Thermodynamics: An Engineering Approach, 5 ${ }^{\text {th }}$ Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008

ENTROPY

Prof. Dr. Ali PINARBAŞI Yildiz Technical University Mechanical Engineering Department Yildiz, ISTANBUL

7-1 Entropy
A Special Case: Internally Reversible Isothermal Heat
Transfer Processes
7-2 The Increase of Entropy Principle
Some Remarks about Entropy
7-3 Entropy Change of Pure Substances
7-4 Isentropic Processes
7-5 Property Diagrams Involving Entropy
7-6 What Is Entropy?
Entropy and Entropy Generation in Daily Life
7-7 The T ds Relations
7-8 Entropy Change of Liquids and Solids
7-9 The Entropy Change of Ideal Gases
Constant Specific Heats (Approximate Analysis)
Variable Specific Heats (Exact Analysis)
Isentropic Processes of Ideal Gases
Constant Specific Heats (Approximate Analysis)
Variable Specific Heats (Exact Analysis)
Relative Pressure and Relative Specific Volume
7-10 Reversible Steady-Flow Work
Proof that Steady-Flow Devices Deliver the Most and Consume the Least Work when the Process Is Reversible

ENTROPY

7-11 Minimizing the Compressor Work
Multistage Compression with Intercooling
7-12 Isentropic Efficiencies of Steady-Flow Devices
Isentropic Efficiency of Turbines
Isentropic Efficiencies of Compressors and Pumps
Isentropic Efficiency of Nozzles
7-13 Entropy Balance
Entropy Change of a System, $\Delta S_{\text {system }}$
Mechanisms of Entropy Transfer, $\mathrm{S}_{\text {in }}$ and $\mathrm{S}_{\text {out }}$
1 Heat Transfer
2 Mass Flow
Entropy Generation, $\mathrm{S}_{\text {gen }}$
Closed Systems
Control Volumes
Entropy Generation Associated with a Heat Transfer Process

Objectives

- Apply the second law of thermodynamics to processes.
- Define a new property called entropy to quantify the second-law effects.
- Establish the increase of entropy principle.
- Calculate the entropy changes that take place during processes for pure substances, incompressible substances, and ideal gases.
- Examine a special class of idealized processes, called isentropic processes, and develop the property relations for these processes.
- Derive the reversible steady-flow work relations.
- Develop the isentropic efficiencies for various steady-flow devices.
- Introduce and apply the entropy balance to various systems.

ENTROPY

2nd law of thermodynamics leads to expressions that involve inequalities.
An irreversible (i.e., actual) heat engine, for example, is less efficient than a reversible one operating between the same two thermal energy reservoirs.

Likewise, an irreversible refrigerator or a heat pump has a lower coefficient of performance (COP) than a reversible one operating between the same temperature limits.

Another important inequality that has major consequences in thermodynamics is the Clausius inequality.

It was first stated by the German physicist R. J. E. Clausius (1822-1888), one of the founders of thermodynamics, and is expressed as

$$
\oint \frac{\delta Q}{T} \leq 0
$$

That is, the cyclic integral of $\mathrm{d} Q / T$ is always less than or equal to zero.

ENTROPY

The system considered in the development of the Clausius inequality.

To demonstrate the validity of the Clausius inequality, consider a system connected to a thermal energy reservoir at a constant absolute temperature of T_{R} through a reversible cyclic device.

$$
\oint \frac{\delta Q}{T} \leq 0 \quad \delta W_{C}=\delta Q_{R}-d E_{C} \quad \frac{\delta Q_{R}}{T_{R}}=\frac{\delta Q}{T}
$$

Eliminating dQR from the two relations above yields

$$
\delta W_{C}=T_{R} \frac{\delta Q}{T}-d E_{C}
$$

Then the preceding relation becomes

$$
\begin{array}{r}
\qquad W_{C}=\left.T_{R} \oint \frac{\delta Q}{T}\right|^{\qquad} \oint^{\frac{\delta Q}{T} \leq 0} \\
\oint\left(\frac{\delta Q}{T}\right)_{\mathrm{intrev}}
\end{array}=0
$$

Formal definition of entropy

$$
d S=\left(\frac{\delta Q}{T}\right)_{\text {intrev }} \quad(\mathrm{kJ} / \mathrm{K})
$$

$$
\Delta S=S_{2}-S_{1}=\int_{1}^{2}\left(\frac{\delta Q}{T}\right)_{\text {intrev }} \quad(\mathrm{kJ} / \mathrm{K})
$$

The equality in the Clausius inequality holds for totally or just internally reversible cycles and the inequality for the irreversible ones.

The entropy change between two specified states is the same whether the process is reversible or irreversible.

A Special Case: Internally Reversible Isothermal Heat Transfer

Processes

$$
\Delta S=\int_{1}^{2}\left(\frac{\delta Q}{T}\right)_{\mathrm{int} \mathrm{rev}}=\int_{1}^{2}\left(\frac{\delta Q}{T_{0}}\right)_{\mathrm{intrev}}=\frac{1}{T_{0}} \int_{1}^{2}(\delta Q)_{\mathrm{intrev}}
$$

A quantity whose cyclic integral is zero (i.e., a property like volume)

$$
\oint\left(\frac{\delta Q}{T}\right)_{\mathrm{int} \mathrm{rev}}=0
$$

Entropy is an extensive property of a system.

$$
\Delta S=\frac{Q}{T_{0}}
$$

This equation is particularly useful for determining the entropy changes of thermal energy reservoirs.

The net change in volume (a property) during a cycle is always zero.

EXAMPLE 7-1

A piston-cylinder device contains a liquid-vapor mixture of water at 300 K . During a constant pressure process, 750 kJ of heat is transferred to the water. As a result, part of the liquid in the cylinder vaporizes. Determine the entropy change of the water during this process.

$Q=750 \mathrm{~kJ}$

Solution Heat is transferred to a liquid-vapor mixture of water in a piston-cylinder device at constant pressure. The entropy change of water is to be determined.
Assumptions No irreversibilities occur within the system boundaries during the process.

The system undergoes an internally reversible, isothermal process, and thus its entropy change can be determined directly from

$$
\Delta S_{\text {sys, isothermal }}=\frac{Q}{T_{\text {sys }}}=\frac{750 \mathrm{~kJ}}{300 \mathrm{~K}}=2.5 \mathrm{~kJ} / \mathrm{K}
$$

Discussion Note that the entropy change of the system is positive, as expected, since heat transfer is to the system.

THE INCREASE OF ENTROPY PRINCIPLE

Consider a cycle that is made up of two processes: process $1-2$, which is arbitrary (reversible or irreversible), and process 2-1, which is internally reversible,

$$
\oint \frac{\delta Q}{T} \leq 0 \quad \int_{1}^{2} \frac{\delta Q}{T}+\int_{2}^{1}\left(\frac{\delta Q}{T}\right)_{\mathrm{intrev}} \leq 0
$$

Process 1-2 (reversible or irreversible)

A cycle composed of a reversible and an irreversible process.

The equality holds for an internally reversible process and the inequality for an irreversible process.

$$
d S \geq \frac{\delta Q}{T}
$$

Some entropy is generated or created during an irreversible process, and this generation is due entirely to the presence of irreversibilities.

The entropy generation $S_{\text {gen }}$ is always a positive quantity or zero. Can the entropy of a system during a process decrease?

$$
\Delta S_{\mathrm{sys}}=S_{2}-S_{1}=\int_{1}^{2} \frac{\delta Q}{T}+S_{\mathrm{gen}}
$$

the entropy of an isolated system during a process always increases or, in the limiting case of a reversible process, remains constant. In other words, it never decreases. This is known as the increase of entropy principle.

$$
\begin{gathered}
\Delta S_{\text {isolated }} \geq 0 \\
S_{\text {gen }}=\Delta S_{\text {total }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }} \geq 0
\end{gathered}
$$

(Isolated)
Subsystem 1
Subsystem 2
Subsystem 3

The entropy change of an isolated system is the sum of the entropy changes of its components, and is never less than zero.

$$
\begin{gathered}
\Delta S_{\text {isolated }} \geq 0 \\
S_{\text {gen }}=\Delta S_{\text {total }}=\Delta S_{\text {sys }}+\Delta S_{\text {surr }} \geq 0
\end{gathered}
$$

A system and its surroundings form an isolated system.

$$
S_{\mathrm{gen}}\left\{\begin{array}{lll}
> & 0 & \text { Irreversible process } \\
= & 0 & \text { Reversible process } \\
< & 0 & \text { Impossible process }
\end{array}\right.
$$

The increase of entropy principle

Some Remarks about Entropy

The entropy change of a system can be negative, but the entropy generation cannot.

