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e Examine the moving boundary work or P dV work commonly encountered in
reciprocating devices such as automotive engines and compressors.

e Identify the first law of thermodynamics as simply a statement of the
conservation of energy principle for closed (fixed mass) systems.

e Develop the general energy balance applied to closed systems.

e Define the specific heat at constant volume and the specific heat at constant
pressure.

o Relate the specific heats to the calculation of the changes in internal energy
and enthalpy of ideal gases.

e Describe incompressible substances and determine the changes in their
internal energy and enthalpy.

e Solve energy balance problems for closed (fixed mass) systems that involve
heat and work interactions for general pure substances, ideal gases, and
incompressible substances.
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MOVING BOUNDARY WORK

Moving boundary work (P dV work):
The expansion and compression work
in a piston-cylinder device.

oW, = Fds = PAds = PdV

W, = J PaV ()
I

A gas does a differential amount of work oW, as
it forces the piston to move by a differential
amount ds.

Quasi-equilibrium process:

A process during which the system
remains nearly in equilibrium at all
times.

W, is positive — for expansion
W, is negative — for compression

The moving
boundary

The work associated with a moving
boundary is called boundary work.
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Process path
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The boundary work done The net work done during a
during a process depends cycle is the difference between
The area under the process curve on on the path followed as the work done by the system
a P-V diagram represents the well as the end states. and the work done on the

boundary work. system.

2 2
The quasi-equilibrium expansion process Area = A = J' dA = J' PdV
described above is shown on a P-V diagram. 1 I




the area under the process curve on a P-V diagram is equal, in magnitude, to the

work done during a quasi-equilibrium expansion or compression process of a closed
system.
(On the P-V diagram, it represents the boundary work done per unit mass.)

-7

W,= | P.dV

In a car engine, for example, the boundary work done by the expanding hot gases is
used to overcome friction between the piston and the cylinder, to push atmospheric
air out of the way, and to rotate the crankshaft. Therefore,

-

wb il IH'Ir'rin::tiu-n + waun + chran[-: = I (FfricLinn + Path + Ftrﬂnk) dx
ok |
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EXAMPLE 4-1

A rigid tank contains air at 500 kPa and 150°C. As a result of heat transfer to the surroundings the
temperature and pressure inside the tank drop to 65°C and 400 kPa, respectively. Determine the
boundary work done during this process.

P, kPa 4
AIR Heat 00 ——————- : 2 0
P, =500 kPa 5 e = PM: 0
T, = 150°C '
/1
Py =400 kPa 400 F——————— 2

Discussion This is expected since a rigid tank has a constant volume and dV = 0 in this
equation. Therefore, there is no boundary work done during this process. That is, the

boundary work done during a constant-volume process is always zero. This is also evident
from the P-V diagram of the process (the area under the process curve is zero).
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EXAMPLE

Sketch a PV diagr'am and flnd Pressure vs. Yolume
the work done by the gas

during the following stages.

oo

(@) A gas is expanded from a
volume of 10L 10 3.0L ata
constant pressure of 3.0 atm.

Pressure (atm)

W,, = PAV =3x10°(0.003—0.001)= 600 J

() The gas is then cooled at a
constant volume until the dapcasescacesaanc ame
pressure falls o 2.0 atm 0 1 2 3 4

Yolume (Liters)

-
- . # - = . 3 E 2 i -

W =PAV =0
since AV =0
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EXAMPLE CONTINUED

a)

W, =—PAV =2x10°(.001-.003) = -400J

b)

A Pressure vs. Volume
The gas is then compressed
at a constant pressure of 2.0 Gl 2 e 2 v p———— s
atm from a volume of 3.0 L to S N A
1.0 L. SR

Pressure (atm)
[ %]

The gas is then heated until T I‘u'ullurlnei{L;lerls]I R
its pressure increases from
2.0atm to 3.0 atm at a W= PAV =0
constant volume.
since AV =0
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EXAMPLE CONTINUED

' Pressure vs. ¥Yolume
What is the NET WORK? |

3l

[ | NET work is
600J +-400J=200J z . | the area inside | .

