MACHINE ELEMENT II, FORMULA SHEET
 PROF.DR.ÖZGEN Ü. COLAK

BEARINGS

Radial Sliding Bearings

> R : bearing radius, r : shaft radius
> Radial clearance $\mathrm{c}=\mathrm{R}-\mathrm{r}$
> Exantrisity $: \mathrm{e}=\overline{\mathrm{OO}^{\prime}}$
h_{1} max. film thichness and ve h_{o} min. film thichness
$\mathrm{h}_{\mathrm{o}}=\mathrm{h}_{\min }=\mathrm{c}-\mathrm{e}, \quad \mathrm{h}_{\max }=\mathrm{h}_{1}=\mathrm{c}+\mathrm{e}$
eksantrisite orann, $\varepsilon=\mathrm{e} / \mathrm{c}$
relatif yatak boşluğu (boyutsuz boşluk) $\psi=\mathrm{c} / \mathrm{R}$
Average pressure, $\mathrm{p}_{\mathrm{m}}=\mathrm{F} /(\mathrm{L} . \mathrm{D}) \quad$ (D bearing diameter)
Sommerfold number \quad So $=p_{m} \cdot \psi^{2} /\left(\eta \cdot \omega_{\text {geçiş }}\right), \quad \omega_{\text {geçis }}=\pi n_{\text {geçisis }} / 30$
Viscosity , $\eta\left[\mathrm{Nsn} / \mathrm{m}^{2}=10^{3} \mathrm{c} P\right]$, $\omega_{\text {geçiş }}[1 / \mathrm{sn}], \mathrm{p}_{\mathrm{m}}\left(\mathrm{N} / \mathrm{m}^{2}\right)$
Lenght /diameter ratio: $\mathrm{L} / \mathrm{D}=0,5 \div 1,5, \mathrm{~L} / \mathrm{D}=1$ is a good choise.
Dimensionless clearance $\psi \cong 0,0008 \sqrt[4]{\mathrm{U}}$ (for bronze and white metal) ($\mathrm{U}: \mathrm{m} / \mathrm{s}$) $\psi=0,004$ for polymeric materials.

ε		0,95	0,9	0,8	0,7	$\begin{gathered} \hline 0,6 \\ \hline 0,75 \\ 3,21 \\ \hline \end{gathered}$
$\begin{gathered} \mathrm{L} / \mathrm{D}=1 \\ \text { için } \end{gathered}$	$1 /$ So	0,054	0,12	0,28	0,48	
	μ / ψ	0,675	1,06	1,71	2,36	
$\begin{gathered} \mathrm{L} / \mathrm{D} \\ =1 / 2 \\ \text { için } \\ \hline \end{gathered}$	1 / So	0,075	0,196	0,577	1,16	2,01
	μ / ψ	0,869	1,59	3,25	5,48	8,08

ROLLING BEARINGS
Equivalent force, $F e s ̧=x \cdot F_{r}+y \cdot F_{a}$
F_{r} : radial force, x : Radial factor, F_{a} : axial force, y : Axial factor
X and y are determined from table according to $\mathrm{Fa} / \mathrm{Fr}$ ratio.
$L=\left(\frac{C}{F_{e s}}\right)^{p}$, $\mathrm{L}:$ life as million revolution, $\mathrm{C}:$ dynamic load factor
p: Life coeficient $p=3$ (ball bearings), $p=10 / 3$ (roller bearing)

Life as an hour $\mathrm{L}_{\mathrm{h}}=\mathrm{L} 10^{6} / 60 . \mathrm{n}$

COUPLINGS

Coupling moment:
$\mathrm{M}_{\mathrm{k}}=\mathrm{M}_{\text {sür }}=\mathrm{SM}_{\mathrm{d}} \quad$ (friction based couplings);