1. Processes can occur in a certain direction only, not in any direction. A process must proceed in the direction that complies with the increase of entropy principle, that is, $S_{\text {gen }} \geq 0$. A process that violates this principle is impossible.
2. Entropy is a nonconserved property, and there is no such thing as the conservation of entropy principle. Entropy is conserved during the idealized reversible processes only and increases during all actual processes.
3. The performance of engineering systems is degraded by the presence of irreversibilities, and entropy generation is a measure of the magnitudes of the irreversibilities during that process. It is also used to establish criteria for the performance of engineering devices.

EXAMPLE 7-2

A heat source at 800 K loses 2000 kJ of heat to a sink at (a) 500 K and (b) 750 K . Determine which heat transfer process is more irreversible.

Solution Heat is transferred from a heat source to two heat sinks at different temperatures. The heat transfer process that is more irreversible is to be determined.
Analysis Both cases involve heat transfer through a finite temperature difference, and therefore both are irreversible. The magnitude of the irreversibility associated with each process can be determined by calculating the total entropy change for each case. The total entropy change for a heat transfer process involving two reservoirs (a source and a sink) is the sum of the entropy changes of each reservoir since the two reservoirs form an adiabatic system.
(a) For the heat transfer process to a sink at 500 K :
$\Delta S_{\text {source }}=\frac{Q_{\text {source }}}{T_{\text {source }}}=\frac{-2000 \mathrm{~kJ}}{800 \mathrm{~K}}=-2.5 \mathrm{~kJ} / \mathrm{K} \Delta S_{\text {sink }}=\frac{Q_{\text {sink }}}{T_{\text {sink }}}=\frac{2000 \mathrm{~kJ}}{500 \mathrm{~K}}=+4.0 \mathrm{~kJ} / \mathrm{K}$

$$
S_{\text {gen }}=\Delta S_{\text {total }}=\Delta S_{\text {source }}+\Delta S_{\text {sink }}=(-2.5+4.0) \mathrm{kJ} / \mathrm{K}=+1.5 \mathrm{~kJ} / \mathrm{K}
$$

Therefore, $1.5 \mathrm{~kJ} / \mathrm{K}$ of entropy is generated during this process. Noting that both reservoirs have undergone internally reversible processes, the entire entropy generation took place in the partition.
(b) Repeating the calculations in part (a) for a sink temperature of 750 K, we obtain

$$
\begin{aligned}
& \Delta S_{\text {source }}=-2.5 \mathrm{~kJ} / \mathrm{k} \quad \Delta S_{\text {sink }}=+2.7 \mathrm{~kJ} / \mathrm{K} \\
& S_{\text {gen }}=\Delta S_{\text {total }}=(-2.5+2.7) \mathrm{kJ} / \mathrm{K}=+0.2 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

The total entropy change for the process in part (b) is smaller, and therefore it is less irreversible. This is expected since the process in (b) involves a smaller temperature difference and thus a smaller irreversibility.

Discussion The irreversibilities associated with both processes could be eliminated by operating a Carnot heat engine between the source and the sink. For this case it can be shown that $\Delta S_{\text {total }}=0$.

ENTROPY CHANGE OF PURE SUBSTANCES

Entropy is a property, and thus the value of entropy of a system is fixed once the state of the system is fixed.

The entropy of a pure substance is determined from the tables (like other properties).

Schematic of the T-s diagram for water.

Entropy change

$$
\begin{equation*}
\Delta S=m \Delta s=m\left(s_{2}-s_{1}\right) \tag{kJ/K}
\end{equation*}
$$

EXAMPLE 7-3

A rigid tank contains 5 kg of refrigerant-134a initially at $20^{\circ} \mathrm{C}$ and 140 kPa . The refrigerant is now cooled while being stirred until its pressure drops to 100 kPa . Determine the entropy change of the refrigerant during this process.

$$
s_{2}=s_{f}+x_{2} s_{f g}=0.07188+(0.859)(0.87995)=0.8278 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

$$
\begin{aligned}
\Delta S & =m\left(s_{2}-s_{1}\right)=(5 \mathrm{~kg})(0.8278-1.0624) \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& =-\mathbf{1 . 1 7 3} \mathbf{k J} / \mathbf{K}
\end{aligned}
$$

Discussion The negative sign indicates that the entropy of the system is decreasing during this process. This is not a violation of the second law, however, since it is the entropy generation $S_{g e n}$ that cannot be negative.

EXAMPLE 7-4

A piston-cylinder device initially contains 1.5 kg of liquid water at 150 kPa and $20^{\circ} \mathrm{C}$. The water is now heated at constant pressure by the addition of 4000 kJ of heat. Determine the entropy change of the water during this process.

$$
\Delta U+W_{b}=\Delta H
$$

$$
Q_{\mathrm{g}}-W_{s}=\Delta U
$$

$$
Q_{\mathrm{g}}=\Delta H=m\left(h_{2}-h_{1}\right)
$$

$$
4000 \mathrm{~kJ}=(1.5 \mathrm{~kg})\left(h_{2}-83.915 \mathrm{~kJ} / \mathrm{kg}\right)
$$

$$
h_{2}=2750.6 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\left.\begin{array}{l}
P_{2}=150 \mathrm{kPa} \\
h_{2}=2750.6 \mathrm{~kJ} / \mathrm{kg}
\end{array}\right\} \begin{aligned}
& s_{2}=7.3674 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& \text { (Tablo A-6, doğrusal oranlama) }
\end{aligned}
$$

$$
\begin{aligned}
\Delta S=m\left(s_{2}-s_{1}\right) & =(1.5 \mathrm{~kg})(7.3674-0.2965) \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& =\mathbf{1 0 . 6 1 ~ k J} / \mathbf{k g}
\end{aligned}
$$

ISENTROPIC PROCESSES

A process during which the entropy remains constant is called an isentropic process.

$$
\Delta s=0 \quad \text { or } \quad s_{2}=s_{1} \quad(\mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})
$$

During an internally reversible, adiabatic (isentropic) process, the entropy remains constant.

The isentropic process appears as a vertical line
segment on a T-s diagram.

EXAMPLE 7-5

Steam enters an adiabatic turbine at 5 MPa and $450^{\circ} \mathrm{C}$ and leaves at a pressure of 1.4 MPa .
Determine the work output of the turbine per unit mass of steam if the process is reversible.

Solution Steam is expanded in an adiabatic turbine to a specified pressure in a reversible manner. The work output of the turbine is to be determined.
Assumptions 1 This is a steady-flow process since there is no change with time at any point and thus $\Delta m_{\mathrm{CV}}=0, \Delta E_{\mathrm{CV}}=0$, and $\Delta S_{\mathrm{CV}}=0.2$ The process is reversible. 3 Kinetic and potential energies are negligible. 4 The turbine is adiabatic and thus there is no heat transfer.

The inlet state is completely specified since two properties are given. But only one property (pressure) is given at the final state, and we need one more property to fix it. The second property comes from the observation that the process is reversible and adiabatic, and thus isentropic. Therefore, $s_{2}=s_{1}$, and

State 1:

$$
\left.\begin{array}{rl}
P_{1}=5 \mathrm{MPa} \\
T_{1}=450^{\circ} \mathrm{C}
\end{array}\right\} \quad \begin{aligned}
& h_{1}=3317.2 \mathrm{~kJ} / \mathrm{kg} \\
& s_{1}=6.8210 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned} \begin{aligned}
& \left.\begin{array}{l}
P_{2}=1.4 \mathrm{MPa} \\
s_{2}=s_{1}
\end{array}\right\} \quad \begin{array}{l}
h_{2}=2967.4 \mathrm{~kJ} / \mathrm{kg}
\end{array}
\end{aligned}
$$

Then the work output of the turbine per unit mass of the steam becomes

$$
w_{\text {out }}=h_{1}-h_{2}=3317.2-2967.4=349.8 \mathrm{~kJ} / \mathrm{kg}
$$

PROPERTY DIAGRAMS INVOLVING ENTROPY

On a T-S diagram, the area under the process curve represents the heat transfer for internally reversible processes.

The isentropic process appears as a vertical line segment on a T-s diagram.

$$
\begin{align*}
& \delta Q_{\text {int rev }}=T d S \tag{kJ}\\
& \delta q_{\text {int rev }}=T d s
\end{align*}
$$

$$
(\mathrm{kJ} / \mathrm{kg})
$$

$$
Q_{\text {int rev }}=\int_{1}^{2} T d S
$$

$$
\begin{equation*}
q_{\mathrm{intr} \mathrm{rev}}=\int_{1}^{2} T d s \quad(\mathrm{~kJ} / \mathrm{kg}) \tag{kJ/kg}
\end{equation*}
$$

For adiabatic steady-flow devices, the vertical distance Δh on an h-s diagram is a measure of work, and the horizontal distance Δs is a measure of irreversibilities.

$$
\begin{aligned}
& Q_{\text {int rev }}=T_{0} \Delta S \\
& q_{\text {int rev }}=T_{0} \Delta S
\end{aligned}
$$

EXAMPLE 7-6

Show the Carnot cycle on a T-S diagram and indicate the areas that represent the heat supplied Q_{H}, heat rejected Q_{L}, and the net work output $W_{\text {net, out }}$ on this diagram.