E ; o the shape. |

Rule of thumb: If the E [
sys’remro‘ra‘resCW,’rhe T v o & mw ¥ 5 ue w o8 v Ve 5 5
NET work is positive.
IfThesys’remro‘ra’resCCW, DL;::::1; e :5::::5::::4

Yolume (Liters)

the NET work is negative.
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EXAMPLE 4-2

A frictionless piston—cylinder device contains 10 Ibm of water vapor at 60 psia and 320°F. Heat is
now transferred to the steam until the temperature reaches 400°F. If the piston is not attached to a
shaft and its mass is constant, determine the work done by the steam during this process.

Solution Water vapor in a piston cylinder device is heated and the temperature rises at constant
pressure. The boundary work done is to be determined.

P, psia 4

Even though it is not explicitly stated, the
pressure of the steam within the cylinder

P :6()p.\iu ] . . = A
- ' remains constant during this process since
|

|

|

|

|

|

|

|

|

|

==

both the atmospheric pressure and the weight
of the piston remain constant. Therefore, this
Is a constant-pressure process,

H,O
2 £ He:
o Arca = wy,

m= 10 lbm
P =60 psia

|
o
|
|
|
|
|
|
|
|
|

v, = 7.4863 v, =8.3548 v, ft¥/Ibm

2 2
IE}: J' PﬂfU:Pﬂ |' dV:PD(Vz - VI) WEI:”?P{}(VE_ UI)
| |
| Btu
5.404 psia - ft°

Discussion The positive sign indicates that the work is done by the system. That is, the
steam used 96.4 Btu of its energy to do this work. The magnitude of this work could also be

W, = (10 Ibm) (60 psia)[ (8.3458 — 7.4863) ft3/11~u-n]< ) = 96.4 Btu

determined by calculating the area under the process curve on the P-V diagram, which is
simply P, AV for this case.
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EXAMPLE 4-3

A piston—cylinder device initially contains 0.4 m3 of air at 100 kPa and 80°C. The air is now
compressed to 0.1 m3 in such a way that the temperature inside the cylinder remains constant.
Determine the work done during this process..

Fi

Solution Air in a piston—cylinder device is
compressed isothermally. The boundary work
I ﬂ ; e e oo done is to be determined.

I R Tt Assumptions 1 The compression process is

I
I
AIR | quasi-equilibrium. 2 At the specified conditions
V=04 m’ | ; air can be considered to be an ideal gas since
fis L | it is at a high temperature and low pressure
Ty = 80°C = const. |
I
I

|
I relative to its critical-point values.
|

0.1 04 V. m?

C
PV =mRT,=C or sz

W FPIV ’ " dV = C[—du €1 4 PV 1 o
, = = | — = n— = §
A .y Tl ]
0.1 1 kJ
7 = (100 kPa) (0.4 m® (m—)( ): —55.45 kJ
» = eI B |\ e

Discussion The negative sign indicates that this work is done on the system (a work input),

which is always the case for compression processes.
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Polytropic, Isothermal, and Isobaric processes

p = \/" | Polytropic process: C, n (polytropic exponent) constants

2 2 B V;H_] _ Vg_”'—l_i PEVE _ P1V1 :
Wb = Pdu — Cu n dV = {; = Pontroplc process

—n. 4 ] LA i
I 1
W, = mR(T, — T)) b Polytropic and for ideal gas
] =i
2 2 V
W, = |' PdV = |' cVtdV = PVIn(f) When n =1 (isothermal process)
K A 1
2 2
W, = J PdV = P, J dV = Py(Vy — V) Constant pressure process
1 1 P
| PW=PRVS
o —
What is the boundary work for a i PV" = const.
constant-volume process? |
|
Y 2
Pl = €= const, I |
Schematic and P-V diagram for a | I
polytropic process. ' |
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EXAMPLE 4-4

A piston—cylinder device contains 0.05 m3 of a gas initially at 200 kPa. At this state, a linear spring
that has a spring constant of 150 kN/m is touching the piston but exerting no force on it. Now heat is
transferred to the gas, causing the piston to rise and to compress the spring until the volume inside
the cylinder doubles. If the cross-sectional area of the piston is 0.25 m?, determine (a) the final
pressure inside the cylinder, (b) the total work done by the gas, and (c) the fraction of this work
done against the spring to compress it.