Rigid couplings

Clamped (compression) coupling, $\mathrm{M}_{\mathrm{k}} \geq \mathrm{M}_{\mathrm{d}}$
Friction moment, $\mathrm{M}_{\mathrm{k}}=\mathrm{M}_{\text {sür }}=(\pi / 4) \mu \mathrm{d}^{2} \mathrm{Lp}_{\mathrm{i}}$
$\alpha \cong 2^{\circ} \div 3^{\circ}, \quad$ Sleeve length, $L \cong(3 \div 4) \mathrm{d}$
Force to assemble a ring : $\mathrm{Fa}=\pi \mathrm{D}_{\mathrm{o}} \mathrm{bp}_{\mathrm{a}}(\operatorname{tg} \alpha+\mu)$

Flange coupling

$\mathrm{Da}=4 \mathrm{~d}, \mathrm{D}_{0}=3 \mathrm{~d}, \mathrm{Di}=2 \mathrm{~d}, \mathrm{~L}=1,5 \mathrm{~d}, \quad \mathrm{~d}$: shaft diameter
$\mathrm{M}_{\mathrm{k}}=\mathrm{M}_{\mathrm{S}}=\mathrm{M}_{\mathrm{k}}=(2 / 3) \cdot \pi \mu$. p. $\left(\mathrm{R}_{\mathrm{a}}{ }^{3}-\mathrm{R}_{\mathrm{i}}{ }^{3}\right), \quad \mathrm{R}_{\mathrm{a}}$: flange outer radious, R_{i} : Flange inner radious
pressure: $\mathrm{p}=\frac{\mathrm{F}_{\mathrm{o} \mathrm{n}} \mathrm{n}}{\pi\left(\mathrm{R}_{\mathrm{a}}^{2}-\mathrm{R}_{\mathrm{i}}^{2}\right)}$
n : number of bolts,
Fön: Preload for one bolt

Control oft he bolts for shear: $\tau=\frac{\mathrm{F}_{\mathrm{c}}}{\mathrm{n}\left(\pi \cdot \mathrm{d}_{1}^{2} / 4\right)} \leq \tau_{\mathrm{em}} \quad \mathrm{d}_{1}$: minor diameter of bolt, $\tau_{\mathrm{em}}=\sigma_{\mathrm{em}} / 2, \quad \sigma_{\mathrm{em}}=0,6 \sigma_{\mathrm{Ak}}$
Circumferantial force, $\mathrm{F}_{\mathrm{c}}=\mathrm{M}_{\mathrm{d}} /\left(\mathrm{D}_{\mathrm{o}} / 2\right)$

Clutches:

Basic disc clutch: $\mathrm{p}=\mathrm{F}_{\mathrm{b}} /\left[\pi\left(\mathrm{R}_{\mathrm{a}}{ }^{2}-\mathrm{R}_{\mathrm{i}}{ }^{2}\right)\right]$
$\mathrm{M}_{\mathrm{k}}=\mathrm{M}_{\text {siur }}=(2 / 3) \cdot \pi \mu \cdot \mathrm{p} \cdot\left(\mathrm{R}_{\mathrm{a}}{ }^{3}-\mathrm{R}_{\mathrm{i}}^{3}\right)$,
$\mathrm{M}_{\mathrm{k}}=(2 / 3) \cdot \mathrm{F}_{\mathrm{b}} \cdot \mu\left(\mathrm{R}_{\mathrm{a}}{ }^{3}-\mathrm{R}_{\mathrm{i}}{ }^{3}\right) /\left(\mathrm{R}_{\mathrm{a}}{ }^{2}-\mathrm{R}_{\mathrm{i}}{ }^{2}\right)$
$R_{m}=(2 / 3)\left(R_{a}^{3}-R_{i}^{3}\right) /\left(R_{a}^{2}-R_{i}^{2}\right), \quad M_{k}=\mu \cdot F_{b} \cdot R_{m}$

