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OBJECTIVES

0 To understand multidimensionality and time dependence of heat
transfer, and the conditions under which a heat transfer
problem can be approximated as being one-dimensional.

0 To obtain the differential equation of heat conduction in
various coordinate systems, and simplify it for steady one-
dimensional case.

O To identify the thermal conditions on surfaces, and express
them mathematically as boundary and initial conditions.

1 To solve one-dimensional heat conduction problems and obtain
the temperature distributions within a medium and the heat
flux.

0 To analyze one-dimensional heat conduction in solids that
involve heat generation.

O To evaluate heat conduction in solids with temperature-
dependent thermal conductivity.



INTRODUCTION

Although heat transfer and temperature are closely
related, they are of a different nature.

Temperature has only magnitude
it is a scalar quantity.
Heat transfer has direction as well as magnitude

—)>

We work with a coordinate system and indicate
direction with plus or minus signs.

—)>

it is a vector quantity.



The driving force for any form of heat transfer is the temperature
difference.

« The larger the temperature difference,

* The larger the rate of heat transfer.
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Classification of conduction heat transfer problems:

% Steady versus transient heat transfer,
< Multidimensional heat transfer,
“* Heat generation.



Steady versus transient heat transfer

Time =2 pPMm Time =35 PM
15°C 7€ 12°€ 5°C
- Transient implies variation N / \\ P
with time or time
dependence ) 0 = O,
(a) Transient
- Steady implies no change
with time at any point within 15°C 7c15°C 1°C
NV N/

the medium

(b) Steady



Multidimensional heat transfer

Heat transfer problems are also classified as being:

 One-dimensional,
 Two dimensional,
 Three-dimensional.

In the most general case, heat transfer through a medium is 3-D. However, some
problems can be classified as 2- or 1-D depending on the relative magnitudes of
heat transfer rates in different directions and the level of accuracy desired.

The rate of heat conduction through a medium in a specified direction is
expressed by Fourier’s law of heat conduction for 1-D heat conduction as:

Tk
' 1T tope 2L <0
and = —K {— {W) o
dx
Tix)
Heat is conducted in the direction of decreasing ‘
0=0

temperature, and thus the temperature gradient
is negative when heat is conducted in the Heat flow
positive x -direction.

Y
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Multidimensional heat transfer

1-D if the temperature in the medium varies in one direction only and thus heat
is transferred in one direction, and the variation of temperature and thus heat
transfer in other directions are negligible or zero.

2-D if the temperature in a medium, in some cases, varies mainly in two primary
directions, and the variation of temperature in the third direction is negligible.

Two-dimensional heat transfer
in a long rectangular bar.
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Fourier’s Law of Heat Conduction

The heat flux vector at a point P on the surface must be perpendicular to the
surface, and it must point in the direction of decreasing temperature

If n is the normal of the isothermal surface at point P, the rate of heat
conduction at that point can be expressed by Fourier’'s law as

= —k 4—7 (W)

an

In rectangular coordinates, the heat conduction

vector can be expressed in terms of its R | A
components as , I
P . = . 2 — . — An isotherm
er - Q_r" ¥ Q_‘r‘f + Q*k
\:-
which can be determined from Fourier’s law as |
T T - T
= kA, ZE, O0,=—KA, L and O,= —kA, =
0.X : 07




HEAT GENERATION

Examples:

« Electrical energy being converted to heat at a rate of I°R,
* Fuel elements of nuclear reactors,
* Exothermic chemical reactions.

Heat generation is a volumetric phenomenon.
The rate of heat generation units : W/m?3 or Btu/h - ft3.

The rate of heat generation in a medium may vary with time as well as
position within the medium.

The total rate of heat generation in a medium of volume V :

E_ =1 ¢.4dV (W)

gen gen

JV
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The absorption of solar radiation

by water can be treated as heat
generation.

Heat is generated in the heating
coils of an electric range as a
result of the conversion of

electrical energy to heat.