. . . . . k=150 kNS
Solution A gas in a piston—cylinder device G

equipped with a linear spring expands as a
result of heating. The final gas pressure, the
total work done, and the fraction of the work
done to compress the spring are to be
determined. o 200 -
Assumptions 1 The expansion process is A=025m”
quasi-equilibrium. 2 The spring is linear in the s
range of interest. R

320~

0.05 01 V.om®

Heat

(a) The enclosed volume at the final state is V, =2V, = (2)(0.05m’) = 0.1 m’

Then the displacement of the piston (and of AV (0.1 —0.05) m’

0 . = 0.2m
A 0.25 m~

the spring) becomes

The force applied by the linear spring at the F = kx = (150 kN/m)(0.2m) = 30 kN
final state is i ' ”
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The additional pressure applied by the F 30 kN

P=—=———=120kPa

: h hi . =
spring on the gas at this state is A 025 m2

Without the spring, the pressure of the gas would remain
constant at 200 kPa while the piston is rising. But under the s ;
effect of the spring, the pressure rises linearly from 200 kPa to 200 + 120 = 320 kPa

(b) An easy way of finding the work done is to plot the process on a P-V diagram and find
the area under the process curve.

(200 + 320) kPa

1 kJ
W = area = 0.1 — 0.05) m® = 13 kK,
ed 2 L it }( | kPa - m) l

(c) The work represented by the rectangular area (region 1) is done against the piston and
the atmosphere, and the work represented by the triangular area (region Il) is done against
the spring. Thus,

1 kJ
W. . =i (320 — 200) kPa](0.05 m? = 3k
e = (320 = 200) KPa] 005 ) (15— = 3K

Discussion This result could also be obtained from

| kJ
e 2 2ol : s 2 = -
Wepring = 2k(x3 — x7) = 3(150 kN/m)[ (0.2 m)* — O ]( i m) = 3Kkl
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ENERGY BALANCE FOR CLOSED SYSTEMS

Ein = Eou - AE‘*.‘*'“{']H (kJ) Energy balance for any system
Net i\.[h‘[';_;_:_s-' transfer Change in internal, Kinetic, undergoing any process
by heat, work, and mass potential, etc., energies
E.—E = dE en/dl kW :
il ... R . SO (kW) Energy balance in the rate form
Rate of net energy transfer Rate of change in internal,
by heat, work, and mass kinetic, potential, etc., energies

The total quantities are related to the quantities per unit time is

Q=QAt, W=WAt, and AE = AEAt

€in — €out = L\f’gysmm Energy balance per unit mass basis

Energy balance in differential form

O, — o,y = dE system O 0€, — O€uy = dfsystem
net out — Qnet in OF nei out — Qnet in Energy balance for a cycle
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Q = Qnet,in = Qin o Qout
W = Wnet.out = Wout o Win

i — W aui ™= ‘ﬁ‘Eﬁ}'ﬁtem or Q—W=AE

Energy balance when sign convention is used (i.e., heat input and work
output are positive; heat output and work input are negative).
P

General Q- W=AE
Stationary systems Q- W =AU

Per unit mass g —w = Ae

Differential form 08q — ow = de

Various forms of the first-law relation for closed

For a cycle AE = 0, thus Q = W. systems when sign convention is used.

The first law cannot be proven mathematically, but no process in nature is known
to have violated the first law, and this should be taken as sufficient proof.
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EXAMPLE 4-5

A piston—cylinder device contains 25 g of saturated water vapor that is maintained at a constant
pressure of 300 kPa. A resistance heater within the cylinder is turned on and passes a current of 0.2
A for 5 min from a 120-V source. At the same time, a heat loss of 3.7 kd occurs. (a) Show that for a
closed system the boundary work W, and the change in internal energy AU in the first-law relation
can be combined into one term, AH, for a constant pressure process. (b) Determine the final
temperature of the steam.

Solution Saturated water vapor in a piston—cylinder device expands at constant pressure as
a result of electric resistance heating. It is to be shown that AU+W, =AH, and the final
temperature is to be determined.

Assumptions 1 The tank is stationary and thus the kinetic and potential energy changes
are zero, AKE=APE= 0. Therefore, AE= AU and internal energy is the only form of energy of
the system that may change during this process. 2 Electrical wires constitute a very small
part of the system, and thus the energy change of the wires can be neglected.

P, kPa1

s 300 =

=250

Sat. vapor

|

|

| m

| P =300kPa= P,
|

|

5 min -

e l-?c.ut =3.7K
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(a) for a closed system the boundary work W, and the change in internal energy AU in the
first-law relation can be combined into one term, AH, for a constant pressure process.