Cone clutches

Friction moment: $\mathrm{M}_{\text {sür }}=(2 / 3) \cdot \pi \mu$. p. $\left(\mathrm{Ra}_{\mathrm{a}}{ }^{3}-\mathrm{R}_{\mathrm{i}}{ }^{3}\right) / \operatorname{Sin} \alpha$
Assembly force: $\mathrm{F}_{\mathrm{b}}=\mathrm{F}_{\mathrm{n}} \sin \alpha \quad \quad$ Pressure: $\quad \mathrm{p}=\frac{\mathrm{F}_{\mathrm{n}} \sin \alpha}{\pi\left(\mathrm{R}_{\mathrm{a}}^{2}-\mathrm{R}_{\mathrm{i}}^{2}\right)} \quad \alpha=12^{\circ} \div 15^{\circ}$
$\mathrm{M}_{\mathrm{k}}=\mu . \mathrm{F}_{\mathrm{n}} \mathrm{R}_{\mathrm{m}}$
For multiple friction surface clutches:
$M_{k}=i . \mu . F_{n} R_{m} \quad$ i: number of friction surface.

Belt and Pulley Mechanicsm

Kullanilan Semboller:

b : Belt width [mm]	$\mathrm{F}_{1}, \mathrm{~F}_{2}$: Forces [N]
L : Belt length [mm]	β_{1}, β_{2} : wrap angles [${ }^{\circ}$, rad]
A : Belt cross section area $\left[\mathrm{mm}^{2}\right]$	P : Power [kw]
s : belt thickness [mm]	$\alpha \quad$: Pulley angle [${ }^{\circ}$]
d : Pulley diameter [mm]	
B : Pulley width [mm]	$\mathrm{M}_{\mathrm{d}} \quad$: Torque [Nm]
F_{mr} : Centrifugal force [N]	: speed ratio $=\mathrm{d}_{2} / \mathrm{d}_{1}$

$\beta=\beta_{1} \quad \beta_{2}=2 \pi-\beta_{1} \quad \cos \beta / 2=\frac{d_{2}-d_{1}}{2 \cdot a} \quad L=\beta d_{1} / 2+\left[(2 \cdot \pi-\beta) d_{2} / 2\right]+2 \cdot \operatorname{asin} \beta / 2$
$\mathrm{F}_{1}-\mathrm{F}_{2}=\mathrm{M}_{\mathrm{d}} / \mathrm{r}=\mathrm{F}_{\mathrm{c}}$

$$
\mathrm{Fr}=\sqrt{\mathrm{F}_{1}^{2}+\mathrm{F}_{2}^{2}-2 \mathrm{~F}_{1} \mathrm{~F}_{2} \operatorname{Cos} \beta}
$$

$\mathrm{F}_{1} / \mathrm{F}_{2}=\mathrm{e}^{\mu \beta}, \quad \sigma_{1} / \sigma_{2}=\mathrm{e}^{\mu \beta}$
Power: $P=F_{C} . V$
$\begin{array}{lcc}\text { Centrifugal force } & \text { Stress due to centrifugal force } \\ \mathrm{F}_{\mathrm{mç}}=\mathrm{A} \cdot \mathrm{v}^{2} \cdot \rho & \sigma_{\mathrm{mç}}=\mathrm{F}_{\mathrm{mç}} / \mathrm{A} & \rho: \text { Density of belt material, A: Belt cross section area }\end{array}$
Bending stress : $\sigma_{\mathrm{e}}=\mathrm{E}_{\mathrm{e}} \varepsilon \quad$ strain : $\varepsilon=\mathrm{s} / \mathrm{d} \quad$ Total stress: $\sigma_{\mathrm{top}}=\sigma_{1}+\sigma_{\mathrm{mç}}+\sigma_{\mathrm{e}} \leq \sigma_{\mathrm{em}}$
$\sigma_{\mathrm{em}}=\sigma_{\mathrm{K}} / \mathrm{S}, \quad \sigma_{\mathrm{K}}$: Ultimate strength of belt material, S : Safety factor
B is found from strength : $\sigma_{1}=F_{1} /($ b.s $) \leq \sigma_{\text {em }} \quad$ (bending and centrifugal stress are neglected)
Number of pulley: $z_{k}=P \cdot C_{2} /\left(P_{1} \cdot C_{1} \cdot C_{3}\right) \quad P_{1}:$ The power that one selected belt can transmit.