Solution The Carnot cycle is to be shown on a T-S diagram, and the areas that represent Q_{H}, Q_{L}, and $W_{\text {net, out }}$ are to be indicated.
Analysis Recall that the Carnot cycle is made up of two reversible isothermal ($T=$ constant) processes and two isentropic ($s=$ constant) processes. These four processes form a rectangle on a T-S diagram,

On a T-S diagram, the area under the process curve represents the heat transfer for that process. Thus the area $A 12 B$ represents Q_{H}, the area $A 43 B$ represents Q_{L}, and the difference between these two (the area in color) represents the net work since

$$
W_{\text {net, out }}=Q_{H}-Q_{L}
$$

Therefore, the area enclosed by the path of a cycle (area 1234) on a T-S diagram represents the net work. Recall that the area enclosed by the path of a cycle also represents the net work on a $P-V$ diagram.

WHAT IS ENTROPY?

The level of molecular disorder (entropy) of a substance increases as it melts or evaporates.

A pure crystalline substance at absolute zero temperature is in perfect order, and its entropy is zero (the third law of thermodynamics).

Disorganized energy does not create much useful effect, no matter how large it is.

In the absence of friction, raising a weight by a rotating
shaft does not create any disorder (entropy), and thus energy is not degraded during this process.

The paddle-wheel work done on a gas increases the level of disorder (entropy) of the gas, and thus energy is degraded during this process.

During a heat transfer process, the net entropy increases. (The increase in the entropy of the cold body more than offsets the decrease in the entropy of the hot body.)

THE T ds RELATIONS

$$
\delta Q_{\text {int rev }}-\delta W_{\text {int rev, out }}=d U
$$

The $T d s$ relations are valid for both reversible and irreversible processes and for both closed and open systems.

$$
\begin{gather*}
\delta Q_{\text {int rev }}=T d S \\
\delta W_{\text {int rev, out }}=P d V \\
T d S=d U+P d V \quad(\mathrm{~kJ}) \tag{kJ}\\
T d s=d u+P d V \quad(\mathrm{~kJ} / \mathrm{kg})
\end{gather*}
$$

the first $T d s$, or Gibbs equation

$$
h=u+P v
$$

$$
\left.\begin{array}{l}
d h=d u+P d v+v d P \\
T d s=d u+P d v
\end{array}\right\} T d s=d h-v d P
$$

the second T ds equation

$$
d s=\frac{d u}{T}+\frac{P d v}{T} \quad d s=\frac{d h}{T}-\frac{v d P}{T}
$$

Differential changes in entropy in terms of other properties

ENTROPY CHANGE OF LIQUIDS AND SOLIDS

Liquids and solids can be approximated as incompressible substances since their specific volumes remain nearly constant during a process.

$$
d s=\frac{d u}{T}+\frac{P d v}{T}
$$

$$
d v \cong 0 \text { for liquids and solids }
$$

$$
d s=\frac{d u}{T}=\frac{c d T}{T}
$$

since $c_{p}=c_{v}=c$ and $d u=c d T$

$$
\text { Liquids, solids: } \quad s_{2}-s_{1}=\int_{1}^{2} c(T) \frac{d T}{T} \cong c_{\mathrm{av}} \ln \frac{T_{2}}{T_{1}} \quad(\mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})
$$

For and isentropic process of an incompressible substance

$$
s_{2}-s_{1}=c_{\mathrm{av}} \ln \frac{T_{2}}{T_{1}}=0 \quad \rightarrow \quad T_{2}=T_{1}
$$

EXAMPLE 7-7

Liquid methane is commonly used in various cryogenic applications. The critical temperature of methane is 191 K (or $-82^{\circ} \mathrm{C}$), and thus methane must be maintained below 191 K to keep it in liquid phase. The properties of liquid methane at various temperatures and pressures are given in Table $7-1$. Determine the entropy change of liquid methane as it undergoes a process from 110 K and 1 MPa to 120 K and 5 MPa (a) using actual data for methane and (b) approximating liquid methane as an incompressible substance. What is the error involved in the latter case?

Solution Liquid methane undergoes a process between two specifiedstates. The entropy change of methane is to be determined by using compressed liquid data and by assuming methane to be incompressible, and the results are to be compared.
(a) We consider a unit mass of liquid methane. The entropies of the methane at the initial and final states are

State 1:

$$
\begin{aligned}
& \left.P_{1}=1 \mathrm{MPa}\right\} \quad s_{1}=4.875 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& \left.T_{1}=110 \mathrm{~K}\right\} \quad c_{p 1}=3.471 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& \left.P_{2}=5 \mathrm{MPa}\right\} \quad s_{2}=5.145 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& \left.T_{2}=120 \mathrm{~K}\right\} \quad c_{p 2}=3.486 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

State 2:

$$
\Delta s=s_{2}-s_{1}=5.145-4.875=0.270 \mathrm{~kJ} / \mathbf{k g} \cdot \mathbf{K}
$$

(b) Approximating liquid methane as an incompressible substance, its entropy change is determined to be

$$
\begin{gathered}
\Delta s=c_{\mathrm{av}} \ln \frac{T_{2}}{T_{1}}=(3.4785 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}) \ln \frac{120 \mathrm{~K}}{110 \mathrm{~K}}=0.303 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
c_{p, \mathrm{av}}=\frac{c_{p 1}+c_{p 2}}{2}=\frac{3.471+3.486}{2}=3.4785 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{gathered}
$$

Therefore, the error involved in approximating liquid methane as an incompressible substance is

$$
\text { Error }=\frac{\left|\Delta s_{\text {actual }}-\Delta s_{\text {ideal }}\right|}{\Delta s_{\text {actual }}}=\frac{|0.270-0.303|}{0.270}=\mathbf{0 . 1 2 2}(\text { or } \mathbf{1 2 . 2 \%})
$$

Discussion This result is not surprising since the density of liquid methane changes during this process from 425.8 to $415.2 \mathrm{~kg} / \mathrm{m}^{3}$ (about 3%), which makes us question the validity of the incompressible substance assumption. Still, this assumption enables us to obtain reasonably accurate results with less effort, which proves to be very convenient in the absence of compressed liquid data.

THE ENTROPY CHANGE OF IDEAL GASES

From the first $T d s$ relation

$$
\begin{array}{rlrl}
d s=\frac{d u}{T}+\frac{P d v}{T} & d u & =c_{v} d T \\
P & =R T / v
\end{array}
$$

$$
d s=c_{v} \frac{d T}{T}+R \frac{d v}{V}
$$

$$
s_{2}-s_{1}=\int_{1}^{2} c_{v}(T) \frac{d T}{T}+R \ln \frac{V_{2}}{V_{1}}
$$

From the second $T d s$ relation

$$
d s=\frac{d h}{T}-\frac{v d P}{T}
$$

$$
d h=c_{p} d T \quad v=R T / P
$$

$$
s_{2}-s_{1}=\int_{1}^{2} c_{p}(T) \frac{d T}{T}-R \ln \frac{P_{2}}{P_{1}}
$$

$$
\begin{aligned}
& P v=R T \\
& d u=C_{v} d T \\
& d h=C_{p} d T
\end{aligned}
$$

Constant Specific Heats (Approximate Analysis)

$$
\begin{align*}
& s_{2}-s_{1}=\int_{1}^{2} c_{v}(T) \frac{d T}{T}+R \ln \frac{V_{2}}{v_{1}} s_{2}-s_{1}=c_{v, \text { av }} \ln \frac{T_{2}}{T_{1}}+R \ln \frac{V_{2}}{V_{1}} \\
& s_{2}-s_{1}=\int_{1}^{2} c_{p}(T) \frac{d T}{T}-R \ln \frac{P_{2}}{P_{1}} s_{2}-s_{1}=c_{p, \text { av }} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{P_{2}}{P_{1}}
\end{align*}
$$

Entropy change of an ideal gas on a unit-mole basis

$$
\begin{array}{ll}
\bar{s}_{2}-\bar{s}_{1}=\bar{c}_{V, \text { av }} \ln \frac{T_{2}}{T_{1}}+R_{u} \ln \frac{V_{2}}{V_{1}} & (\mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{~K}) \\
\bar{s}_{2}-\bar{s}_{1}=\bar{c}_{p, \text { av }} \ln \frac{T_{2}}{T_{1}}-R_{u} \ln \frac{P_{2}}{P_{1}} & (\mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{~K})
\end{array}
$$

Under the constant-specific-heat assumption,
the specific heat is assumed to be constant at some average value.

