MACHINE ELEMENT II, FORMULA SHEET PROF. DR. ÖZGEN Ü. ÇOLAK

BEARINGS

Radial Sliding Bearings

R : bearing radius, r : shaft radius Radial clearance c = R - rExantrisity : $e = \overline{OO'}$

$$\begin{split} h_1 \mbox{ max. film thichness and ve } h_0 \mbox{ min. film thichness } \\ h_0 = h_{min} = c - e \ , \qquad h_{max} = h_1 = c + e \\ \mbox{eksantrisite orani, } \epsilon = e \ / \ c \\ \mbox{relatif yatak boşluğu (boyutsuz boşluk) } \psi = c \ / \ R \end{split}$$

Average pressure , $p_m = F/(L. D)$ (D bearing diameter)

$$\begin{split} \text{Sommerfold number} \quad & \text{So} = \ p_{m} \cdot \psi^2 \, / \, (\eta \, \cdot \omega_{\text{gecis}} \,) \, , \quad & \omega_{\text{gecis}=\pi} \, n_{\text{gecis}/30} \\ \text{Viscosity} \, , \, \eta \quad \left[\ \text{Nsn} \, / \, m^2 \, = \, 10^3 \, \text{c} \, \text{P} \, \right] \, , \, & \omega_{\text{gecis}} \left[\ 1 \, / \, \text{sn} \, \right] , \, p_m \left(N / \, m^2 \, \right) \end{split}$$

Lenght /diameter ratio: $L / D = 0.5 \div 1.5$, L / D = 1 is a good choise.

Dimensionless clearance $\psi \approx 0,0008 \sqrt[4]{U}$ (for bronze and white metal) (U : m/s) $\psi = 0,004$ for polymeric materials.

		Table 1. 1 / So	and μ∕ψ	for different ε	
3	0,95	0,9	0,8	0,7	0,6
1 / So	0,054	0,12	0,28	0,48	0,75
μ/ψ	0,675	1,06	1,71	2,36	3,21
1 / So	0,075	0,196	0,577	1,16	2,01
μ/ψ	0,869	1,59	3,25	5,48	8,08
	1 / So μ/ψ 1 / So	ε 0.95 $1 / So$ 0.054 μ / ψ 0.675 $1 / So$ 0.075	ε 0.95 0.9 1 / So 0.054 0.12 μ/ψ 0.675 1.06 1 / So 0.075 0.196	ϵ 0.95 0.9 0.8 1 / So 0.054 0.12 0.28 μ/ψ 0.675 1.06 1.71 1 / So 0.075 0.196 0.577	ε 0.95 0.9 0.8 0.7 1 / So 0.054 0.12 0.28 0.48 μ/ψ 0.675 1.06 1.71 2.36 1 / So 0.075 0.196 0.577 1.16

ROLLING BEARINGS

Equivalent force, $Fe_s = x.F_r + y.F_a$ F_r : radial force, x: Radial factor, F_a : axial force, y: Axial factor

X and y are determined from table according to Fa/Fr ratio.

 $L = (\frac{C}{F_{es}})^p$, L : life as million revolution, C : dynamic load factor

p: Life coefficient p = 3 (ball bearings), p = 10/3 (roller bearing)

Life as an hour $L_{\rm b} = L10^6/60.n$

COUPLINGS

 $\begin{array}{l} \mbox{Coupling moment:} \\ \mbox{M}_k = \mbox{M}_{s\mbox{ur}} = \mbox{SM}_d & (\mbox{friction based couplings}); \end{array}$

Rigid couplings

Flange coupling

 $\begin{array}{l} \text{Da}=4\text{d}, \text{ } \text{D}_{o}=3\text{d}, \ \text{Di}=2\text{d}, \ \text{L}=1,5\text{d}, \\ \text{M}_{k}=\text{M}_{s}=\text{M}_{k}=(2/3).\pi \ \mu. \ p. \ (\text{R}_{a}{}^{3}-\text{R}_{i}{}^{3}), \\ \text{R}_{a}: \ \text{flange outer radious}, \\ \text{R}_{i}: \ \text{Flange inner radious} \\ \text{pressure:} \ \ p=\frac{F_{on}n}{\pi(\text{R}_{a}^{2}-\text{R}_{i}^{2})} \\ \text{n: number of bolts}, \\ \text{Fön: Preload for one bolt} \\ \text{Control of he bolts for shear:} \ \ \tau=\frac{F_{c}}{n(\pi.d_{1}^{2}/4)} \leq \tau_{em} \\ \text{d}_{1}: \ \text{minor diameter of bolt}, \\ \tau_{em}=\sigma_{em}/2, \\ \text{Gircumferantial force}, \\ F_{c}=M_{d}/(D_{o}/2) \\ \end{array}$