0 0
& B = ‘ﬁEsystem O—-— W= Al -+ &M'i‘ &PE‘Z
Met enerE}f transfer Change in internal, kinetic, o o _ o
by heat, work, and mass potential, etc., energies Q Wother WE: T UE U!

O — Wi — Pﬂ(Vz - Vl) = U, — U

L = Q_Womer:(U2+P2V2)_(UI+PIV1)

H= U+ PV, Q — Woner = Hy — H, (kJ)

(b) The only other form of work in this case is the electrical work, which can be determined
from

| kI/s
W, = VI At = (120 V) (0.2 A) (300 s)( 1000<m) =72k

satel 1 AL = 2724.9 KJ /k
aed sat, vapor L RS ‘ .
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r? in Qnut o I = AU
Wein = Qow = AH = m(hy — hy) (since P = constant)
7.2k] — 3.7k = (0.025 kg) (h, — 2724.9) kJ/ke

h, = 2864.9 k]/kg

State 2 Py = 00 kR T, = 200°C
aie 2. , = & ;
‘ h, = 28649 ki/ke | Z

Discussion Strictly speaking, the potential energy change of the steam is not zero for this
process since the center of gravity of the steam rose somewhat. Assuming an elevation

change of 1 m (which is rather unlikely), the change in the potential energy of the steam
would be 0.0002 kJ, which is very small compared to the other terms in the first-law
relation. Therefore, in problems of this kind, the potential energy term is always neglected.
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EXAMPLE 4-6

Arigid tank is divided into two equal parts by a partition. Initially, one side of the tank contains 5 kg
of water at 200 kPa and 25°C, and the other side is evacuated. The partition is then removed, and
the water expands into the entire tank. The water is allowed to exchange heat with its surroundings
until the temperature in the tank returns to the initial value of 25°C. Determine (a) the volume of the
tank, (b) the final pressure, and (c) the heat transfer for this process.

Solution One half of a rigid tank is filled with liquid water while the other side is evacuated.
The partition between the two parts is removed and water is allowed to expand and fill the
entire tank while the temperature is maintained constant. The volume of tank, the final
pressure, and the heat transfer are to be to determined.

Assumptions 1 The system is stationary and thus the kinetic and potential energy changes
are zero, AKE= APE= 0 and AE =AU. 2 The direction of heat transfer is to the system (heat
gain, Qin). A negative result for Qin will indicate the assumed direction is wrong and thus it is
heat loss. 3 The volume of the rigid tank is constant, and thus there is no energy transfer as
boundary work. 4 There is no electrical, shaft, or any other kind of work involved.

(a) the volume of the tank V) = V@ asee = 0.001003 m*/kg = 0.001 m*/kg

V, = mv; = (5kg)(0.00lm’/kg) = 0.005 m’
The total volume of the tank is twice this amount:

Vik = (2) (0.005m*) = 0.01 m’
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(b) At the final state, the specific volume of the water is

vV, 0.0l m’

U — ——
2 m

5 kg

= 0.002 m*/kg

which is twice the initial value of the specific volume. This result is expected since the
volume doubles while the amount of mass remains constant.

At 25°C: v, = 0.001003 m’/kg

v, = 43.340 m’/kg

Since v;< v, < v, the water is a saturated liquid—vapor mixture at the final state, and thus
the pressure is the saturation pressure at 25°C:

P,

System boundary

space

> Partition

m=5kg

Qi n
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P kPa/

200

3T

1




(c) Under stated assumptions and observations, the energy balance on the system can be
expressed as

Qin — = ”T(”z o H‘E)

V= v 0.002 — 0.001

= =23 10
Vg 43.34 — 0.001

Uy = Upgosoc = 104.83 kJ/kg X, =

Uy = U t Xollg,
= 104.83 kJ/kg + (2.3 X 107°)(2304.3 kJ/kg)
= 104.88 kJ /kg

0. = (5 kg)[(104.88 — 104.83) klkg] = 0.25 kJ

Discussion The positive sign indicates that the assumed direction is correct, and heat is

transferred to the water.
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ENERGY BALANCE FOR A CONSTANT-PRESSURE EXPANSION OR COMPRESSION PROCESS

