 

Using the second specification for ABD triangle,  

ABDABD   
 

Then, from the forth specification; BD is equal to DC; BD=DC 

Applying this equation to the ABDABD  ; 

ABDACD    or cb   

 

 
Figure 26a. The spherical triangle 

 

Reversely; cb  ; take c on AC arc; then: 

 

 
Figure 26b. The spherical triangle 
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ADBABD  
oDBCCBDC 180  

Here, let BDC be ABDo 180 , then 
oo DBCCABD 180180   

By arranging; 

CDBCABD    CB   

 

 

6. Theorem: For a spherical triangle; 

 

If; 

..............

180

..............







oba  then, 

..............

180

..............







oBA  

 

 

Or; 

 

If; 

..............

180

..............







oBA  then, 

..............

180

..............







oba  

 

Proof: In case of   
oba 180 , on the arc AC starting from C, extend the arc up to a. The 

last point of the extended arc is called as A’. The newly formed shape is a spherical lune. 

Thus A=A’. the A’BC is an isosceles spherical triangle and the bottom angles are equal to 

each other.  

Thus, 

 

AABCA  'ˆ'  

 

If the equation BABC o 180'ˆ  is implemented to the above,   

BA o 180  or 
oBA 180 is obtained. 
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Figure 27. The spherical triangle 

 

 

If   
oba 180 , 

BCCA '  

 

7. Theorem: For a spherical triangle; 

 

oo

oo

oo

CBA

CBA

CBA

90
2

90

90
2

90

90
2

90
















 

 

Proof: Using the 3rd specification;  
oACB 180  

According to ACB   or ACB  ; the below can be written: 
oo ACB 180180   
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THEOREMS REGARDING SPHERICAL TRIANGLE 

SINE THEOREM 
The sines of the angles of a spherical triangle are proportional to the sines of the opposite sides 

and proportion is constant. 

 

tconsM
C

c

B

b

A

a
tan

sin

sin

sin

sin

sin

sin
  

 

 

Figure 28. The sine theorem 
 

COSINE of a SIDE THEOREM 
 

To express the cosine of a side of a triangle in terms of sines and cosines of the angles: 

 

Acbcba cos.sin.sincos.coscos   
Bcacab cos.sin.sincos.coscos   
Cbabac cos.sin.sincos.coscos   

 

Reminder: In the plane geometry; 

Acbcba cos...2222   

COSINE of an ANGLE THEOREM 
To express the cosine of a side of a triangle in terms of sines and cosines of the angles: 

 

aCBCBA cos.sin.sincos.coscos   
bCACAB cos.sin.sincos.coscos   
cBABAC cos.sin.sincos.coscos   
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SINE - COSINE THEOREM 
 

AcbcbBa cos.cos.sinsin.coscos.sin   
BacacCb cos.cos.sinsin.coscos.sin   
CbabaAc cos.cos.sinsin.coscos.sin   

 

AbcbcCa cos.cos.sinsin.coscos.sin   
BcacaAb cos.cos.sinsin.coscos.sin   
CababBc cos.cos.sinsin.coscos.sin   

 

aCBCBbA cos.cos.sinsin.coscos.sin   
bACACcB cos.cos.sinsin.coscos.sin   
cBABAaC cos.cos.sinsin.coscos.sin   

 

aBCBCcA cos.cos.sinsin.coscos.sin   
bCACAaB cos.cos.sinsin.coscos.sin   
cABABbC cos.cos.sinsin.coscos.sin   

 

COTANGENT THEOREM 

BAbcAc cot.sincot.sincos.cos   
CBcaBa cot.sincot.sincos.cos   
ACabCb cot.sincot.sincos.cos   

 

CAcbAb cot.sincot.sincos.cos   
ABacBc cot.sincot.sincos.cos   
BCbaCa cot.sincot.sincos.cos   

 

 

To generalize the formulas given above; the numbered spherical triangle may be used as follow 

as starting from side element: 

 

 
 

IVIIIIIIIIIII cot.sincot.sincos.cos   
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Other Spherical Triangle Formulas 

Half-Angle Formulas: 

According to Cosine of a side theorem; 

Acbcba cos.sin.sincos.coscos   

Put cosA to the left side of the equation, 

cb

cba
A

sin.sin

cos.coscos
cos


  

Subtract both sides from 1 of the equation, 

cb

cba
A

sin.sin

cos.coscos
1cos1


  

Write 
2

sin.2 2 A
instead of Acos1 , 

 

cb

acbcbA

sin.sin

coscos.cossin.sin

2
sin.2 2 

  

The two terms of the numerator seen above is the function of differences of two angles of cosine, 

cb

acbA

sin.sin

cos)cos(

2
sin.2 2 

  

 

Then, 

cb

acbacb

A

sin.sin

2
sin.