Clutches: Basic disc clutch: $p = F_b / [\pi(R_a^2 - R_i^2)]$ $M_k = M_{stir} = (2/3).\pi \mu. p. (R_a^3 - R_i^3),$ $M_k = (2/3).F_b. \mu (R_a^3 - R_i^3) / (R_a^2 - R_i^2)$ $R_m = (2/3) (R_a^3 - R_i^3) / (R_a^2 - R_i^2), \quad M_k = \mu.F_b.R_m$

Cone clutches

Friction moment: $M_{SUT} = (2/3).\pi \mu$. p. $(R_a^3 - R_1^3)/Sin\alpha$

Assembly force: $F_b = F_n \sin \alpha$ Pressure:

$$p = \frac{F_n Sin \alpha}{\pi (R_a^2 - R_i^2)} \qquad \alpha = 12^{\circ} \div 15^{\circ}$$

 $M_k = \mu . F_n R_m$

For multiple friction surface clutches:

 $M_k\!\!=\!\!i.\mu.F_nR_m \quad i: number \ of \ friction \ surface.$

Belt and Pulley Mechanicsm

Den and Funey Mechanicsm					
M_{d_1} F_2 B_2 B_2 F_1 B_2	Kullanılan Semboller: b : Belt width [mm]	F ₁ , F ₂ : Forces [N]			
	L :Belt length [mm]	β_1, β_2 : wrap angles [°, rad]			
	A : Belt cross section area [mm ²]	P : Power [kw]			
	s : belt thickness [mm]	α : Pulley angle [°]			
	d : Pulley diameter [mm] B : Pulley width [mm]	M _d : Torque [Nm]			
	F _{mr} : Centrifugal force [N]	i : speed ratio = d_2/d_1			
$\beta = \beta_1 \qquad \beta_2 = 2\pi - \beta_1 \qquad \cos\beta/2 = \frac{d_2 - d_1}{2.a}$	$L = \beta d_1/2 + [(2.\pi - \beta)d_2/2] + 2.aSin \beta/$	2			
$F_1 - F_2 = M_d / r = F_c$ $F_1 - F_2 - 2F_1F_2Cos\beta$					
$F_1 / F_2 = e^{\mu\beta}$, $\sigma_1 / \sigma_2 = e^{\mu\beta}$					
Power: $P = F_{c}v$					
Centrifugal force Stress due to centrif	ugal force				
$F_{mc} = A.v^2.\rho$ $\sigma_{mc} = F$	ρ : Density of belt materia mç	1, A: Belt cross section area			
Bending stress : $\sigma_e = E_e \epsilon$ strain : $\epsilon = s/d$	Total stress: $\sigma_{top} = \sigma_1 + $	$\sigma_{m\varsigma} + \sigma_e \leq \sigma_{em}$			
$\sigma_{em} = \sigma_K / S$, σ_K : Ultimate strength of belt material, S: Safety factor					
B is found from strength : $\sigma_1 = F_1/(b.s) \le \sigma_{em}$ (bending and centrifugal stress are neglected)					

Number of pulley: $z_k = P.C_2 / (P_1.C_1.C_3)$ P_1 : The power that one selected belt can transmit.

Gear Mechanism

Module (m)	$m = t / \pi (= d / z)$		
Number of teeth (z)	z = do / m		
Pitch (t)	$t = \pi m$		
Pitch diameter (do)	do = z m		
Addendum diameter (d _b)	$d_b = d + 2h_b = m(z+2)$		
Dedendum diameter (d _{ta})	$d_{ta} = d - 2h_t = m (z - 2,5)$		
Pressure angle (α)	$\alpha = 20^{\circ}$		
Base circle diameter (d _t)	$d_t = do \cos \alpha$		
Speed (v)	$v = \pi do n / 60 [m / s]$		
Speed ratio (i)	$i_{12} = \omega_1 / \omega_2 = n_1 / n_2 = d_{o2} / d_{o1} = z_2 / z_1$		
Gear width (b)	$b = \psi_m m$ ψ_m : Width number		
	according to module		
	$\psi_d = b/d_o$ (According to pitch diameter)		
	$\psi_t = b/t = b/(\pi.m)$ (According to pitch)		
Total speed ratio: itop	$i_{top} = i_{12} \cdot i_{34}$ (for 2 stages)		
Distance between shafts, a	$a = (d_{o1} + d_{o2})/2$		