Variable Specific Heats (Exact Analysis)

We choose absolute zero as the reference temperature and define a function s° as

$$
\begin{aligned}
& s^{\circ}=\int_{0}^{T} c_{p}(T) \frac{d T}{T} \\
& \int_{1}^{2} c_{p}(T) \frac{d T}{T}=s_{2}^{\circ}-s_{1}^{\circ}
\end{aligned}
$$

On a unit-mass basis

$$
s_{2}-s_{1}=s_{2}^{\circ}-s_{1}^{\circ}-R \ln \frac{P_{2}}{P_{1}} \quad(\mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})
$$

The entropy of an ideal gas depends on both T and P. The function s represents only the temperaturedependent part of entropy.

On a unit-mole basis

$$
\bar{s}_{2}-\bar{s}_{1}=\bar{s}_{2}^{\circ}-\bar{s}_{1}^{\circ}-R_{u} \ln \frac{P_{2}}{P_{1}} \quad(\mathrm{~kJ} / \mathrm{kmol} \cdot \mathrm{~K})
$$

EXAMPLE 7-9

Air is compressed from an initial state of 100 kPa and $17^{\circ} \mathrm{C}$ to a final state of 600 kPa and $57^{\circ} \mathrm{C}$. Determine the entropy change of air during this compression process by using (a) property values from the air table and (b) average specific heats.

Solution Air is compressed between two specified states. The entropy change of air is to be determined by using tabulated property values and also by using average specific heats.
Assumptions Air is an ideal gas since it is at a high temperature and low pressure relative to its critical-point values. Therefore, entropy
 change relations developed under the idealgas assumption are applicable.
(a) The properties of air are given in the air table (Table A-21). Reading s values at given temperatures and substituting, we find

$$
\begin{aligned}
s_{2}-s_{1} & =s_{2}^{\circ}-s_{1}^{\mathrm{\circ}}-R \ln \frac{P_{2}}{P_{1}} \\
& =[(1.79783-1.66802) \mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K}]-(0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}) \ln \frac{600 \mathrm{kPa}}{100 \mathrm{kPa}} \\
& =-0.3844 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

(b) The entropy change of air during this process can also be determined approximately from Eq. 7-34 by using a c_{p} value at the average temperature of $37^{\circ} \mathrm{C}$ (Table A-2b) and treating it as a constant:

$$
\begin{aligned}
s_{2}-s_{1} & =c_{p, \text { av }} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{P_{2}}{P_{1}} \\
& =(1.006 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}) \ln \frac{330 \mathrm{~K}}{290 \mathrm{~K}}-(0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}) \ln \frac{600 \mathrm{kPa}}{100 \mathrm{kPa}} \\
& =-0.3842 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

Discussion The two results above are almost identical since the change in temperature during this process is relatively small. When the temperature change is large, however, they may differ significantly. For those cases, Eq. 7-39 should be used instead of Eq. 7-34 since it accounts for the variation of specific heats with temperature.

$$
\begin{gathered}
\mathrm{AIR} \\
T_{1}=290 \mathrm{~K} \\
T_{2}=330 \mathrm{~K} \\
s_{2}-s_{1}=s_{2}^{\rho}-\mathrm{s}_{\mathrm{i}}^{\rho}-R \ln \frac{P_{2}}{P_{1}} \\
=-0.3844 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{k} \\
s_{2}-s_{1}= \\
C_{p, \mathrm{av}} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{P_{2}}{P_{1}} \\
=-
\end{gathered}
$$

Isentropic Processes of Ideal Gases

Constant Specific Heats (Approximate Analysis)

$$
s_{2}-s_{1}=c_{V, \text { av }} \ln \frac{T_{2}}{T_{1}}+R \ln \frac{V_{2}}{V_{1}}
$$

Setting this eq. equal to zero, we get

$$
\left(\frac{T_{2}}{T_{1}}\right)_{s=\text { const. }}=\left(\frac{P_{2}}{P_{1}}\right)^{(k-1) / k}=\left(\frac{v_{1}}{v_{2}}\right)^{k-1}
$$

$$
\begin{array}{lc}
\ln \frac{T_{2}}{T_{1}}=-\frac{R}{c_{v}} \ln \frac{V_{1}}{V_{2}} & \ln \frac{T_{2}}{T_{1}}=\ln \left(\frac{V_{1}}{V_{2}}\right)^{R / c_{v}} \\
R=c_{p}-c_{v}, k=c_{p} / c_{V} & R / c_{v}=k-1
\end{array}
$$

$$
\left(\frac{T_{2}}{T_{1}}\right)_{s=\text { const. }}=\left(\frac{V_{1}}{V_{2}}\right)^{k-1} \quad\left(\frac{T_{2}}{T_{1}}\right)_{s=\text { const. }}=\left(\frac{P_{2}}{P_{1}}\right)^{(k-1) / k}
$$

*ideal gas
VALID FOR *isentropic process *constant specific heats

The isentropic relations of ideal gases are valid for the isentropic processes of ideal gases only.

$$
\left(\frac{P_{2}}{P_{1}}\right)_{s=\text { cons. }}=\left(\frac{V_{1}}{V_{2}}\right)^{k}
$$

$$
\begin{aligned}
T V^{k-1} & =\text { constant } \\
T P^{(1-k) / k} & =\text { constant } \quad \text { (ideal gas) } \\
P V^{k} & =\text { constant }
\end{aligned}
$$

Isentropic Processes of Ideal Gases

Variable Specific Heats (Exact Analysis)

$0=s_{2}^{\circ}-s_{1}^{\circ}-R \ln \frac{P_{2}}{P_{1}} \quad \longrightarrow \quad s_{2}^{\circ}-s_{1}^{\circ}+R \ln \frac{P_{2}}{P_{1}}$

Relative Pressure and Relative Specific Volume

$$
\begin{gathered}
\frac{P_{2}}{P_{1}}=\exp \frac{s_{2}^{\circ}-s_{1}^{\circ}}{R} \quad \exp \left(s^{\circ} / R\right) \text { is the relative pressure } P_{r} \\
\left(\frac{P_{2}}{P_{1}}\right)_{s=\text { const. }}=\frac{P_{2}}{P_{1}}=\frac{\exp \left(s_{2}^{\circ} / R\right)}{\exp \left(s_{1}^{\circ} / R\right)} \\
\left(\frac{V_{2}}{V_{1}}\right)_{s=\text { const. }}=\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \rightarrow \frac{V_{2}}{V_{r 1}}=\frac{T_{2}}{V_{1}} \frac{P_{1}}{P_{2}}=\frac{T_{2}}{T_{1}} \frac{P_{r 1}}{P_{r 2}}=\frac{T_{2} / P_{r 2}}{T_{1} / P_{r 1}} \\
\hline
\end{gathered}
$$

Process: isentropic
Given: P_{1}, T_{1}, and P_{2}
Find: T_{2}

The use of P_{r} data for calculating the final temperature during an isentropic process.

Process: isentropic

Given: v_{1}, T_{1}, and v_{2}
Find: T_{2}

The use of v_{r} data for calculating the final temperature during an isentropic process

EXAMPLE 7-10

Air is compressed in a car engine from $22^{\circ} \mathrm{C}$ and 95 kPa in a reversible and adiabatic manner. If the compression ratio V_{1} / V_{2} of this piston-cylinder device is 8 , determine the final temperature of the air.

Solution Air is compressed in a car engine isentropically. For a given compression ratio, the final air temperature is to be determined.
Assumptions At specified conditions, air can be treated as an ideal gas. Therefore, the isentropic relations developed earlier for ideal gases are applicable.

Therefore, the temperature of air will increase by 367.7C during this process.

EXAMPLE 7-11

Helium gas is compressed in an adiabatic compressor from an initial state of 100 kPa and $10^{\circ} \mathrm{C}$ to a final temperature of $160^{\circ} \mathrm{C}$ in a reversible manner. Determine the exit pressure of helium.

Assumptions At specified conditions helium can be treated as an ideal gas since it is at a high temperature relative to its critical-point value of 450F. Therefore, the isentropic relations developed earlier for ideal gases are applicable.

$$
P_{2}=P_{1}\left(\frac{T_{2}}{T_{1}}\right)^{k /(k-1)}=(100 \mathrm{kPa})\left(\frac{780 \mathrm{R}}{510 \mathrm{R}}\right)^{1.667 / 0.667}=289 \mathrm{kPa}
$$

REVERSIBLE STEADY-FLOW WORK

The work done during a process depends on the path followed as well as on the properties at the end states. Recall that reversible (quasi-equilibrium) moving boundary work associated with closed systems is expressed in terms of the fluid properties as

$$
\left.\begin{array}{l}
\delta q_{\mathrm{rev}}=T d s \\
T d s=d h-v d P
\end{array}\right\} \quad \delta q_{\mathrm{rev}}=d h-v d P
$$

$-\delta w_{\mathrm{rev}}=v d P+d \mathrm{ke}+d \mathrm{pe}$

$$
w_{\mathrm{rev}}=-\int_{1}^{2} v d P-\Delta \mathrm{ke}-\Delta \mathrm{pe} \quad(\mathrm{~kJ} / \mathrm{kg})
$$

When kinetic and potential energies are negligible

$$
\begin{gathered}
w_{\mathrm{rev}}=-\int_{1}^{2} v d P \quad(\mathrm{~kJ} / \mathrm{kg}) \\
w_{\mathrm{rev}, \mathrm{in}}=\int_{1}^{2} v d P+\Delta \mathrm{ke}+\Delta \mathrm{pe} \\
w_{\mathrm{rev}}=-v\left(P_{2}-P_{1}\right)-\Delta \mathrm{ke}-\Delta \mathrm{pe} \quad(\mathrm{~kJ} / \mathrm{kg})
\end{gathered}
$$

For the steady flow of a liquid through a device that involves no work interactions (such as a pipe section), the work term is zero (Bernoulli equation):

$$
v\left(P_{2}-P_{1}\right)+\frac{V_{2}^{2}-V_{1}^{1}}{2}+g\left(z_{2}-z_{1}\right)=0
$$

(a) Steady-flow system
(b) Closed system

Reversible work relations for steady-flow and closed systems.