2
sin.2

2
sin.2 2




  

 

cb

bcaacb

A

sin.sin

2

)(
sin.

2

)(
sin

2
sin 2



  

 

Considering ucba .2  
 

cb

cubuA

sin.sin

)sin().sin(

2
sin


  

ca

cuauB

sin.sin

)sin().sin(

2
sin


  
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cb

buauC

sin.sin

)sin().sin(

2
sin


  

 
For the cosine functions of half-angle formulas, leave cosA alone at the left side and add 1 to both sides. 

 

cb

auuA

sin.sin

)sin(.sin

2
cos


  

ca

buuB

sin.sin

)sin(.sin

2
cos


  

ba

cuuC

sin.sin

)sin(.sin

2
cos


  

 

 

)sin(.sin

)sin().sin(

2
tan

auu

cubuA




  

)sin(.sin

)sin().sin(

2
tan

buu

cuauB




  

)sin(.sin

)sin().sin(

2
tan

cuu

buauC




  

 

 

 

2
cos.

2
sin.2sin

AA
A  

cb

auu

cb

cubu
A

sin.sin

)sin(.sin
.

sin.sin

)sin().sin(
.2sin


  

 

)sin().sin().sin(.sin.
sin.sin

2
sin cubuauu

cb
A   

)sin().sin().sin(.sin cubuauuS  Spherical amplitude 

 

cb

S
A

sin.sin

.2
sin   

ca

S
B

sin.sin

.2
sin   

ba

S
C

sin.sin

.2
sin   
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Half-Side Formulas: 
 

According to cosine angle theorem; 

 

aCBCBA cos.sin.sincos.coscos   
 

Put cosa to the left side of the equation, 

CB

ACB
a

sin.sin

coscos.cos
cos


  

 
Add 1 to both sides, 

 

 

CB

ACBCB
a

sin.sin

coscos.cossin.sin
cos1


  

Use half angle formula for 1+cosa, 
 

CB

ACBa

sin.sin

cos)cos(

2
cos.2 2 

  

 

CB

ACBACB

a

sin.sin

2
cos.

2
cos.2

2
cos.2 2



  

 

vCBA .2  
 

CB

CvBva

sin.sin

)cos().cos(

2
cos


  

CA

CvAvb

sin.sin

)cos().cos(

2
cos


  

BA

BvAvc

sin.sin

)cos().cos(

2
cos


  
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If we add 1 to both sides of 
CB

ACB
a

sin.sin

coscos.cos
cos


 , 

 

CB

Avva

sin.sin

)cos(.cos

2
sin


  

CA

Bvvb

sin.sin

)cos(.cos

2
sin


  

BA

Cvvc

sin.sin

)cos(.cos

2
sin


  

 

 

 

)cos().cos(

)cos(.cos

2
tan

CvBv

Avva




  

)cos().cos(

)cos(.cos

2
tan

CvAv

Bvvb




  

)cos().cos(

)cos(.cos

2
tan

BvAv

Cvvc




  

 

 

 

2
cos.