Gear Mechanism

Module (m)	$\mathrm{m}=\mathrm{t} / \pi \quad(=\mathrm{d} / \mathrm{z})$
Number of teeth (z)	$\mathrm{z}=\mathrm{do} / \mathrm{m}$
Pitch (t)	$\mathrm{t}=\pi \mathrm{m}$
Pitch diameter (do)	do $=\mathrm{z} \mathrm{m}$
Addendum diameter (d_{b})	$\mathrm{d}_{\mathrm{b}}=\mathrm{d}+2 \mathrm{~h}_{\mathrm{b}}=\mathrm{m}(\mathrm{z}+2)$
Dedendum diameter (d_{ta})	$\mathrm{d}_{\mathrm{ta}}=\mathrm{d}-2 \mathrm{~h}_{\mathrm{t}}=\mathrm{m}(\mathrm{z}-2,5)$
Pressure angle (α)	$\alpha=20^{\circ}$
Base circle diameter (d_{t})	$\mathrm{d}_{\mathrm{t}}=$ do $\cos \alpha$
Speed (v)	$\mathrm{v}=\pi$ do $\mathrm{n} / 60 \quad[\mathrm{~m} / \mathrm{s}]$
Speed ratio (i)	$\mathrm{i}_{12}=\omega_{1} / \omega_{2}=\mathrm{n}_{1} / \mathrm{n}_{2}=\mathrm{d}_{02} / \mathrm{d}_{01}=\mathrm{z}_{2} / \mathrm{z}_{1}$
Gear width (b)	$\begin{aligned} & \mathrm{b}=\psi_{\mathrm{m}} \mathrm{~m} \quad \psi_{\mathrm{m}}: \text { Width number } \\ & \text { according to module } \\ & \psi_{\mathrm{d}}=\mathrm{b} / \mathrm{d}_{\mathrm{o}} \text { (According to pitch diameter) } \\ & \psi_{\mathrm{t}}=\mathrm{b} / \mathrm{t}=\mathrm{b} /(\pi . \mathrm{m}) \quad \text { (According to pitch) } \end{aligned}$
Total speed ratio: $\mathrm{i}_{\text {top }}$	$\mathrm{i}_{\text {top }}=\mathrm{i}_{12} . \mathrm{i}_{34}$ (for 2 stages)
Distance between shafts, a	$\mathrm{a}=\left(\mathrm{d}_{01}+\mathrm{d}_{02}\right) / 2$

Module according to strength

Module according to contact pressure

$\mathrm{F}_{\mathrm{c}}=\mathrm{S} . \mathrm{M}_{\mathrm{d}} /($ do $/ 2) \quad \sigma_{\mathrm{em}}=\sigma_{\mathrm{D}} / \mathrm{K}_{\mathrm{c}}$
$\mathrm{m}=\sqrt[3]{\frac{2 \cdot \mathrm{~S} \cdot \mathrm{M}_{\mathrm{d}} \cdot \mathrm{E} \cdot \mathrm{K}_{\mathrm{d}}}{\mathrm{z}^{2} \cdot \mathrm{p}_{\mathrm{em}}^{2} \cdot \varepsilon \cdot \psi_{\mathrm{m}}} \cdot \frac{\mathrm{i}+1}{\mathrm{i}}}$
$\mathrm{m}=\sqrt[3]{\frac{2 \cdot \mathrm{~S}_{\mathrm{d}} \cdot \mathrm{M}_{\mathrm{d}} \cdot \mathrm{K}_{\mathrm{f}}}{\mathrm{z} \cdot \psi_{\mathrm{m}} \cdot \varepsilon \cdot \sigma_{\mathrm{em}}}}$,
$\frac{1}{\mathrm{E}}=\frac{1}{2}\left(\frac{1}{\mathrm{E}_{1}}+\frac{1}{\mathrm{E}_{2}}\right) \quad \mathrm{E}$: equivalent elasticity modulus
$\mathrm{Md}=9550 . \mathrm{P} / \mathrm{n}(\mathrm{Nm})$