The larger the specific volume, the greater the work produced (or consumed) by a steady-flow device.

EXAMPLE 7-12

Determine the compressor work input required to compress steam isentropically from 100 kPa to 1 MPa, assuming that the steam exists as (a) saturated liquid and (b) saturated vapor at the inlet state.

Solution Steam is to be compressed from a given pressure to a specified pressure isentropically. The work input is to be determined for the cases of steam being a saturated liquid and saturated vapor at the inlet.
Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible. 3 The process is given to be isentropic.

(a) Compressing
a liquid

(b) Compressing
a vapor

(a) In this case, steam is a saturated liquid initially, and its specific volume is

$$
v_{1}=v_{f @ 100 \mathrm{kPa}}=0.001043 \mathrm{~m}^{3} / \mathrm{kg}
$$

$$
\begin{aligned}
w_{\text {rev }, \text { in }} & =\int_{1}^{2} v d P \cong v_{1}\left(P_{2}-P_{1}\right) \\
& =\left(0.001043 \mathrm{~m}^{3} / \mathrm{kg}\right)[(1000-100) \mathrm{kPa}]\left(\frac{1 \mathrm{~kJ}}{1 \mathrm{kPa} \cdot \mathrm{~m}^{3}}\right) \\
& =0.94 \mathbf{~ k J} / \mathbf{k g}
\end{aligned}
$$

(b) This time, steam is a saturated vapor initially and remains a vapor during the entire compression process. Since the specific volume of a gas changes considerably during a compression process, we need to know how v varies with P to perform the integration in Eq. 7-53. This relation, in general, is not readily available. But for an isentropic process, it is easily obtained from the

$$
\left.\begin{array}{rl}
T d s & =d h-v d P \quad(\text { Eq. 7-24) } \\
d s & =0 \quad \text { (isentropic process) }
\end{array}\right\} \quad v d P=d h \quad w_{\text {rev, in }}=\int_{1}^{2} v d P=\int_{1}^{2} d h=h_{2}-h_{1}
$$

$$
\left.\left.\left.\begin{array}{cc}
\text { State 1: } & \begin{array}{c}
P_{1}=100 \mathrm{kPa} \\
(\text { sat. vapor })
\end{array}
\end{array}\right\} \begin{array}{c}
h_{1}=2675.0 \mathrm{~kJ} / \mathrm{kg} \\
s_{1}=7.3589 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{array}\right] \begin{array}{l}
P_{2}=1 \mathrm{MPa} \\
s_{2}=s_{1}
\end{array}\right\} \quad \begin{aligned}
& h_{2}=3194.5 \mathrm{~kJ} / \mathrm{kg} \\
& \text { State 2: } \\
& w_{\text {rev, in }}=(3194.5-2675.0) \mathrm{kJ} / \mathrm{kg}=\mathbf{5 1 9 . 5} \mathbf{~ k J} / \mathrm{kg}
\end{aligned}
$$

Discussion Note that compressing steam in the vapor form would require over 500 times more work than compressing it in the liquid form between the same pressure limits.

Proof that Steady-Flow Devices Deliver the Most and Consume the Least

 Work when the Process Is Reversible
Taking heat input and work output positive:

$$
\begin{aligned}
& \delta q_{\mathrm{act}}-\delta w_{\mathrm{act}}=d h+d \mathrm{ke}+d \mathrm{pe} \\
& \delta q_{\mathrm{rev}}-\delta w_{\mathrm{rev}}=d h+d \mathrm{ke}+d \mathrm{pe}
\end{aligned}
$$

Actual
Reversible

A reversible turbine delivers more work than an irreversible one if both operate between the same end states.

$$
P_{2}, T_{2}
$$

$$
\delta q_{\mathrm{act}}-\delta w_{\mathrm{act}}=d h+d \mathrm{ke}+d \mathrm{pe}
$$

$$
\frac{\delta w_{\mathrm{rev}}-\delta w_{\mathrm{act}}}{T}=d s-\frac{\delta q_{\mathrm{act}}}{T} \geq 0
$$

$$
\partial w_{\mathrm{rev}} \geq \partial w_{\mathrm{act}}
$$

$$
w_{\mathrm{rev}} \geq w_{\mathrm{act}}
$$

Work-producing devices such as turbines deliver more work, and work-consuming devices such as pumps and compressors require less work when they operate reversibly.

MINIMIZING THE COMPRESSOR WORK

When kinetic and potential energies are negligible

$$
w_{\mathrm{rev}, \mathrm{in}}=\int_{1}^{2} \vee d P
$$

Isentropic ($P V^{k}=$ constant $)$:
$w_{\text {comp, in }}=\frac{k R\left(T_{2}-T_{1}\right)}{k-1}=\frac{k R T_{1}}{k-1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{(k-1) / k}-1\right]$
Polytropic $\left(P V^{n}=\right.$ constant $)$:

$$
w_{\text {comp, in }}=\frac{n R\left(T_{2}-T_{1}\right)}{n-1}=\frac{n R T_{1}}{n-1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{(n-1) / n}-1\right]
$$

Isothermal ($P v=$ constant $)$:

$P-v$ diagrams of isentropic, polytropic, and isothermal compression processes between the same pressure limits.

$$
w_{\text {comp, in }}=R T \ln \frac{P_{2}}{P_{1}}
$$

The adiabatic compression ($P v^{k}=$ constant) requires the maximum work and the isothermal compression ($T=$ constant) requires the minimum.

ISENTROPIC EFFICIENCIES OF STEADY-FLOW DEVICES

The isentropic process involves no irreversibilities and serves as the ideal process for adiabatic devices.

Isentropic Efficiency of Turbines

The h-s diagram for the actual and isentropic processes of an adiabatic turbine.

$$
\eta_{T}=\frac{\text { Actual turbine work }}{\text { Isentropic turbine work }}=\frac{w_{a}}{w_{s}} \quad \eta_{T} \cong \frac{h_{1}-h_{2 a}}{h_{1}-h_{2 s}}
$$

EXAMPLE 7-14

Steam enters an adiabatic turbine steadily at 3 MPa and $400^{\circ} \mathrm{C}$ and leaves at 50 kPa and $100^{\circ} \mathrm{C}$. If the power output of the turbine is 2 MW , determine (a) the isentropic efficiency of the turbine and (b) the mass flow rate of the steam flowing through the turbine.

Solution Steam flows steadily between specified inlet and exit states. For a specified power output, the isentropic efficiency and the mass flow rate are to be determined.
Assumptions 1 Steady operating conditions exist. 2 The changes in kinetic and potential energies are negligible. 3 The turbine is adiabatic.

(a) The enthalpies at various states are

$$
\begin{array}{ll}
\text { State 1: } & \left.\begin{array}{l}
P_{1}=3 \mathrm{MPA} \\
T_{1}=400^{\circ} \mathrm{C}
\end{array}\right\}
\end{array} \begin{gathered}
h_{1}=3231.7 \mathrm{~kJ} / \mathrm{kg} \\
s_{1}=6.9235 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{gathered}
$$

The exit enthalpy of the steam for the isentropic process $h_{2 s}$ is determined from the requirement that the entropy of the steam remain constant ($s_{2 s}=s 1$):

State $2 s: \quad \begin{aligned} & P_{2 s}=50 \mathrm{kPa} \\ & \left(s_{2 s}=s_{1}\right)\end{aligned} \rightarrow \quad \begin{aligned} & s_{f}=1.0912 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K} \\ & s_{g}=7.5931 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\end{aligned}$

$$
x_{2 s}=\frac{s_{2 s}-s_{f}}{s_{f g}}=\frac{6.9235-1.0912}{6.5019}=0.897
$$

$$
h_{2 s}=h_{f}+x_{2 s} h_{f g}=340.54+0.897(2304.7)=2407.9 \mathrm{~kJ} / \mathrm{kg}
$$

$$
\eta_{T} \cong \frac{h_{1}-h_{2 a}}{h_{1}-h_{2 s}}=\frac{3231.7-2682.4}{3231.7-2407.9}=0.667, \text { or } 66.7 \%
$$