2
sin.2sin

aa
a   

Re-arranging the formula as follow, 

)cos().cos().cos(.cos.
sin.sin

2
sin CvBvAvv

CB
a   

Let T be )cos().cos().cos(.cos CvBvAvvT   called as co-amplitude of spherical triangle 

 

CB

T
a

sin.sin

2
sin   

CA

T
b

sin.sin

2
sin   

BA

T
c

sin.sin

2
sin   

 

cbAS sin.sin.sin2   

CBaT sin.sin.sin2   
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CBa

cbA

T

S

sin.sin.sin

sin.sin.sin
  

 
According to sine theorem, 

M
C

c

B

b

A

a


sin

sin

sin

sin

sin

sin
 

 
The below can be written, 

M
T

S
  

 

Delambre (Molweide) Formulas 
 

𝑠𝑖𝑛
𝐴+𝐵

2
𝑐𝑜𝑠

𝑐

2
= 𝑐𝑜𝑠

𝐶

2
𝑐𝑜𝑠

𝑎−𝑏

2
  

𝑠𝑖𝑛
𝐴−𝐵

2
𝑠𝑖𝑛

𝑐

2
= 𝑐𝑜𝑠

𝐶

2
𝑠𝑖𝑛

𝑎−𝑏

2
  

 

𝑐𝑜𝑠
𝐴+𝐵

2
𝑐𝑜𝑠

𝑐

2
= 𝑠𝑖𝑛

𝐶

2
𝑐𝑜𝑠

𝑎+𝑏

2
  

  

𝑐𝑜𝑠
𝐴−𝐵

2
𝑠𝑖𝑛

𝑐

2
= 𝑠𝑖𝑛

𝐶

2
𝑠𝑖𝑛

𝑎+𝑏

2
  

 

Napier’s Rules 

 

2
cot.

2
sin

2
sin

2
tan

C

ba

ba

BA








 

 

2
cot.

2
cos

2
cos

2
tan

C

ba

ba

BA








 

 

2
tan.

2
sin

2
sin

2
tan

c

BA

BA

ba







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2
tan.

2
cos

2
cos

2
tan

c

BA

BA

ba








 

SPECIAL SPHERICAL TRIANGLES 
 

SOLUTION OF RIGHT-ANGLED TRIANGLES 
In every spherical triangle there are six elements, namely, the three sides and the three angles, 

besides the radius of the sphere, which is supposed constant. The solution of spherical triangles is 

the process by which, when the values of a sufficient number of the six elements are given, we 

calculate the values of the remaining elements. It will appear, as we proceed, that when the values 

of three of the elements are given, those of the remaining three can generally be found. We begin 

with the right-angled triangle: here two elements, in addition to the right angle, will be supposed 

known. 
 

Let ABC be a spherical triangle having a right angle at C (90o); let O be the centre of the sphere. 

The sum of the spherical triangle is changed between 180 o and 540 o, thus more than one angle 

may be right angled.  

Suppose one of the angles a right angle, as C=90o for example. 

 
 

Sine Theorem: 

C

c

A

a

sin

sin

sin

sin


 

 

 Aca sin.sinsin   

Similarly; 

For C=90o; 

sin C=1 

cos C=0 
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C

c

B

b

sin

sin

sin

sin
  

 Bcb sin.sinsin   

From Cosine-Side theorem: 

Cbabac cos.sin.sincos.coscos   

 bac cos.coscos   

This formula is called as Pythagorean Theorem rule for right angled triangle. If cosine of an angle 

theorem is implemented; 

aCBCBA cos.sin.sincos.coscos   

bACACB cos.sin.sincos.coscos   

cBABAC cos.sin.sincos.coscos   

Then, the following equations may be obtained; 

 aBA cos.sincos   

 bAB cos.sincos   

 BAc cot.cotcos   

From the cotangent theorem; 

CbbaAC cos.cossin.cotcot.sin   

CaabBC cos.cossin.cotcot.sin   

Then, 

 Aab cot.tansin   

 Bba cot.tansin   

 

From the sine-cosine theorem; 

AbcbcCa cos.cos.sinsin.coscos.sin   

BacacCb cos.cos.sinsin.coscos.sin   

Then, 

 bcA tan.cotcos   

http://tureng.com/tr/turkce-ingilizce/pythagorean%20theorem
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 acB tan.cotcos   

There are 10 formulas for right angled spherical triangles as given above. So, generalization with two 

formulas may be seen below. To do this, the elements of right-angled spherical triangle should be 

numbered in a regular way. Due to a condition that taking the complementary instead of leg; 

 

 

 

 

Using these two formulas for each elements in two ways (clockwise & counter clockwise), ten formulas 

can be generated. 