Solar
radiation

e Solar energy
absorbed by
water
Walter

€aen(®) = 4 spsortea®)



1-D HEAT CONDUCTION EQUATION - PLANE WALL

Rate of heat| | Rate of heat Rate of heat Rate of change of
conduction | 7| conduction | +|generation inside | —| the energy content
at x at x+Ax the element of the element
/ / element
x x+ Ax gen element

Egen/\folume
T eiemen[

/
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/
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——————— 1 .-——————l

L] L] L] I
I . ' element
|Qx Qx+Ax| Ti Egen element | :
I.___|___.l _x__——JI__At

o dalals

The change m th energy ‘content and the rate
of heat gen.eraflon can be expressed as

- / ‘
( | — _ I —
AEeleme;}MJ_ E At _E mC(Ttv-kAt T;) _'IOCAAX(T;+N Tt')
:=T___-—:’__+l—--l---—-'> —————— I L____I _______ I
\ |
| = oen, element' gen I/element ::. egen -:4.AX' J' :

Substituting |nto above equatlpn,’Weget

~ -
’; N ’ " /

. ‘\' Vo T _T\\
,Q ~0., . |#e AAx = = 'DcANx fﬂ; f \
/ l [

Dividing by AAx talﬂ’ng the limit - as Ax=> 0 and' At=> 0,

and from Fourier’s law: e - et
Lol o -l
A Ox ox ot
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The area A is constant for a plane wall - the one dimensional transient
heat conduction equation in a plane wall is
o ( L oT ) + ol

- . e il TR
ox \ ox gen — P75

Variable conductivity:

l’rJ"zT ) {;gcn _LHT

—

a  k a ot

Constant conductivity:

The one-dimensional conduction equation may be reduces to the following
forms under special conditions

(1) Steady-state: d’T | €gen _ 0
(8/at = 0) P

(2) Transient, no heat generation: °T Lot
"(;L’Cl] = ”:l ﬂ.\l 2 of

(3) Steady-state, no heat generation: d*T _ 0
(0/0t = 0 and €y, = 0) dx*



1-D Heat Conduction Equation - Long Cylinder

Rate of heat

Rate of change
of the energy
content of the

element

Rate of heat Rate of heat g
: . generation
conduction | — | conduction | + ey
_ _ inside the
at r atr + Ar
element
&Ee]ement

Qr o Qr o Egen. element

At

16

Qr+Ar\____/ — Volume element
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——————— 1 Ll |

L[] L] L] I
I . 1, element |
|Qr Qr+Ar|+|Egen element 1 | I
I.___|___.l l_t____Jl__At I

| - S e
The change in bhe eneggy content and the rate of heat
generation can bce'expressed as

S ”/—‘ ———————————————— Pr—————————— - :
'AEe,eme,}tkEw —E =me(T,,, -

l:—_—_—_——_+|___ e e P _ e m———— I L e e e e e e e - I
| ;’ L 'P

| |
; gen, element ' gen I/element ::. egenAA]" JI
______ - -' —-— e -

I
I
|
I
| I —-—

Substltutlng 1nto Eq, 2 18,,_We get / v

Dividing by AAK talqhg the.l—lrmt as Ar-> 0 angi At=> 0,

\ /

and from Fourier’s law: S

L0 (0T, plT
A or or ot



Noting that the area varies with the independent variable r according to

A=21irL, the one dimensional transient heat conduction equation in a long
Cylinrlp,r hernmexg

Vil P | o HT), , oT
/‘ariable conductivity: == k= | Tl =Pz
' For ( or gen — PCg;
. o | 9 { oT' , f.’gs:n | a8l
Constant conductiviry: SN | T o e
' 0} ar k o of

The one-dimensional conduction equation may be reduces to the following
forms under special conditions

(1) Steadvy-state: 1 & . dT" {;gcn ;
g p ¥ H =0
(a/ot = 0) Fdr\ ar k
(2) Transient, no heat generation: 10 (} aT ) - 1.8F
(oo = 0) For\" ar) @ ot
(3) Steady-state, no heat generation: d ( dT ) 0
G . : r —3l
(d/ot = 0and é,., = 0) dr\ dr,

gen

18
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1-D Heat Conduction Equation - Sphere

Variable conductivity

N a&q T ) aoT
rlk—=— |+ €, = pc —
r2or ar Cgen = PC 04
Constant conductivity
Volume = % Al 2 -
element Lr—j ( ;*3 rfT) -+ g == lﬂj_T
r2aor\  ar, k « Ot
) Steady-state: | @ «dl :
NE = —,,—r“— +—:[_]
(a/ot = 0) 2 dr dr k
(2) Transient, 3 B :
| : L B o BE | oT
no heat generation: ==l e | e
. =4 reary. er  of
{fchn - [)J |
(3) Steady-state, - >
' : ' " . § . U’“T a . = o
no heat generation: ==l pra——r =l or *a—=—=
dr\ dr s:h ¢ dr

(0/0t = 0 and €y, = 0)
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GENERAL HEAT CONDUCTION EQUATION

%

Rate of heat  Rate of heat Rate of heat  Rate of change

conduction = conduction | generation — of the energy
atx,y, and z at x+Ax, y+Ay, inside the content of the
l and 7+Az element element

