## ALKALINITY MEASUREMENTS

## 1. OBJECTIVE AND IMPORTANCE OF EXPERIMENT

- The alkalinity of a water is a measure of its capacity to neutralize acids.
- Alkalinity acts as buffers to resist a drop in pH resulting from acid addition.
- Although many materials may contribute to the alkalinity of a water, the major portion of the alkalinity in natural waters: (1) hydroxide, (2) carbonate, and (3) bicarbonate.
- Also, other salts of weak acids, such as borate, silicate, and phosphate, may be present in small amounts.
- For most practical purposes, alkalinity due to other materials in natural waters is insignificant and may be ignored.
- Alkalinity measurements are used in the interpretation and control of water and wastewater treatment processes.
- Raw domestic wastewater has an alkalinity less than or only slightly greater than that of the water supply.

Alkalinity parameter is used in a variety of ways in Environmental Engineering practices. Such as;

- Chemical coagulation
- Water softening
- Corrosion control
- Buffer capacity
- Industrial wastes
- Biological processes


### 1.1. Measurement Principals

- Alkalinity is measured volumetrically by titration with $\mathrm{H}_{2} \mathrm{SO}_{4}$ and is reported $\mathrm{CaCO}_{3}$.
- If initial pH is above 8.3 , the titration is made in two steps.
- In the first step the titration is conducted until the pH is lowered to 8.3, the point at which phenolphthalein indicator turns from pink to colorless.
- The second phase of titration is conducted until the pH is lowered to about 4.5, corresponding to the bromcresol green end point. This is


Figure 18.1
Titration curve for a hydroxide-carbonate mixture.
$\mathrm{OH}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{O}$
$\mathrm{CO}_{3}{ }^{2-}+\mathrm{H}^{+} \longrightarrow \mathrm{HCO}_{3}{ }^{-}$(Bicarbonate)
$\mathrm{HCO}_{3}{ }^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ (Carbonic Acid)

### 1.2. Interferences

Soaps, oily matter, suspended solids, or precipitates may coat the glass electrode and cause a sluggish response. Allow additional time between titrant additions to let electrode come to equilibrium or clean the electrodes occasionally. Do not filter, dilute, concentrate, or alter sample.

## 2. EXPERIMENTAL PROCEDURE

### 2.1. Materials and Equipment

- pH meter
- Standard sulfuric acid solution ( $0,02 \mathrm{~N}$ and $0,1 \mathrm{~N}$ )
- Methyl orange indicator
- Phenolphthalein indicator
- $0,02 \mathrm{~N} \mathrm{NaOH}$ solution


### 2.2. Experimental Procedure

$>$ Clean pH electrode by distilled water.
$>$ Collect 50 mL water sample in an erlenmayer flask, add 3 drops of phenolphthalein indicator, titrate the 50 mL sample with 0.02 N sulfuric acid to pH 8.3 and estimate phenolphthalein alkalinity (phenolphthalein indicator will change color, from pink to clear, at pH 8.3 ).
$>$ Phenolphthalein Alkalinity $($ in $\mathrm{mg} / \mathrm{L}$ as CaCO 3$)=(\mathrm{A} 1 \times \mathrm{N} \times 50,000) / \mathrm{V}$
Where: $\mathrm{A} 1=$ volume of sulfuric acid used in $\mathrm{mL} ; \mathrm{N}=$ normality of acid used to titrate; $\mathrm{V}=$ volume of sample used in mL
$>$ Use the same sample. Add 5 drops of methyl orange indicator. Titrate the 50 mL sample with 0.02 N sulfuric acid to pH 4.5 and estimate total alkalinity (bromcresol green indicator will change color, from blue to yellow, at pH 4.5 ).
$>$ Amount of acid used at this moment starting from step1 (i.e., A2) is used to react with the hydroxide, carbonate, and bicarbonate and it constitutes of total alkalinity:
Total Alkalinity (in mg/L as CaCO3) $=(\mathrm{A} \times \mathrm{N} \times 50,000) / \mathrm{V}$
Where: A2 = volume of acid used in mL starting from step 1 (i.e., A2>A1) (Note: If after adding phenolphthalein indicator no color develops, it means no phenolphthalein alkalinity and it can be reported as "Phenolphthalein alkalinity absent".)
$>$ Calculation from Alkalinity and pH measurements:
$>$ Hydroxide alk. $(\mathrm{mg} / \mathrm{L}$ as CaCO 3$)=50,000 \times 10$
$>$ Carbonate alk. $(\mathrm{mg} / \mathrm{L}$ as CaCO 3$)=2 \times$ [Phenolphthalein alk.-hydroxide alk.]
$>$ Bicarbonate alk. (mg/L as CaCO3)= Total alk.-[Carbonate alk.+ hydroxide alk.] (3c)

### 2.3. Calculations

Alkalinity $\left(\mathrm{mg} \mathrm{CaCO}_{3} / \mathrm{L}\right)=(\mathrm{S} \times \mathrm{N} \times 50000) / \mathrm{mL}$ sample
$\mathrm{A}=$ Standard $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution consumption, mL
$\mathrm{N}=$ Normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$

## 3. REPORTS AND OBSERVATIONS

1- Calculate the alkalinity as $\mathrm{CaCO}_{3}$ of water that contains $85 \mathrm{mg} / \mathrm{L}$ of $\mathrm{HCO}_{3}{ }^{-}, 120 \mathrm{mg} / \mathrm{L}$ of $\mathrm{CO}_{3}{ }^{2-}$, and $2 \mathrm{mg} / \mathrm{L}$ of $\mathrm{OH}^{-}$.

2- A sample has $170 \mathrm{mg} / \mathrm{L}$ as $\mathrm{CaCO}_{3}$ phenolphthalein alkalinity and $250 \mathrm{mg} / \mathrm{L}$ as $\mathrm{CaCO}_{3}$ total alkalinity. What is the concentration of hydroxide, carbonate and bicarbonate alkalinities?