General analysis for a closed system‘ For a constant-pressure expansion or
undergoing a quasi-equilibrium compression process:
constant-pressure process. Q is fo

the system and W is from the AU + VVb — AH

system. j
Eiw—Ew = S An example of constant-pressure process
N f. Ch in i I, kineti
el energy transfer ‘hange in internal, kinetic,
by heat,wogrllfc. and mass potential, etc., energies W?.in = QOLII — Wb —_— AU
0 0
Q- W=AU+ AKE+ APE Wein — Qo = AH = m(h, — h,)

- P kPat
Q — Wmher _ Wb - U2 _ Ul

Q== Po(Vz - Vl) == U

Q — I/’Volhcr - (U2 + PQVZ) o (Ul +* Plvl)

300

H=U+ PV
Q - Wnlhcr — Hf_’ T Hl P, =300 kPa 120 V

5 min

. vV
Qo =37K
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SPECIFIC HEATS

Specific heat at constant volume, c,: The energy required to raise the
temperature of the unit mass of a substance by one degree as the volume is
maintained constant.

Specific heat at constant pressure, c,,: The energy required to raise the
temperature of the unit mass of a substance by one degree as the pressure is
maintained constant.

(2)

il (1)
AT =1°C |
\/ = constant P = constant
Specific heat = 5 kJ/kg -°C m=1kg m=1kg
P | AT = 1°C AT= 1°C
kJ kJ
=312 5| | 9=519 e
5kJ
Specific heat is the energy required to 312k 519 kI

raise the temperature of a unit mass of

a substance by one degree in a
specified way.

Constant-volume and constant-pressure specific heats
¢, and ¢, (values are for helium gas).
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The equations in the figure are valid for any substance undergoing any process
¢, and c, are properties.

c, is related to the changes in internal energy and c, to the changes in enthalpy
A common unit for specific heats is kd/kg - °C or kd/kg - K.

o)
o)
o)
o)

Are these units identical?

AIR AIR (a”)
VE\ar
m=1kg m=1kg Sy
=the change in internal energy
300 = 301K 1000 — 1001 K with temperature at
) | p | constant volume )
L
0.718 kJ 0.855 kJ

The specific heat of a substance changes )
with temperature. Pl dh
P-\dT),

= the change in enthalpy with
True or False? temperature at constant

. ressure
c, is always greater than c,. P
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INTERNAL ENERGY, ENTHALPY, AND SPECTIFIC HEATS OF

IDEAL GASES

Thermometer
h=u-+ Pv
_" h=u+ RT
WATER Pv = RT
|
u = u(T) h = h(T)
du = ¢ (T) dT dh = c,(T) dT

AIR Evacuated
(high pressure)

Joule showed using this experimental
apparatus that u=u(T7)

Au=u, —u, = J c (T) dT
1

Ah

hy — hy = J ¢,(T) dT
|

For ideal gases, u, h,

¢,, and ¢, vary with
temperature only.

Internal energy and enthalpy
change of an ideal gas
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At low pressures, all real gases approach ideal-gas behavior, and therefore
their specific heats depend on temperature only.

The specific heats of real gases at low pressures are called ideal-gas specific
heats, or zero-pressure specific heats, and are often denoted c,, and c,,.

u and h data for a number of gases have been tabulated.

These tables are obtained by choosing an arbitrary reference point and
performing the integrations by treating state 1 as the reference state.

ot
ikmol - K

&0

50

AIR
T,K  wklkg  h klkg
|deal-gas const.ar\t— 0 0 0
pressure specific - : :
heats for some 300 21407 300.19
gases (see Table 310 22125 31024

A-2c for c,
equations).

In the preparation of ideal-gas tables,

Ar, He, Me, Kr, Xe, En

0 K is chosen as the reference
temperature.

100000 20000

Temperature, K

3000

28
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Internal energy and enthalpy change when specific heat is taken constant at an
average value

Uy — Uy = Cy (T2 — T) (kI/kg) B — 8y = Gl — Ti) (kJ/kg)

¢yt
Approximation

Actual ’)
|
AIR oo | —— |
p.avg |
/= constant AIR 1 |
T,=20C P = constant I | | |
— 30° T=20°C | |

0, |T,=30C | 1 |
- G b 30 | 1 :
| | |
| | |
Au=c, AT Au=c, AT 7|“ - ]L x
=7.18 kJ/kg =7.18 kl/kg ‘ _ave 2

For small temperature intervals, the specific

heats may be assumed to vary linearly with
temperature.