LN

[Qx + Qy + QZ\_ x+Ax y+Ay z+Az +Egen,element —

element

At
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Repeating the mathematical approach used for the one-dimensional heat

conduction the three-dimensional heat conduction equation is determined to be

Two-dimensional

A
[ A
2 2 2 >
Constant conductivity: Or 0T 0T | e 101
ox> oy 0z k a ot
N J
Y

Three-dimensional

called Fourier-Biot Equation

4 O’T 0T 0T é,,
t——t——+ 2 =
1) Steady-state: o 20k

0y
called Poisson Equation 82T 8T 82T 1or

2) Transient, no heat generation: 32 oy’ YR aor
called diffusion Equation 82T 52T 82T

3) Steady-state, no heat generation: PN IR =0
. called Lapplace Equation 4 o



Cylindrical coordinates

|

X = rcos ¢,
y = rsin ¢.

o
-

liﬁhﬂj +L£(g£) - r—‘( dT]—i-c —ptﬁﬂ

ror ar r2ddh Hrfﬁ_ az \ az

— 1 Heat
"I
Spl ierical coordinates I;Fila]ta[l ‘ 300°C I,=20°C

X = rcos ¢ sin 0,

y = rsin ¢ sin 6,

7 = cos 6

L 8./ 48T 1 i aT 1 aT aT
1255 | + . L + H ¢ —
_r?‘ ar (.‘Li ar ) ;'2 ginz {1 f)(rf) (’] rkb) \“] # ()H (A ) (H) %n - BE ot
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BOUNDARY AND INITIAL CONDITIONS

% Specified Temperature Boundary Condition
<+ Specified Heat Flux Boundary Condition

<+ Convection Boundary Condition

“» Radiation Boundary Condition

» Interface Boundary Conditions

» Generalized Boundary Conditions



Specified temperature boundary condition

For one-dimensional heat transfer through ]5{3% T(x. 1) ?\\Uoc
a plane wall of thickness L, for example,
the specified temperature boundary 04 | .
conditions can be expressed as L %
1(0,. 1= 150°C
10, 0) =T, T(L. 1) = 70°C
I(L, t)=T,

The specified temperatures can be constant, which is the case for steady
heat conduction, or may vary with time.

24
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Specified Heat Flux Boundary Condition

The heat flux in the positive x-direction ki .

. . . . flux | Conduction
anywhere in the medium, including the
boundaries, can be expressed by Fourier’s

: dT(0, ¢
law of heat conduction as qo=—k {a\ /

Heat

Conduction| ftlux

) f—>

dT Heat flux in the 7 oT(L.1) _ 4
g = —k— = positive x- dx :
dx direction 04

—

The sign of the specified heat flux is determined by inspection:
positive if the heat flux is in the positive direction of the coordinate
axis, and negative if it is in the opposite direction.



TWO SPECIAL CASES

Insulated boundary Thermal symmetry

,— Center plane

|
g o

[nsulation T(x. 1) 60°C Zero
: slope

/,,,. Temperature

Ol 'L 2 distribution
(symmetric
: |

about center

9710, 1) =) plane)
ox |
I(L, t) = 60°C :

e 4 L -

I O

: 2
aT(0.1) aT(0.1) oT(L/2.1) _,
gF——=1{ or —— i Y o =
0X oX °
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Convection boundary condition

rHea‘r conducTion\
at the surface in
a selected

N direction y

8l 8

A f}"._ h|[T¢i| — T{Uq T)]

dl(L, 1)
st = fs (L, 1) — Teal

0x
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Convection | Conduction ;
by
T-::r')

h,[T.., — T(O, G,

r’;rl
r

o]

Heat convection
at the surface in

the same
direction _J

dT(0, 1) -
dx

Conduction | Convection

=

SR, 7L -T.
dx 2

of b

5]




Radiation boundary condition

4z ) 4 )
_ Radiation
Heat conduction — exchange at the
at the surface in a surface in
selected direction the same direction
N\ _/ N\ _/
aT(0, 1) | fiat | i
—k mae g,0] Tm“ - — T(0, ”J,I Radiation | Conduction |
eo [T - T, 0% _—kang L
£ £
=iy M T L 4 =i T Tqu_rlr 1 2 i
A o == 5}”*[ f) 4 ,,J] Surr, surr, 2
e Conduction | Radiation
y aTgi‘" r) - EZJ[T[L' ”4 '-;un" 2]

28
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Interface boundary conditions

At the interface the requirements are:
(1) two bodies in contact must have the same
femperature at the area of contact,
(2) an interface (which is a
surface) cannot store any
energy, and thus the heat flux
on the two sides of an
interface must be the same.