Napier’s Rules 
Napier’s Rules: The formulas are comprised in two rules, which are called, from their inventor, 

Napier’s Rules of Circular Parts. Napier was also the inventor of Logarithms, and the Rules of 

Circular Parts were first published by him in a work entitled “Mirifici Logarithmorum Canonis 

Descriptio”. 

The right angle is left out of consideration; the two sides which include the right angle, the 

complement of the hypotenuse, and the complements of the other angles are called the circular 

parts of the triangle. 
 

𝑐𝑜𝑠𝐼𝐼𝐼 = 𝑠𝑖𝑛𝐼. 𝑠𝑖𝑛𝑉 

𝑐𝑜𝑠𝐼𝐼𝐼 = 𝑐𝑜𝑡𝐼𝐼. 𝑐𝑜𝑡𝐼𝑉 

According to the figure: 

𝑐𝑜𝑠𝐵 = sin(90 − 𝑏) . 𝑠𝑖𝑛𝐴 

𝑐𝑜𝑠𝐵 = cot(90 − 𝑎) . 𝑐𝑜𝑡𝑐 

By arranging; 

𝑐𝑜𝑠𝐵 = 𝑐𝑜𝑠𝑏. 𝑠𝑖𝑛𝐴 

𝑐𝑜𝑠𝐵 = 𝑡𝑎𝑛𝑎. 𝑐𝑜𝑡𝑐 
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On the Napier circle, (see right figure above): cosine value of any element is equal to multiplication 

of the cotangent values of two adjacent elements; and equal to multiplication of the sine values of 

two opposite elements. 

Let the rule be applied to side c: 

Having given the two angles A and B; 

BAc cot.cotcos   

Having given the two sides a and b; 

bac cos.coscos   

Specifications of Right angled spherical Triangles 

 
oo BA 27090   
oo BA 9090   

 For the leg and the opposite angle; either both of them are acute angles or obtuse angles. 

 Hypotenuse is closer to 90o than other legs. 

 If we consider the leg and the opposite angle; angle is closer to 90o then leg. 

 If both legs are obtuse angles or acute angles; hypotenuse is acute angle; if one of the legs 

is acute angle and the other one is obtuse angle; hypotenuse is obtuse angle. 

Solutions of Right-angled spherical Triangles 
To know 3 elements is enough to solve a spherical triangle. For right angled spherical triangles, 

one element has right angle, thus it is enough to know 2 elements at all to provide the solution. To 

solve the right angled spherical triangles, there are 6 cases: 

1. Solving the right angled spherical triangles with given hypotenuse and a leg, 

2. Solving the right angled spherical triangles with given two legs, 

3. Solving the right angled spherical triangles with given hypotenuse and an angle, 

4. Solving the right angled spherical triangles with given leg and adjacent angle, 
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5. Solving the right angled spherical triangles with given leg and opposite angle, 

6. Solving the right angled spherical triangles with given two angles, 

For solving them, Napier’s rule is implemented and Napier circle is drawn.  

For; C=90o: 

 

 

1. Solving the right angled spherical triangles with given hypotenuse and a 

leg, 
Given: c,b 

To be computed: A, B, a 

 

Solution: Implement the Napier’s Rule 

1- 𝑐𝑜𝑠𝐴 = 𝑐𝑜𝑡𝑐. 𝑡𝑎𝑛𝑏      

2- 𝑠𝑖𝑛𝑏 = 𝑠𝑖𝑛𝑐. 𝑠𝑖𝑛𝐵 𝑠𝑖𝑛𝐵 = 𝑠𝑖𝑛𝑏/𝑠𝑖𝑛𝑐  

3- 𝑐𝑜𝑠𝑐 = 𝑐𝑜𝑠𝑎. 𝑐𝑜𝑠𝑏 𝑐𝑜𝑠𝑎 = 𝑐𝑜𝑠𝑐/𝑐𝑜𝑠𝑏  
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2. Solving the right angled spherical triangles with given two legs 

Given: a,b 

To be computed: A, B, c 

 

Solution: Implement the Napier’s Rule 

1- 𝑐𝑜𝑠𝑐 = 𝑐𝑜𝑠𝑏. 𝑐𝑜𝑠𝑎      

2- 𝑐𝑜𝑡𝐵 = 𝑠𝑖𝑛𝑎. 𝑐𝑜𝑡𝑏  

3- 𝑐𝑜𝑡𝐴 = 𝑠𝑖𝑛𝑏. 𝑐𝑜𝑡𝑎  

 