The relation A u = ¢, AT is valid for any kind

of process, constant-volume or not.
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Three ways of calculating Au and Ah

By using the tabulated v and h data. This is
the easiest and most accurate way when
tables are readily available.

By using the ¢, or c, relations (Table A-2c)
as a function of temperature and performing
the integrations. This is very inconvenient for
hand calculations but quite desirable for
computerized calculations. The results
obtained are very accurate.

By using average specific heats. This is very
simple and certainly very convenient when
property tables are not available. The results
obtained are reasonably accurate if the
temperature interval is not very large.

30
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Au = u ,—u, (table)

Au :f c. Ll df
|

Au = oy AT

Three ways of calculating Au.



SPECIFIC HEAT RELATIONS OF IDEAL (GASES

dh = du + RdT

dh =c,dT and du=c,dT

J

dh=c,dl ve du=cdTl

AIR at 300 K

¢, = 0.718 kl/kg - K }

R=0287kilkg - K [ %= 1002 kl/ke

P K

0.80 kJ/kmol - K }
P

2
=8.314 kJ/kmol - K

The c, of an ideal gas can be determined from a

knowledge of ¢, and R.

31

c.=29.114 kl/kmol - K

The relationship between c,, ¢, and R

C

=c,+R

(kJ/kg - K)
On a molar basis

b (kJ/kmol - K)

Specific heat ratio

» The specific ratio varies with
temperature, but this variation is
very mild.

* For monatomic gases (helium,
argon, etc.), its value is essentially
constant at 1.667.

- Many diatomic gases, including air,
have a specific heat ratio of about
1.4 at room temperature.
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EXAMPLE 4-7

Air at 300 K and 200 kPa is heated at constant pressure to 600 K. Determine the change in internal
energy of air per unit mass, using (a) data from the air table (Table A-17), (b) the functional form of
the specific heat (Table A—2c), and (c) the average specific heat value (Table A-2b).

Solution The internal energy change of air is to be S ————
determine in three different ways. AIR at 300K I'| |
Assumptions At specified conditions, air can be g V2

considered to be an ideal gas since it is at a high
temperature and low pressure relative to its critical

S i T
'Iczr:;---—————_________ . __;é_?)'

(a) One way of determining the change in internal U, = Ugang = 214.07 kI/kg

energy of air is to read the u values at T, and T,

from Table A—21 and take the difference: Uy = U g gpox = 434.78 kKl /kg

Au = u, — u; = (434.78 — 214.07) kJ/kg = 220.71 kJ/kg

(b) The c,(T) of air is given in Table A-2c in the form of a third-degree polynomial
expressed as

e (lli= @ bf telsdl

where a= 28.11, b=0.1967 X 1072, ¢ = 0.4802 x 107>, and
d=—1.966 X 10~°. From Eq. 4-30,
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c(T)=¢,— R,= (a —R,) + bT + cT*+ dT’

2 &
AT = [ ¢,(T) dT = [ [(@a =R, + 5T <P Fdl | dT
/1 g

Au = 6447 kJ/kmol o Au 6447 kJ/kmol s

(c) The average value of the constant-volume specific heat ¢, ,, is determined
from Table A-2b at the average temperature of (T,+7,)/2 = 450 K to be

Cyav = Cyvaasok = 0.733 kI/kg-K

Au=c, (T, — T;) = (0.733 kI /kg - K)[ (600 — 300)K]

= 220 kl/kg

Discussion This answer differs from the exact result (220.71 kJ/kg) by only 0.4 percent.
This close agreement is not surprising since the assumption that c, varies linearly with
temperature is a reasonable one at temperature intervals of only a few hundred degrees. If

we had used the ¢, value at T, =300 K instead of at T, the result would be 215 kJ/kg,
which is in error by about 2 percent. Errors of this magnitude are acceptable for most

engineering purposes.
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EXAMPLE 4-8

An insulated rigid tank initially contains 0.7 kg of helium at 27°C and 350 He

kPa. A paddle wheel with a power rating of 0.015 kW is operated within the el

tank for 30 min. Determine (a) the final temperature and (b) the final T,=27"C

pressure of the helium gas. P, =350 kPa w,
Solution Helium gas in an insulated rigid tank is stirred by a *ﬁ 3
paddle wheel. The final temperature and pressure of helium are to :

be determined.
Assumptions 1 Helium is an ideal gas since it is at a very high P.kPa 4
temperature relative to its critical-point value of -268°C. 2 Constant
specific heats can be used for helium. 3 AKE= APE =0 and AE=
AU. 4 The volume of the tank is constant, V,= V,. 5 The system is
adiabatic and thus there is no heat transfer.