T’L{_.'l'“‘ f} — T!:;’{..!ll{]- I)

0T 4(xg. 1) o1 (X, 1)

. = = =tk
A ax B

ox

Material
A

TA( xX. 1)

Conduction

Interface

ox

Material

B

TA(IU, 5= TB(.YO._ 1)

TB( X, 1)

Conduction

i oL, (g 1) _ " dTy(xy. 1)

A

B ox

0¢

.
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Generalized boundary condition

Heat transfer
to the surface —_
in all modes

Inner
surface

Convection

Heat transfer
from the surface
In all modes

South
wall

Conduction

Conduction

Example on Generalized boundary conditions:
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Heat Generation in Solids

For example:

Resistance heating in wires,
exothermic chemical reactions in a solid,
nuclear reactions in nuclear fuel rods

' 2
Egen. electric [- Re
Egen o V o 8,
wire 'W.*}}L
Rate of Rate of
heat transfer | = | energy generation
from the solid within the solid
Q ¥ 1{;'Jgaanv (W)

Nuclear
fuel rods

Chemical
reactions

AT

Electric
resistance
wires
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Newton’s law of cooling Q=hA,(T,—T,) (W)

solving for the surface temperature T gives

{"’gcn v
/IF.{_‘I [

Tﬁ; - T:-i +

Long solid cylinder of radius r,

solid sphere of radius r, A, =4qriand V=

T\', plane wall — Ti T

T_v. cylinder — T:C +

Tﬁ._\pl]ﬂ‘c o T'f- T

A, =2mr,Land V= 7r’L

£ .p

gen’ o
2h

£ .7

oen” o
e

3h
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Heat Generation in Solids -The maximum
Temperature in a Cylinder (the Centerline)

The heat generated within an inner cylinder must be
equal to the heat conducted through its outer surface.

dl’ .
‘—'kA,.E — Egenv_..

Substituting these expressions into the above equation
and separating the variables, we get

dT

€oen

—kQmrl)—— = é . (mr*Ll) — dT = ——-rdr
dr e ) 2k |
Integrating from » =0 where 7(0) =7, to r=r, I
. o) ITnsz
" T T ;
Cylinder , = o ST |
Y ATmﬂ};. cylinder TH T.'.' - Ak T /rﬂmam; T
. . T | {5
Plane wall _ Ggerl :
ATm:i.h:. plane wall — 5. Heat gatiaion
K |
= . |
Spher‘e AT B €oenlo |
max, sphere 6k l}r—hS}.-m]netr}.r

line
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VARIABLE THERMAL CONDUCTIVITY, K(T)

The thermal conductivity of a material,
in general, varies with temperature.

An average value for the thermal
conductivity is commonly used when
the variation is mild.

This is also common practice for other
temperature-dependent properties
such as the density and specific heat.

500 ]
100 Silver
300 Copper_
~- Gold |
200 ~ Aluminum —
--..h___J\i
100 $ | Tungsten [ T™=
) - !
g \ Platinum
Z 50—t |
ot N hNEE
= N [ron
2 \, N~
S h -l
5 20 Stainless steel, 77
5 /__,..-—"‘ \| | [AISI 304
E 10 Aluminum
E oxide -
) =
: _-'_'""--____ /
- Pyroceram
2 v
e #-];uqed quartz
1| -l L

100 300 500 1000 2000 4000

Temperature (K)

Variation of the thermal conductivity

of some solids with temperature.




VARIABLE THERMAL CONDUCTIVITY FOR 1-D CASES

When the variation of thermal conductivity with TT
temperature k(T) is known, the average value of the
thermal conductivity in the temperature range between T, Lianeyeal
and T, can be determined from KT =ky(1+ BT
T,
K(T)dT 70 peo
" 1T, I £
™= =
2 T,

The variation in thermal conductivity of a material with et
can often be approximated as a linear function and 0t 7

expressed as

For a plane wall the temperature varies linearly during steady one-dimensional
heat conduction when the thermal conductivity is constant.
This is no longer the case when the thermal conductivity changes with

temperature (even linearly).
o]
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Concluding Points

e One-Dimensional Heat Conduction
e General Heat Conduction Equation
e Boundary and Initial Conditions

e Solution of Steady One-Dimensional Heat Conduction
Problems

e Heat Generation in a Solid
e Variable Thermal Conductivity k (T)