3. Solving the right angled spherical triangles with given hypotenuse and an 

angle 

Given: c, A 

To be computed: B, b, a 

 

Solution: Implement the Napier’s Rule 

1- 𝑐𝑜𝑡𝐵 = 𝑐𝑜𝑠𝑐. 𝑡𝑎𝑛𝐴      
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2- 𝑡𝑎𝑛𝑏 = 𝑐𝑜𝑠𝐴. 𝑡𝑎𝑛𝑐  

3- 𝑠𝑖𝑛𝑎 = 𝑠𝑖𝑛𝐴. 𝑠𝑖𝑛𝑐  

 

4. Solving the right angled spherical triangles with given leg and adjacent 

angle 

Given: a, B 

To be computed: A, c, b 

 

Solution: Implement the Napier’s Rule 

1- 𝑐𝑜𝑡𝑐 = 𝑐𝑜𝑠𝐵. 𝑐𝑜𝑡𝑎      

2- 𝑐𝑜𝑠𝐴 = 𝑠𝑖𝑛𝐵. 𝑐𝑜𝑠𝑎  

3- 𝑡𝑎𝑛𝑏 = 𝑠𝑖𝑛𝑎. 𝑡𝑎𝑛𝐵  

 

5. Solving the right angled spherical triangles with given leg and opposite 

angle 

Given: a, A 

To be computed: B, c, b 
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Solution: Implement the Napier’s Rule 

1- 𝑠𝑖𝑛𝑏 = 𝑐𝑜𝑡𝐴. 𝑡𝑎𝑛𝑎      

2- 𝑠𝑖𝑛𝐵 = 𝑐𝑜𝑠𝐴/𝑐𝑜𝑠𝑎  

3- 𝑠𝑖𝑛𝑐 = 𝑠𝑖𝑛𝑎/𝑠𝑖𝑛𝐴  

 

6. Solving the right angled spherical triangles with given two angles 

Given: A, B 

To be computed: a, b, c 

 

Solution: Implement the Napier’s Rule 

1- 𝑐𝑜𝑠𝑎 = 𝑐𝑜𝑠𝐴/𝑠𝑖𝑛𝐵      

2- 𝑐𝑜𝑠𝑐 = 𝑐𝑜𝑡𝐴. 𝑐𝑜𝑡𝐵  

3- 𝑐𝑜𝑠𝑏 = 𝑐𝑜𝑠𝐵/𝑠𝑖𝑛𝐴  

SOLUTION OF SPHERICAL TRIANGLE with A LEG 
If one side is 90o in a spherical triangle, it is so called spherical triangle with leg. For example, let 

c=90o be one leg of spherical triangle, then polar triangle of this may be written as; 

𝑐 + 𝐶′ = 180𝑜 

𝐶′ = 90𝑜  It will be a right- angled spherical triangle. 

If the equations can be written for this polar triangle as per actual spherical triangle elements, the 

below can be obtained for leg-spherical triangle: 

𝐴′ = 180𝑜 − 𝑎 

𝐵′ = 180𝑜 − 𝑏 
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𝑎′ = 180𝑜 − 𝐴 

𝑏′ = 180𝑜 − 𝐵 

𝑐′ = 180𝑜 − 𝐶 

Or, c=90o can be implemented to the general spherical triangle formulas and the same formulas 

can be gained as well and with same manner, Napier’s rule is implemented. However, the below 

figure is used for Napier’s circle. 

 

SOLUTION OF ISOSCELES and EQUILATERAL SPHERICAL TRIANGLES 
If two sides are equal to each other on spherical triangle, it is so called isosceles spherical triangle, 

e.g.  if b=a; thus, then B=A. 

 

SOLUTION OF OBLIQUE SPHERICAL TRIANGLE Involves 6 cases 

To solve a spherical triangle, which has totally 6 elements-3 sides and 3 angles, three elements 

should be known. The solutions as per known elements can be listed as follow into the four cases. 