(b) The mass flow rate of steam through this turbine is determined from the energy balance for steady-flow systems:

$$
\begin{aligned}
& \dot{E}_{\text {in }}=\dot{E}_{\text {out }} \quad \dot{m} h_{1}=\dot{W}_{a, \text { out }}+\dot{m} h_{2 a} \quad \dot{W}_{a, \text { out }}=\dot{m}\left(h_{1}-h_{2 a}\right) \\
& 2 \mathrm{MW}\left(\frac{1000 \mathrm{~kJ} / \mathrm{s}}{1 \mathrm{MW}}\right)=\dot{m}(3231.7-2682.4) \mathrm{kJ} / \mathrm{kg} \\
& \dot{m}=3.64 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

Isentropic Efficiencies of Compressors and Pumps

$$
\eta_{C}=\frac{\text { Isentropic compressor work }}{\text { Actual compressor work }}=\frac{w_{s}}{w_{a}}
$$

$$
\eta_{C} \cong \frac{h_{2 s}-h_{1}}{h_{2 a}-h_{1}}
$$

When kinetic and potential energies are negligible
$\eta_{P}=\frac{w_{s}}{w_{a}}=\frac{v\left(P_{2}-P_{1}\right)}{h_{2 a}-h_{1}}$

$$
\eta_{C}=\frac{w_{t}}{w_{a}}
$$

Isothermal efficiency

The h-s diagram of the actual and isentropic processes of an adiabatic compressor.

EXAMPLE 7-15

Air is compressed by an adiabatic compressor from 100 kPa and $12^{\circ} \mathrm{C}$ to a pressure of 800 kPa at a steady rate of $0.2 \mathrm{~kg} / \mathrm{s}$. If the isentropic efficiency of the compressor is 80 percent, determine (a) the exit temperature of air and (b) the required power input to the compressor.

Solution Air is compressed to a specified pressure at a specified rate. For a given isentropic efficiency, the exit temperature and the power input are to be determined. Assumptions 1 Steady operating conditions exist. 2 Air is an ideal gas. 3 The changes in kinetic and potential energies are negligible. 4 The compressor is adiabatic.
(a) We know only one property (pressure) at the exit state, and we need to know one more to fix the state and thus determine the exit temperature. The property that can be determined with minimal effort in this case is $h_{2 a}$ since the isentropic efficiency of the compressor is given. At the compressor inlet,

$$
\begin{gathered}
T_{1}=285 \mathrm{~K} \rightarrow \begin{array}{c}
h_{1}=285.14 \mathrm{~kJ} / \mathrm{kg} \quad P_{r 2}=P_{r 1}\left(\frac{P_{2}}{P_{1}}\right)=1.1584\left(\frac{800 \mathrm{kPa}}{100 \mathrm{kPa}}\right)=9.2672 \\
\left(P_{r 1}=1.1584\right)
\end{array} \\
P_{r 2}=9.2672 \quad \rightarrow \quad h_{2 s}=517.05 \mathrm{~kJ} / \mathrm{kg} \\
\eta_{C} \cong \frac{h_{2 s}-h_{1}}{h_{2 a}-h_{1}} \rightarrow 0.80=\frac{(517.05-285.14) \mathrm{kJ} / \mathrm{kg}}{\left(h_{2 a}-285.14\right) \mathrm{kJ} / \mathrm{kg}} \\
h_{2 a}=575.03 \mathrm{~kJ} / \mathrm{kg} \quad \rightarrow \quad T_{2 a}=\mathbf{5 6 9 . 5} \mathbf{K}
\end{gathered}
$$

(b) The required power input to the compressor is determined from the energy balance for steady-flow devices,

$$
\begin{aligned}
\dot{E}_{\text {in }} & =\dot{E}_{\text {out }} \quad \dot{m} h_{1}+\dot{W}_{a, \text { in }}=\dot{m} h_{2 a} \quad \dot{W}_{a, \text { in }}=\dot{m}\left(h_{2 a}-h_{1}\right) \\
& =(0.2 \mathrm{~kg} / \mathrm{s})[(575.03-285.14) \mathrm{kJ} / \mathrm{kg}]=\mathbf{5 8 . 0} \mathbf{~ k W}
\end{aligned}
$$

Discussion Notice that in determining the power input to the compressor, we used $h_{2 a}$ instead of $h_{2 s}$ since $h_{2 a}$ is the actual enthalpy of the air as it exits the compressor. The quantity $h_{2 s}$ is a hypothetical enthalpy value that the air would have if the process were isentropic.

Isentropic Efficiency of Nozzles

Nozzles are essentially adiabatic devices and are used to accelerate a fluid. Therefore, the isentropic process serves as a suitable model for nozzles.

If the inlet velocity of the fluid is small relative to the exit velocity, the energy balance is

$$
h_{1}=h_{2 a}+\frac{V_{2 a}^{2}}{2}
$$

$$
\eta_{N}=\frac{\text { Actual KE at nozzle exit }}{\text { Isentropic KE at nozzle exit }}=\frac{V_{2 a}^{2}}{V_{2 s}^{2}}
$$

The h-s diagram of the actual and isentropic processes of an adiabatic nozzle.

$$
\eta_{N} \cong \frac{h_{1}-h_{2 a}}{h_{1}-h_{2 s}}
$$

A substance leaves actual nozzles at a higher temperature (thus a lower velocity) as a result of friction.

EXAMPLE 7-16

Air at 200 kPa and 950 K enters an adiabatic nozzle at low velocity and is discharged at a pressure of 80 kPa . If the isentropic efficiency of the nozzle is 92 percent, determine (a) the maximum possible exit velocity, (b) the exit temperature, and (c) the actual velocity of the air. Assume constant specific heats for air.

Solution The acceleration of air in a nozzle is considered. For specified exit pressure and isentropic efficiency, the maximum and actual exit velocities and the exit temperature are to be determined.
Assumptions 1 Steady operating conditions exist. 2 Air is an ideal gas. 3 The inlet kinetic energy is negligible. 4 The nozzle is adiabatic.

(a) the maximum possible exit velocity

$$
\begin{aligned}
\frac{T_{2 s}}{T_{1}}=\left(\frac{P_{2 s}}{P_{1}}\right)^{(k-1) / k} T_{2 s} & =T_{1}\left(\frac{P_{2 s}}{P_{1}}\right)^{(k-1) / k}=(950 \mathrm{~K})\left(\frac{80 \mathrm{kPa}}{200 \mathrm{kPa}}\right)^{0.354 / 1.354}=748 \mathrm{~K} \\
e_{\text {in }}=e_{\text {out }} & V_{2 s}
\end{aligned}=\sqrt{2\left(h_{1}-h_{2 s}\right)}=\sqrt{2 c_{p, \text { av }}\left(T_{1}-T_{2 s}\right)} .
$$

(b) The actual exit temperature of the air will be higher than the isentropic exit temperature evaluated above, and it is determined from

$$
\eta_{N} \cong \frac{h_{1}-h_{2 a}}{h_{1}-h_{2 s}}=\frac{c_{p, \text { av }}\left(T_{1}-T_{2 a}\right)}{c_{p, \text { av }}\left(T_{1}-T_{2 s}\right)} \quad 0.92=\frac{950-T_{2 a}}{950-748} \quad \rightarrow \quad T_{2 a}=764 \mathrm{~K}
$$

(c) The actual exit velocity of air can be determined from the definition of isentropic efficiency of a nozzle,

$$
\eta_{N}=\frac{V_{2 a}^{2}}{V_{2 s}^{2}} \quad \rightarrow \quad V_{2 a}=\sqrt{\eta_{N} V_{2 s}^{2}}=639 \mathrm{~m} / \mathrm{s}
$$

ENTROPY BALANCE

The property entropy is a measure of molecular disorder or randomness of a system, and the second law of thermodynamics states that entropy can be created but it cannot be destroyed.

Energy and entropy balances for a system.

The entropy change of a system during a process is equal to the net entropy transfer through the system boundary and the entropy generated within the system.

$$
\left(\begin{array}{l}
\text { Total } \\
\text { entropy } \\
\text { entering }
\end{array}\right)-\left(\begin{array}{c}
\text { Total } \\
\text { entropy } \\
\text { leaving }
\end{array}\right)+\left(\begin{array}{c}
\text { Total } \\
\text { entropy } \\
\text { generated }
\end{array}\right)=\left(\begin{array}{c}
\text { Change in the } \\
\text { total entropy } \\
\text { of the system }
\end{array}\right)
$$

$$
S_{\mathrm{in}}-S_{\mathrm{out}}+S_{\mathrm{gen}}=\Delta S_{\text {system }}
$$

```
Entropy Change of a System, }\Delta\mp@subsup{S}{\mathrm{ system }}{
```

$$
\text { Entropy change }=\text { Entropy at final state }- \text { Entropy at initial state }
$$

$$
\Delta S_{\text {system }}=S_{\text {final }}-S_{\text {initial }}=S_{2}-S_{1}
$$

When the properties of the system are not uniform
the entropy change of steady-flow devices such as nozzles, compressors, turbines, pumps, and heat exchangers is zero during steady operation.