$$
\mathrm{p}_{\mathrm{em}}=0,7 \cdot \sigma_{\mathrm{K}}, \sigma_{\mathrm{K}} \approx 0,35 \mathrm{H}_{\mathrm{B}}
$$

In control calculations:

Strength

Contact pressure

$\sigma_{\text {es }}=\frac{\mathrm{F}_{\mathrm{c}} \cdot \mathrm{K}_{\mathrm{f}}}{\mathrm{b} \cdot \mathrm{m}} \leq \frac{\sigma_{\mathrm{D}}}{\mathrm{K}_{¢} \mathrm{~K}_{\mathrm{d}} \mathrm{K}_{\varepsilon}}$;

$$
\mathrm{p}_{\max }=\mathrm{K}_{\mathrm{m}} \cdot \mathrm{~K}_{\alpha} \cdot \mathrm{K}_{\varepsilon} \sqrt{\frac{\mathrm{K}_{\mathrm{d}} \cdot \mathrm{~F}_{\mathrm{q}}}{\mathrm{bd}} \cdot \frac{\mathrm{i}+1}{\mathrm{i}}} \leq \mathrm{p}_{\mathrm{em}}
$$

K_{c} : Notch factor, K_{d} : Dynamic load factor, K_{f} : form factor
Material factor, $\mathrm{K}_{\mathrm{m}}=\sqrt{0,35 \cdot \mathrm{E}} \quad\left(\mathrm{E}_{1}=\mathrm{E}_{2}=\mathrm{E}\right)$. If $\mathrm{E}_{1} \neq \mathrm{E}_{2}, \mathrm{~K}_{\mathrm{m}}=\sqrt{0,35 \cdot \frac{2 \cdot \mathrm{E}_{1} \cdot \mathrm{E}_{2}}{\mathrm{E}_{1}+\mathrm{E}_{2}}} \quad \quad \mathrm{~K}_{\alpha}=1,76, \quad \mathrm{~K}_{\varepsilon}=\frac{1}{\varepsilon}$.
Forces:
Gear force: $\mathrm{F}_{\mathrm{Z}}=\mathrm{F}_{\mathrm{c}} / \operatorname{Cos} \alpha$
radial force: $F_{r}=F_{c ̧} \cdot \operatorname{tg} \alpha$
Circumferential force: $\mathrm{F}_{\underline{c}}=\mathrm{M}_{\mathbf{d}} /($ do $/ 2)$