Case 1: 1.a. Two angles and the included side (ASA) 
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Case 2: 1.b. Two angles and a side opposite one of them (AAS) 

Case 3: 2.a. Two sides and included angle are given (SAS) 

Case 4: 2.b. Two sides and an angle opposite one of them (SSA) 

Case 5: 3.    Three sides are given (SSS) 

Case 6: 4.    Three angles are given (AAA) 

1: a. Two angles and a side between these angles (ASA) 

Given:  A, B, c 

To be computed: C, a, b 

Solution 1:  

 According to Cosine of an Angle Theorem 

cBABAC cos.sin.sincos.coscos    Angle C is computed. 

 According to Sine Theorem 

A
C

c
a sin

sin

sin
sin   and B

C

c
b sin

sin

sin
sin   sides a and b are computed. 

 

Solution 2:  

 According to Cotangent Theorem 

BAbcAc cot.sincot.sincos.cos   

 By re-arranging the above formula, leaving cotb alone on one side; 

c

BAAc
b

sin

cot.sincos.cos
cot


  Side b is computed. 

 According to Sine Theorem 

A
B

b
a sin

sin

sin
sin    Side a is computed. 

c
b

B
C sin

sin

sin
sin   Angle C is computed. 

Solution 3:  

 According to Napier’s Rule 
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2
tan.

2
cos

2
cos

2
tan

c

BA

BA

ba








 

 Sides a and b are computed. 

2
tan.

2
sin

2
sin

2
tan

c

BA

BA

ba








 

 According to Sine Theorem 

c
b

B
c

a

A
C sin

sin

sin
sin

sin

sin
sin  Angle C is computed. 

Solution 4: Spherical triangle can be divided into right angled triangles for solution. For ABC 

spherical triangle, from B, a perpendicular line is drawn to AC.  

 

 According to AHB triangle: 

cAAH tan.costan   

cA sin.sinsinh   

cAB cos.tancot 1   

12 BBB   

 According to CHB triangle: 

coth.coscot 2Ba   

cosh.sincos 2BC   

2tan.sinhtan BCH   

CHAHb   

 

1: b. Two angles and a side opposite to one of these angles (AAS) 

Given:  A, B, b 
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To be computed: C, a, c 

Solution 1:  

 According to Sine Theorem 

A
B

b
a sin

sin

sin
sin  Side a is computed. 

 According to Napier’s Rule 

2
tan.

2
cos

2
cos

2
tan

c

BA

BA

ba








 

2
cos

2
cos

.
2

tan
2

tan
BA

BA

bac






  

 Side c and Angle C are computed. 

2
cot.

2
cos

2
cos

2
tan

C

ba

ba

BA








 

2
cos

2
cos

.
2

tan
2

cot
ba

ba

BAC






  

Solution 2:  

 According to Cotangent Theorem 

BAcbcA cot.sinsin.cotcos.cos   

 Multiple both sides by “ btan ” 

0tan.cot.sincos.tan.cossin  bBAcbAc  

 Here, to determine c, trigonometric equation should be solved. 

 Transformation of bA tan.costan  is implemented to the equation 

0tan.cot.sincos.tansin  bBAcc   

 Write  cos/sin Multiple both sides by “ tan ” 

0tan.cot.sincos).cos/(sinsin  bBAcc   

 Multiple both sides by “ cos ” 

0cos.tan.cot.sinsin.coscos.sin   bBAcc  

 cos.tan.cot.sin)sin( bBAc    Side c is computed. 

 Continue to the solution with sine theorem 
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Solution 3: Spherical triangle can be divided into right angled triangles for solution.  

 
 

 From AHC right angled spherical triangle: 

bA sin.sinsinh   

bAAH tan.costan   

AbC tan.coscot 1   

 From BHC right angled spherical triangle: 

Ba sinsinh/sin   

tanh.cotsin BBH   

BHAHc   

cosh/cossin 2 BC   

2: a. Two sides and an angle between these sides (SAS) 

Given:  a, b, C 

To be computed: c, A, B 

Solution 1:  

 According to Cosine of a side Theorem 

 Cbabac cos.sin.sincos.coscos    Side c is computed. 

 According to Sine Theorem 

a
c

C
A sin

sin

sin
sin    Angle A is computed. 

b
c

C
B sin

sin

sin
sin   Angle B is computed. 