When the properties of the system are not uniform, the entropy of the system can be determined by integration from

$$
S_{\text {system }}=\int s \delta m=\int_{V} s \rho d V
$$

Mechanisms of Entropy Transfer, $S_{\text {in }}$ and $S_{\text {out }}$

1 Heat Transfer

Entropy transfer by work:

Entropy transfer by heat transfer:

$$
S_{\text {work }}=0
$$

Heat transfer is always accompanied by entropy transfer in the amount of Q / T, where T is the boundary temperature.

No entropy accompanies work as it crosses the system boundary. But entropy may be generated within the system as work is dissipated into a less useful form of energy.

Mechanisms of Entropy Transfer, $S_{\text {in }}$ and $S_{\text {out }}$

2 Mass Flow

Entropy transfer by mass:

$$
S_{\text {mass }}=m s
$$

When the properties of the mass change during the process

$$
\dot{S}_{\mathrm{mass}}=\int_{A_{c}} s \rho V_{n} d A_{c}
$$

$$
S_{\mathrm{mass}}=\int s \delta m=\int_{\Delta t} \dot{S}_{\mathrm{mass}} d t
$$

> Mass contains entropy as well as energy, and thus mass flow into or out of system is always accompanied by energy and entropy transfer.

$\underbrace{S_{\text {in }}-S_{\text {out }}}_{$| Net entropy transfer |
| :---: |
| by heat and mass |$}+\underbrace{S_{\text {gen }}}_{$| Entropy |
| :---: |
| generation |$}=\underbrace{\Delta S_{\text {system }}}_{$| Change |
| :---: |
| in entropy |$} \quad(\mathrm{kJ} / \mathrm{K})$

$\underbrace{\dot{S}_{\text {in }}-\dot{S}_{\text {out }}}_{$| Rate of net entropy |
| :---: |
| transfer by heat |
| and mass |$}+\underbrace{\dot{S}_{\text {gen }}}_{$| Rate of entropy |
| :---: |
| generation |$}=\underbrace{\Delta \dot{S}_{\text {system }}}_{$| Rate of change |
| :---: |
| in entropy |$} \quad(\mathrm{kW} / \mathrm{K})$

$$
\left(s_{\text {in }}-s_{\text {out }}\right)+s_{\text {gen }}=\Delta s_{\text {system }} \quad(\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{~K})
$$

Mechanisms of entropy transfer for a general system.

Entropy generation outside system boundaries can be accounted for by writing an entropy balance on an extended system that includes the system and its immediate surroundings.

Closed Systems

Closed system: $\quad \sum \frac{Q_{k}}{T_{k}}+S_{\text {gen }}=\Delta S_{\text {system }}=S_{2}-S_{1} \quad(\mathrm{~kJ} / \mathrm{K})$

The entropy change of a closed system during a process is equal to the sum of the net entropy transferred through the system boundary by heat transfer and the entropy generated within the system boundaries.

$$
\text { Adiabatic closed system: } \quad S_{\text {gen }}=\Delta S_{\text {adiabatic system }}
$$

$$
\text { System }+ \text { Surroundings: } \quad S_{\text {gen }}=\sum \Delta S=\Delta S_{\text {system }}+\Delta S_{\text {surroundings }}
$$

$$
\Delta S_{\text {system }}=m\left(s_{2}-s_{1}\right) \quad \Delta S_{\text {surr }}=Q_{\text {surr }} / T_{\text {surr }}
$$

Control Volumes

$$
\begin{gathered}
\sum \frac{Q_{k}}{T_{k}}+\sum m_{i} s_{i}-\sum m_{e} s_{e}+S_{\mathrm{gen}}=\left(S_{2}-S_{1}\right)_{\mathrm{cv}} \\
\sum \frac{\dot{Q}_{k}}{T_{k}}+\sum \dot{m}_{i} s_{i}-\sum \dot{m}_{e} s_{e}+\dot{S}_{\mathrm{gen}}=\Delta \dot{S}_{\mathrm{CV}}
\end{gathered}
$$

Steady-flow:

$$
\dot{S}_{\mathrm{gen}}=\sum \dot{m}_{e} s_{e}-\sum \dot{m}_{i} s_{i}-\sum \frac{\dot{Q}_{k}}{T_{k}}
$$

Steady-flow, single-stream:

$$
\dot{S}_{\mathrm{gen}}=\dot{m}\left(s_{e}-s_{i}\right)-\sum \frac{\dot{Q}_{k}}{T_{k}}
$$

The entropy of a control volume changes as a result of mass flow as well as heat transfer.

The entropy of a substance always increases (or remains constant in the case of a reversible process) as it flows through
a single-stream, adiabatic, steady-flow device.

Surroundings

$\Delta S_{\mathrm{CV}}=\frac{Q}{T}+\underbrace{m_{i} s_{i}-m_{e} s_{e}}+S_{\mathrm{gen}}$
Entropy Entropy
transfer transfer
by heat by mass

EXAMPLE 7-17

Consider steady heat transfer through a 5-m 7-m brick wall of a house of thickness 30 cm . On a day when the temperature of the outdoors is $0^{\circ} \mathrm{C}$, the house is maintained at $27^{\circ} \mathrm{C}$. The temperatures of the inner and outer surfaces of the brick wall are measured to be $20^{\circ} \mathrm{C}$ and $5^{\circ} \mathrm{C}$, respectively, and the rate of heat transfer through the wall is 1035 W . Determine the rate of entropy generation in the wall, and the rate of total entropy generation associated with this heat transfer process..

Solution Steady heat transfer through a wall is considered. For specified heat transfer rate, wall temperatures, and environment temperatures, the entropy generation rate within the wall and the total entropy generation rate are to be determined.
Assumptions 1 The process is steady, and thus the rate of heat transfer through the wall is constant. 2 Heat transfer through the wall is 1-D.

$$
\frac{1035 \mathrm{~W}}{293 \mathrm{~K}}-\frac{1035 \mathrm{~W}}{278 \mathrm{~K}}+\dot{S}_{\text {gen }}=0 \quad \quad \dot{S}_{\text {gen, wall }}=0.191 \mathrm{~W} / \mathrm{K}
$$

$$
\frac{1035 \mathrm{~W}}{300 \mathrm{~K}}-\frac{1035 \mathrm{~W}}{273 \mathrm{~K}}+\dot{S}_{\text {gen, total }}=0 \rightarrow \dot{S}_{\text {gen, total }}=0.341 \mathrm{~W} / \mathrm{K}
$$

EXAMPLE 7-18

Steam at 7 MPa and $450^{\circ} \mathrm{C}$ is throttled in a valve to a pressure of 3 MPa during a steady-flow process. Determine the entropy generated during this process and check if the increase of entropy principle is satisfied.

Solution Steam is throttled to a specified pressure. The entropy generated during this process is to be determined, and the validity of the increase of entropy principle is to be shown.
Assumptions 1 This is a steady-flow process since there is no change with time at any point and thus $\Delta m_{\mathrm{CV}}=0, \Delta E_{\mathrm{CV}}=0$, and $\Delta S_{\mathrm{CV}}=0.2$ Heat transfer to or from the valve is negligible. 3 The kinetic and potential energy changes are negligible, $\Delta \mathrm{ke}=\Delta \mathrm{pe}=0$.

State 1:

$$
\left.\begin{array}{c}
P_{1}=7 \mathrm{MPa} \\
T_{1}=450^{\circ} \mathrm{C}
\end{array}\right\} \quad \begin{aligned}
& h_{1}=3288.3 \mathrm{~kJ} / \mathrm{kg} \\
& s_{1}=6.6353 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

State 2:

$$
\left.\begin{array}{rl}
P_{2} & =3 \mathrm{MPa} \\
h_{2} & =h_{1}
\end{array}\right\} \quad s_{2}=7.0046 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

$$
\dot{m} s_{1}-\dot{m} s_{2}+\dot{S}_{\mathrm{gen}}=0
$$

$$
\dot{S}_{\text {gen }}=\dot{m}\left(s_{2}-s_{1}\right)
$$

$$
s_{\text {gen }}=s_{2}-s_{1}=7.0046-6.6353=0.3693 \mathbf{k J} / \mathbf{k g} \cdot \mathbf{K}
$$

This is the amount of entropy generated per unit mass of steam as it is throttled from the inlet state to the final pressure, and it is caused by unrestrained expansion. The increase of entropy principle is obviously satisfied during this process since the entropy generation is positive.

EXAMPLE 7-19

A 50-kg block of iron casting at 500 K is thrown into a large lake that is at a temperature of 285 K . The iron block eventually reaches thermal equilibrium with the lake water. Assuming an average specific heat of $0.45 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ for the iron, determine (a) the entropy change of the iron block, (b) the entropy change of the lake water, and (c) the entropy generated during this process.