(a) The amount of paddle-wheel work done on the system is

e 9!

: 60 s |
e

L

Wk sireri= AU = m(u, — uy) = me, o (I, — T))

k.giren

27kl = (0.7 kg)(3.1156 kIl /kg - °C)(T, — 27°C)
T, = 394 °C
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(b) The final pressure is determined from the ideal-gas relation

BB 350kPa P,
— (27 + 273) K (394 + 273)K

I I o
P, = 364.5 kPa

where V, and V,, are identical and cancel out. Then the final pressure becomes
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P.kPa

A piston—cylinder device initially contains 0.5 m3 of
nitrogen gas at 400 kPa and 27°C. An electric heater e : 400 ——
within the device is turned on and is allowed to passa  :a P = const,

|
|
—f— V =05m? |
L. ! |
|
|
|
|
|

EXAMPLE 4-9 \

current of 2 Afor 5 min from a 120-V source. Nitrogen | < ¢ -i0.
expands at constant pressure, and a heat loss of 2800 | 'ﬁ fi=27¢
J occurs during the process. Determine the final ~  =———

temperature of nitrogen.

e e
R S

V.m?

o
h

Solution Nitrogen gas in a piston—cylinder device is heated by an electric resistance heater.
Nitrogen expands at constant pressure while some heat is lost. The final temperature of nitrogen
is to be determined.

Assumptions 1 Nitrogen is an ideal gas since it is at a high temperature and low pressure
relative to its critical-point values of 147°C, and 3.39 MPa. 2 The system is stationary and thus
the kinetic and potential energy changes are zero, , AKE= APE = 0 and AE= AU. 3 The pressure
remains constant during the process and thus P, =P,. 4 Nitrogen has constant specific heats at
room temperature.

First, let us determine the electrical work done on the nitrogen:

1 kI/s
W, = VIAr = (120 V)(2 A)(5 X 603s) = 72K

The mass of nitrogen is determined from the ideal-gas relation:

PV (400 kPa) (0.5 m?)
m = = - = 2.245 kg
RT, (0.297 kPa- m’/kg - K) (300 K)
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E'm Euut i ﬁEsystem
. = ;
Net energy transfer Change in internal, kKinetic,
by heat, work, and mass potential, etc., energies

wre‘ in QGLJ'[ — Wf;. — L
Wc*_. e = = m(hz B ’!?1) — f??i"p(Tz — T])

since AU+ W, =AH for a closed system undergoing a quasi-equilibrium expansion or
compression process at constant pressure. From Table A-2a, ¢,=7.039 kJ/kg - K for
nitrogen at room temperature. The only unknown quantity in the above equation is T,, and
it is found to be

72kJ — 2.8kJ = (2.245 kg)(1.039 kI/kg - K) (T, — 27°C)
T, = 56.7°C

Discussion Note that we could also solve this problem by determining the

boundary work and the internal energy change rather than the enthalpy
change.
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EXAMPLE 4-10

A piston—cylinder device initially contains air at 150 kPa and 27°C. At this state, the piston is resting
on a pair of stops, and the enclosed volume is 400 L. The mass of the piston is such that a 350-kPa
pressure is required to move it. The air is now heated until its volume has doubled. Determine (a)
the final temperature, (b) the work done by the air, and (c) the total heat transferred to the air.

Solution Air in a piston—cylinder device with a set of stops is heated until its volume is
doubled. The final temperature, work done, and the total heat transfer are to be determined.
Assumptions 1 Air is an ideal gas since it is at a high temperature and low pressure
relative to its critical-point values. 2 The system is stationary and thus the kinetic and
potential energy changes are zero, AKE= APE = 0 and AE= AU. 3 The volume remains
constant until the piston starts moving, and the pressure remains constant afterwards. 4
There are no electrical, shaft, or other forms of work involved.