Transverse module $\left(\mathrm{m}_{\mathrm{a}}\right)$ Normal module $\left(\mathrm{m}_{\mathrm{n}}\right)$	$\mathrm{m}_{\mathrm{a}}=\mathrm{t}_{\mathrm{a}} / \pi=\mathrm{m}_{\mathrm{n}} / \cos \beta$
Pitch circle diameter, d_{a}	$\mathrm{d}_{\mathrm{a}}=\mathrm{m}_{\mathrm{a}} \mathrm{z}$
Distance b / w shaft axiles, a	$\mathrm{a}=(\mathrm{zl}+\mathrm{z2}) \mathrm{m}_{\mathrm{a}} / 2$
Addendum diameter, $\left(\mathrm{d}_{\mathrm{b}}\right)$,	$\mathrm{db}=\mathrm{z} \cdot \mathrm{m}_{\mathrm{a}}+2 \cdot \mathrm{~m}_{\mathrm{n}} \quad \mathrm{d}_{\mathrm{ta}}=\mathrm{z} \cdot \mathrm{m}_{\mathrm{a}}-2,5 \cdot \mathrm{~m}_{\mathrm{n}}$
Dedendum diameter, $\left(\mathrm{d}_{\mathrm{ta}}\right)$	$\mathrm{dt}=\mathrm{da} \cdot \cos \alpha_{\mathrm{a}}$
Base circle diameter, dt	$\operatorname{tg} \alpha_{\mathrm{a}}=\operatorname{tg} \alpha_{\mathrm{n}} / \cos \beta$
Transverse pressure angle $\left(\alpha_{\mathrm{a}}\right)$,	$\alpha_{\mathrm{n}}=20^{\circ}$
Normal pressure angle $\left(\alpha_{\mathrm{n}}\right)$	$\mathrm{b}=\psi \mathrm{d} \cdot \mathrm{d}_{\mathrm{a}}, \quad \mathrm{b}=\psi_{\mathrm{m}} \cdot \mathrm{m}_{\mathrm{n}}$
Gear width b	$\mathrm{z}_{\mathrm{n}}=\mathrm{z} / \cos ^{3} \beta$
Equivalent number of teeth $\left(\mathrm{z}_{\mathrm{n}}\right)$	

Forces:

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{C}}=2 \cdot \mathrm{~S} \cdot \mathrm{M}_{\mathrm{d}} / \mathrm{d}_{\mathrm{a}} & \mathrm{~F}_{\mathrm{r}}=\mathrm{F}_{\mathrm{Z}} \cdot \sin \alpha_{\mathrm{n}} \\
\mathrm{~F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{Z}} \cdot \cos \alpha_{\mathrm{n}} & \mathrm{~F}_{\mathrm{a}}=\mathrm{F}_{\mathrm{n}} \cdot \sin \beta=\mathrm{F}_{\mathrm{Z}} \cdot \cos \alpha_{\mathrm{n}} \cdot \sin \beta=\mathrm{F}_{\mathrm{C}} \cdot \operatorname{tg} \beta
\end{array}
$$

Module for strenght consideration:

$\mathrm{m}_{\mathrm{n}}=\sqrt[3]{\frac{2 \cdot \mathrm{~S} \cdot \mathrm{M}_{\mathrm{d}} \cdot \mathrm{K}_{\mathrm{d}} \cdot \mathrm{K}_{\mathrm{fn}} \cdot \cos \beta}{\mathrm{z} \cdot \psi_{\mathrm{m}} \cdot \varepsilon \cdot \sigma_{\mathrm{em}}}} \cdot\left(\sigma_{\mathrm{em}}=\sigma_{\mathrm{D}} / \mathrm{K}_{\mathrm{c}}\right)$

Module for contact pressure:

$\beta=10^{\circ} \div 45^{\circ}$
K_{d} : Dynamic load factor, $\quad \mathrm{K}_{\mathrm{fn}}$: Form factor
Control calculations:

$$
\sigma_{\mathrm{es}}=\mathrm{K}_{\mathrm{d}} \cdot \mathrm{~K}_{\mathrm{fn}} \cdot \frac{\mathrm{~F}_{\mathrm{c}}}{\mathrm{~m}_{\mathrm{n}} \cdot \varepsilon \cdot \mathrm{~b}} \leq \sigma_{\mathrm{em}} \quad \quad \mathrm{p}_{\max }=\mathrm{K}_{\mathrm{m}} \cdot \mathrm{~K}_{\alpha} \cdot \mathrm{K}_{\varepsilon} \cdot \mathrm{K}_{\beta} \sqrt{\frac{\mathrm{K}_{\mathrm{d}} \cdot \mathrm{~F}_{q}}{\mathrm{~b} \cdot \mathrm{~d}_{\mathrm{a}}} \cdot \frac{\mathrm{i}+1}{\mathrm{i}}}
$$