Solution A hot iron block is thrown into a lake, and cools to the lake temperature. The entropy changes of the iron and of the lake as well as the entropy generated during this process are to be determined.
Assumptions 1 Both the water and the iron block are incompressible substances. 2 Constant specific heats can be used for the water and the iron. 3 The kinetic and potential energy changes of the iron are negligible, $\Delta \mathrm{KE}=\Delta \mathrm{PE}=0$ and thus $\Delta E=\Delta U .4$ There are no work interactions.
(a) Approximating the iron block as an incompressible substance, its entropy change can be determined from

LAKE
285 K

$$
\begin{aligned}
\Delta S_{\text {iron }} & =m\left(s_{2}-s_{1}\right)=m c_{\mathrm{av}} \ln \frac{T_{2}}{T_{1}} \\
& =(50 \mathrm{~kg})(0.45 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}) \ln \frac{285 \mathrm{~K}}{500 \mathrm{~K}} \\
& =-\mathbf{1 2 . 6 5} \mathbf{~ k J} / \mathrm{K}
\end{aligned}
$$

(b) the entropy change of the lake water

$$
\begin{gathered}
-Q_{\text {out }}=\Delta U=m c_{\text {av }}\left(T_{2}-T_{1}\right) \\
Q_{\text {out }}=m c_{\text {av }}\left(T_{1}-T_{2}\right)=(50 \mathrm{~kg})(0.45 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(500-285) \mathrm{K}=4838 \mathrm{~kJ} \\
\Delta S_{\text {lake }}=\frac{Q_{\text {lake }}}{T_{\text {lake }}}=\frac{+4838 \mathrm{~kJ}}{285 \mathrm{~K}}=16.97 \mathrm{~kJ} / \mathrm{K}
\end{gathered}
$$

(c) the entropy generated during this process.

$$
\begin{gathered}
\underbrace{S_{\text {in }}-S_{\text {out }}}_{\begin{array}{c}
\text { Net entropy transfer } \\
\text { by heat and mass }
\end{array}}+\underbrace{S_{\text {gen }}}_{\begin{array}{c}
\text { Entropy } \\
\text { generation }
\end{array}}=\underbrace{\Delta S_{\text {system }}}_{\begin{array}{c}
\text { Change } \\
\text { in entropy }
\end{array}}-\frac{Q_{\text {out }}}{T_{b}}+S_{\text {gen }}=\Delta S_{\text {system }} \\
S_{\text {gen }}=\frac{Q_{\text {out }}}{T_{b}}+\Delta S_{\text {system }}=\frac{4838 \mathrm{~kJ}}{285 \mathrm{~K}}-(12.65 \mathrm{~kJ} / \mathrm{K})=4.32 \mathrm{~kJ} / \mathrm{K}
\end{gathered}
$$

Discussion The entropy generated can also be determined by taking the iron block and the entire lake as the system, which is an isolated system, and applying an entropy balance. An isolated system involves no heat or entropy transfer, and thus the entropy generation in this case becomes equal to the total entropy change,

$$
S_{\text {gen }}=\Delta S_{\text {total }}=\Delta S_{\text {system }}+\Delta S_{\text {lake }}=-12.65+16.97=4.32 \mathrm{~kJ} / \mathrm{K}
$$

which is the same result obtained above.

EXAMPLE 7-20

Water at 200 kPa and $10^{\circ} \mathrm{C}$ enters a mixing chamber at a rate of $150 \mathrm{~kg} / \mathrm{min}$ where it is mixed steadily with steam entering at 200 kPa and $150^{\circ} \mathrm{C}$. The mixture leaves the chamber at 200 kPa and $70^{\circ} \mathrm{C}$, and heat is lost to the surrounding air at $20^{\circ} \mathrm{C}$ at a rate of 190 $\mathrm{kJ} / \mathrm{min}$. Neglecting the changes in kinetic and
 potential energies, determine the rate of entropy generation during this process.

Kütle dengesi: $\quad \dot{m}_{\mathrm{g}}-\dot{m}_{\mathrm{c}}=d m \overbrace{\text { sistem }}^{\lambda^{0(\text { surrekli) }} / t t=0 \rightarrow \dot{m}_{1}+\dot{m}_{2}=\dot{m}_{3}}$
Enerji dengesi: $\underbrace{\dot{E}_{\mathrm{g}}-\dot{E}_{\mathcal{C}}}_{\text {Birim zamanda sst, iş ve vutte }}=\underbrace{d \int_{\text {sistem }}^{0 \text { (surrekli) }} d t=0}_{\text {Birim zamanda sistemin iç, kinetik, }}$ ile gerçekleşen enerji geçişi potansiyel vb. enerjilerindeki degişim

$$
\begin{gathered}
\dot{E}_{\mathrm{g}}=\dot{E}_{\mathrm{ç}} \\
\dot{m}_{1} h_{1}+\dot{m}_{2} h_{2}=\dot{m}_{3} h_{3}+\dot{Q}_{\mathrm{ç}} \quad(\dot{W}=0, \mathrm{ke} \cong \mathrm{pe} \cong \mathrm{c} \\
\dot{Q}_{\mathrm{c}}=\dot{m}_{1} h_{1}+\dot{m}_{2} h_{2}-\left(\dot{m}_{1}+\dot{m}_{2}\right) h_{3}
\end{gathered}
$$

$$
\begin{array}{ll}
\text { Hal 1: } & \left.\begin{array}{l}
P_{1}=200 \mathrm{kPa} \\
T_{1}=10^{\circ} \mathrm{C}
\end{array}\right\} \begin{array}{l}
h_{1}=h_{f @ 10^{\circ} \mathrm{C}=42.022 \mathrm{~kJ} / \mathrm{kg}} \\
s_{1}=s_{f @ 10^{\circ} \mathrm{C}=0.1511 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}} \\
\text { Hal 2: } \\
P_{2}=200 \mathrm{kPa} \\
h_{2}=2769.1 \mathrm{~kJ} / \mathrm{kg} \\
s_{2}=7.2810 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{array} \\
\text { Hal 3: } & \left.\begin{array}{l}
T_{2}=150^{\circ} \mathrm{C}
\end{array}\right\} \begin{array}{l}
P_{3}=200 \mathrm{kPa} \\
T_{3}=h_{f @ 70^{\circ} \mathrm{C}}=293.07 \mathrm{~kJ} / \mathrm{kg} \\
s_{3}=s_{f @ 70^{\circ} \mathrm{C}}=0.9551 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{array}
\end{array}
$$

$190 \mathrm{~kJ} / \mathrm{dk}=\left[150 \mathrm{X} 42.022+\dot{m}_{2} \mathrm{X} 2769.1-\left(150+\dot{m}_{2}\right) \mathrm{X} 293.07\right] \mathrm{kJ} / \mathrm{dk}$

$$
\begin{aligned}
& \dot{m}_{2}=15.29 \mathrm{~kJ} / \mathrm{dk} \\
& \dot{m}_{1} s_{1}+\dot{m}_{2} s_{2}-\dot{m}_{3} s_{3}-\frac{\dot{Q}_{\varsigma}}{T_{b}}+\dot{S}_{\text {uretim }}=0 \\
& \dot{S}_{\text {ureetim }}= \dot{m}_{3} s_{3}-\dot{m}_{1} s_{1}-\dot{m}_{2} s_{2}+\frac{\dot{Q}_{\varsigma}}{T_{b}} \\
&=(165.29 \mathrm{X} 0.9551-150 \times 0.1511-15.29 \times 7.2810) \mathrm{kJ} / \mathrm{dk} \cdot \mathrm{~K} \\
&+\frac{190 \mathrm{~kJ} / \mathrm{dk}}{293 \mathrm{~K}} \\
&= 24.53 \mathrm{~kJ} / \mathrm{dk} \cdot \mathbf{K}
\end{aligned}
$$

EXAMPLES

Entropy balance for heat transfer
 through a wall

$$
\left(\frac{\dot{Q}}{T}\right)_{\mathrm{in}}-\left(\frac{\dot{Q}}{T}\right)_{\mathrm{out}}+\dot{S}_{\mathrm{gen}}=0
$$

Entropy balance for a
throttling process

Entropy generation associated with a heat transfer process

(a) The wall is ignored

(b) The wall is considered

(c) The wall as well as the variations of temperature in the system and the surroundings are considered

Graphical representation of entropy generation during a heat transfer process through a finite temperature difference.

SUMMARY

- Entropy
- The Increase of entropy principle
- Some remarks about entropy
- Entropy change of pure substances
- Isentropic processes
- Property diagrams involving entropy
- What is entropy?
- The Tds relations
- Entropy change of liquids and solids
- The entropy change of ideal gases
- Reversible steady-flow work
- Minimizing the compressor work
- Isentropic efficiencies of steady-flow devices
- Entropy balance