(a) The final temperature can be

P kPa?t
determined easily by using the ideal-gas
o — 2 . 3 relation between states 1 and 3 in the
following form:
J___A_[F_t___l_—l * Pf Uf P'ju?a
V =400L | . —
Pll= 150 kPa i il J T T;
i L | (150 kPa)(V,) _ (350 kPa) (2V))
0.4 08  V.m’ 300 K T3
7; = 1400 K
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(b) The work done could be determined by integration, but for this case it is much easier to
find it from the area under the process curve on a P-V diagram,

A= (V, — V))(P,) = (0.4 m’)(350 kPa) = 140 m’ kPa

WIH = 140 ]{.l

The work is done by the system (to raise the piston and to push the atmospheric air out
of the way), and thus it is work output.

(c) Under the stated assumptions and observations, the energy balance on the system
between the initial and final states (process 1-3) can be expressed as

Uy = Ua@szoKk = 214.07 kj/kg
Uy = Ul @ q00x = 1113.52 kJ/kg
PV, (150 kPa) (0.4 m°) |
= 3 = 0.697 kg
RT; (0.287 kPa-m”/kg - K) (300 K)
Qi — 140 kJ = (0.697 kg)[(1113.52 — 214.07) kJ/kg]
Qill = 766.9 l{,'

Q'm o MP,GLJt = Ol = F’??(H3 o ”i)

m

Discussion The positive sign verifies that heat is transferred to the system.
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INTERNAL ENERGY, ENTHALPY, AND SPECIFIC HEATS OF SOLIDS AND
LIQUIDS

Incompressible substance: A substance whose specific volume (or
density) is constant. Solids and liquids are incompressible substances.

o s N
LIQUID 4 -
V; = constant ,: RON

- B L
. 25°C "-..
-'-», c=cy=¢, |
- Q!
B =0.45kl/kg =@
. ¥ ;

- -~

The specific volumes of incompressible
substances remain constant during a
process.

The ¢, and ¢, values of incompressible

substances are identical and are denoted by
C.




INTERNAL ENERGY CHANGES

du = c, dT = c(T)dT

Au=u, —u, = |' c(T)dT (kJ/kg)

Au = ¢,,(T; — T) (kJ/kg)

} 4
[

Enthalpy Changes

h=u+ Py .
dh = du + vdP + Pdv = du + vdP

Au + VAP = ¢, AT + v AP (kJ/kg)

Ah

For solids, the term v AP is insignificant and thus Ah = Au = ¢, ,AT. For
liguids, two special cases are commonly encountered:

1. Constant-pressure processes, as in heaters (AP = 0): Ah = Au = ¢ AT
2. Constant-temperature processes, as in pumps (A7 = 0): Ah = v AP

hapr = Nfar + Vf@T(P — Peii)

The enthalpy of a
A more accurate relation than he pr=hiar compressed liquid
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EXAMPLE 4-11
Determine the enthalpy of liquid water at 100C and 15 MPa (a) by using compressed liquid tables,
(b) by approximating it as a saturated liquid, and (c) by using the correction given by Eq. 4-38.

Solution The enthalpy of liquid water is to be determined exactly and approximately.
Analysis At 100°C, the saturation pressure of water is 101.42 kPa, and since P> P, the
water exists as a compressed liquid at the specified state.

(a) From compressed liquid tables, we read P = 15 Mpa
I'=100°C

} h = 430.39 kJ/kg

(b) Approximating the compressed liquid as a saturated liquid at 100°C, as is commonly
done, we obtain

h = hyg00oc = 419.17 k] /Kkg This value is in error by about 2.6 %.

(c) From Eq. 4-38, hap,r = f’?f er T Vra P =Py

1 kJ
= (419.14 kJ/kg) + (0.001 m® kg)[ (15,000 — 101.42) kPa
| kP >
wd * 1117

= 434.07 kJ/kg

Discussion Note that the correction term reduced the error from 2.6 to about 1 %.

However, this improvement in accuracy is often not worth the extra effort involved.
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SUMMARY

Moving boundary work
W, for an isothermal process
W, for a constant-pressure process
W, for a polytropic process

Energy balance for closed systems

Energy balance for a constant-pressure expansion or compression
process

Specific heats
Constant-pressure specific heat, c,
Constant-volume specific heat, c,

Internal energy, enthalpy, and specific heats of ideal gases
Specific heat relations of ideal gases

Internal energy, enthalpy, and specific heats of incompressible substances
(solids and liquids)
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