 For side c, there is unique solution. However, for Angles B and C, due to using sine 

function, the operation will give two solutions. So, we should find out unique values of 

them by using below inequations: 

 These comparisons should be done:  

If a>c, or a<c, then A>C or A<C and if b>c, or b<c, then B>C or B<C   
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Solution 2:  

 According to Cotangent Theorem 

C

aCba
B

sin

cos.coscotsin
cot


   Angle B computed. 

C

bCab
A

sin

cos.coscotsin
cot


  Angle A computed. 

 According to Sine Theorem 

C
A

a
C

B

b
c sin

sin

sin
sin

sin

sin
sin   Side c computed.  

 Here, For A and B, there is unique solution. However, for c, due to using sine function, the 

operation will give two solutions. So, we should find out unique values of them by using 

below inequations: 

 These comparisons should be done:  

If C>A, or C<A, then c>a or c<a and if C>B, or C<B, then c>b or c<b   

 

Solution 3:  

 According to Napier’s Rule 

2
cot.

2
cos

2
cos

2
tan

C

ba

ba

BA








 

2
cot.

2
sin

2
sin

2
tan

C

ba

ba

BA








 

2
sin

2
sin

.
2

tan

2
cos

2
cos

.
2

tan
2

tan
BA

BA

ba

BA

BA

bac













  

 Angles “A” and “B”, and side c are computed. 
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Solution 4: Spherical triangle can be divided into right angled triangles for solution.  

 
 

 From AHC right angled spherical triangle: 

bCCH tan.costan   

CbA tan.coscot 1   

CHaBH   

 From AHB right angled spherical triangle: 

cosh.coscos BHc   

coth.sincot BHB   

BHA cot.sinhcot 2   

21 AAA   

2: b. Two sides and an angle opposite to one of these sides (SSA) 

Given:  a, b, B 

To be computed: A, C, c 

Solution 1:  

 According to Sine Theorem and Napier’s equations 

a
b

B
A sin

sin

sin
sin   Angle A is computed. 

2
cos

2
cos

.
2

tan
2

tan
BA

BA

bac






   Side c is computed. 

2
cos

2
cos

.
2

tan
2

cot
ba

ba

BAC






  Angle C is computed. 
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Solution 2:  

 According to Cotangent Theorem (Trigonometric equation solution) 

BCabaC cot.sinsin.cotcos.cos   

 Multiple both sides by “ Btan ” 

BbaCBaC tan.cot.sincos.tan.cossin   

 Here, to determine c, trigonometric equation should be solved. 

 Transformation of Ba tan.costan  is implemented to the equation 

BbaCC tan.cot.sincos.tansin    

 Write  cos/sin Multiple both sides by “ tan ” 

BbaCC tan.cot.sincos).cos/(sinsin    

 Multiple both sides by “ cos ” 

 cos.tan.cot.sinsin.coscos.sin BbaCC   

 cos.tan.cot.sin)sin( BbaC    C is computed. 

 Continue to the solution with sine theorem 

 

Solution 3: Spherical triangle can be divided into right angled triangles for solution. 

3:      Three sides (SSS) 

Given:  a, b, c 

To be computed: A, B, C 

Solution 1:  

 According to Cosine of a side Theorem 

cb

cba
A

sin.sin

cos.coscos
cos


  

ca

cab
B

sin.sin

cos.coscos
cos


  

ba

bac
C

sin.sin

cos.coscos
cos


  

 

Solution 2:  

 According to Half-Angle Formulas 
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)sin(.sin

)sin().sin(

2
tan

auu

cubuA




  

)sin(.sin

)sin().sin(

2
tan

buu

cuauB




  

)sin(.sin

)sin().sin(

2
tan

cuu

buauC




  

 

Solution 3: Spherical triangle can be divided into right angled triangles for solution. 

 

 From CHA and CHB right angled spherical triangles: 

cosh.coscos xb   

cosh.coscos ya   

 Proportion the above two equations 

a

b

y

x

cos

cos

cos

cos
  

 And considering yxc   

ab

ab

yx

yx

coscos

coscos

coscos

coscos









 

 According to transformation equations 

2
cos.

2
cos.2

2
sin.

2
sin.2

2
cos.

2
cos.2

2
sin.

2
sin.2

abab

abab

yxyx

yxyx












 

 Arranging the equation, then 

2
tan.

2
tan

2
tan.

2
tan

ababyxyx 



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2
cot.

2
tan.

2
tan

2
tan

cababyx 



 ”x” and “y” are computed. 

 From CHA right angled spherical triangle: 

xbA tan.cotcos    A is computed. 

bxC sin/sinsin 1  C1 is computed. 

 From CBH right angled spherical triangle: 

yaB tan.cotcos    B is computed. 

ayC sin/sinsin 2  C2 is computed. 

21 CCC   

 

4:      Three angles (AAA) 

Given:  A, B, C 

To be computed: a, b, c 

Solution 1:  

 According to Cosine of an angle Theorem 

 
CB

CBA
a

sin.sin

cos.coscos
cos


  

 
CA

CAB
b

sin.sin

cos.coscos
cos


  

 
BA

BAC
c

sin.sin

cos.coscos
cos


  

Solution 2:  

 According to Half-side formula 

 
)cos(.cos

)cos()cos(

2
cot

Avv

CvBva




  

 
)cos(.cos

)cos()cos(

2
cot

Bvv

CvAvb




  

 
)cos(.cos

)cos()cos(

2
cot

Cvv

BvAvc




  
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Solution 3: Spherical triangle can be divided into right angled triangles for solution. 

 

 From CHA and CHB right angled spherical triangles: 

1sin.coshcos CA   

2sin.coshcos CB   

 Proportion the above two equations 

B

A

C

C

cos

cos

sin

sin

2

1   

 And considering 21 CCC   

BA

BA

CC

CC

coscos

coscos

sinsin

sinsin

21

21









 

 According to transformation equations 

2
cos.

2
cos.2

2
sin.

2
sin.2

2
cos.

2
sin.2

2
cos.

2
sin.2

2121

2121

BABA

BABA

CCCC

CCCC











 

 Arranging the equation, then 

2
tan.

2
tan

2
cot.

2
tan 2121 BABACCCC 




 

2
tan.

2
tan.

2
tan

2
tan 21 CABBACC 




 ” 1C ” and “ 2C ” are computed. 

 From CHA right angled spherical triangle: 
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ACb cot.cotcos 1   b is computed. 

ACx sin/coscos 1 x is computed. 

 From CBH right angled spherical triangle: 

BCa cot.cotcos 2   a is computed. 

BCy sin/coscos 2 y is computed. 

yxc   

 

Solutions of the Other Elements on Spherical Triangle 

Height of the Spherical Triangle 

 

CbBca sin.sinsin.sinsinh    

AcCab sin.sinsin.sinsinh   

AbBac sin.sinsin.sinsinh   

cb

S
A

sin.sin

.2
sin   

ca

S
B

sin.sin

.2
sin   

ba

S
C

sin.sin

.2
sin   
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CB

T
a

sin.sin

.2
sin   

CA

T
b

sin.sin

.2
sin   

BA

T
c

sin.sin

.2
sin   

A

T

a

S
a

sin

2

sin

2
sinh   

B

T

b

S
b

sin

2

sin

2
sinh   

C

T

c

S
c

sin

2

sin

2
sinh   

From the 1st and 3rd equations, unique values for each element can be computed. For the 2nd equation, 

there are two solutions. Even either B and b should be acute angles or obtuse angles at the same time, 

unique solution can then be obtained. 

If A is close to “0” or “180”, It can be computed as follow; 

 𝑐𝑜𝑡𝐴 = 𝑐𝑜𝑠𝑐. 𝑡𝑎𝑛𝐵  or 𝑐𝑜𝑡𝐴 = 𝑠𝑖𝑛𝑏. 𝑐𝑜𝑡𝑎 

If any side is close to “0” or “180”, It can be computed as follow; 

tan 𝑎 = 𝑐𝑜𝑠𝐵. 𝑡𝑎𝑛𝑐  or 𝑡𝑎𝑛𝑎 = 𝑠𝑖𝑛𝑏. 𝑡𝑎𝑛𝐴 

If b, c or B is close to “0” or “180”, It can be computed as follow; 
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