Module according to strength

 $\label{eq:massed} m = \sqrt[3]{\frac{2.S.M_{d}K_{d}.K_{f}}{\text{Z.}\psi_{m}.\epsilon.\sigma_{\text{em}}}}\,,$

Md = 9550.P/n (Nm)

 $F_{g} = S.M_{d} / (do /2)$

In control calculations:

Strength Contact pressure

$$\sigma_{e\varsigma} = \frac{F_{\varsigma} \cdot K_{f}}{b.m} \le \frac{\sigma_{D}}{K_{\varsigma} K_{d} K_{\varepsilon}} ; \qquad p_{max} = K_{m} \cdot K_{\varepsilon} \sqrt{\frac{K_{d} \cdot F_{\varsigma}}{bd_{o}} \cdot \frac{i+1}{i}} \le p_{em}$$

 $\sigma_{em} = \sigma_{D/K_{c}}$

 $K_{\varsigma}{:}$ Notch factor, $\;K_{d}{:}$ Dynamic load factor, $\;K_{f}{:}form$ factor

Material factor,
$$K_{m} = \sqrt{0.35.E}$$
 (E₁=E₂=E). If E₁≠E₂, $K_{m} = \sqrt{0.35.\frac{2.E_{1}.E_{2}}{E_{1} + E_{2}}}$ K_{α} =1.76, $K_{\varepsilon} = \frac{1}{\varepsilon}$.

Forces:

Gear force: $\mathbf{F}_{\mathbf{Z}} = \mathbf{F}_{\mathbf{C}} / \mathbf{Cos}\alpha$

radial force:
$$F_r = F_{c}$$
. tga

Circumferential force:
$$F_{c} = M_{d} / (do /2)$$

Module according to contact pressure

$$m = \sqrt[3]{\frac{2.S.M_d.E.K_d}{z^2.p_{em}^2.\varepsilon.\psi_m}} \cdot \frac{i+1}{i}$$

$$\label{eq:period} \begin{split} &\frac{1}{E} = \frac{1}{2} (\ \frac{1}{E_1} + \frac{1}{E_2}) \qquad \text{E: equivalent elasticity modulus} \\ &p_{em} = 0,7.\sigma_{K} \ , \ \sigma_{K} \approx 0,35 \ \text{H}_{B} \end{split}$$

HELICAL GEARS

$\label{eq:constraint} Transverse \ module \ (m_a), Normal \ module \ (m_n)$	$m_a = t_a / \pi = m_n / \cos\beta$		
Pitch circle diameter, d _a	$d_a = m_a z$		
Distance b/w shaft axiles, a	$a = (z_1 + z_2)m_a / 2$		
Addendum diameter, (d _b),	$db = z.m_a + 2.m_n$ $d_{ta} = z.m_a - 2.5.m_n$		
Dedendum diameter, (d _{ta})			
Base circle diameter, dt	$dt = da.cos\alpha_a$		
Transverse pressure angle (α_a),	$tg\alpha_a = tg \alpha_n / \cos \beta$		
Normal pressure angle (α_n)	$\alpha_n = 20^\circ$		
Gear width b	$b = \psi d.d_a, b = \psi_m.m_n$		
Equivalent number of teeth (z_n)	$z_n = z / \cos^3 \beta$		

Forces:

 $\begin{aligned} F_{c} &= 2.S.M_{d} / d_{a} \\ F_{n} &= F_{z}.\cos\alpha_{n} \\ F_{a} &= F_{n}.\sin\beta = F_{z}.\cos\alpha_{n}.\sin\beta = F_{c}.tg\beta \end{aligned}$

Module for strenght consideration:

Module for contact pressure:

$$\begin{split} m_{n} = \sqrt[3]{\frac{2.8 M_{d}.K_{d}.K_{fm}.cos\beta}{Z.\psi_{m}.\epsilon.\sigma_{em}}} \quad . \ (\sigma_{em} = \sigma_{D}/K_{c}) \\ \beta = 10^{\circ} \div 45^{\circ} \end{split}$$

 K_d : Dynamic load factor, K_{fn} : Form factor **Control calculations:**

$$\sigma_{e_{\tilde{s}}} = K_{d}.K_{fn}.\frac{F_{c}}{m_{n}.\varepsilon.b} \le \sigma_{em}$$

$$m_n = \sqrt[3]{\frac{2.S.M_d.E.K_d.\cos^4\beta}{Z_1^2.p_{em}^2.\varepsilon.\psi_m}} \cdot \frac{i+1}{i}$$

$$p_{max} = K_{m}.K_{\alpha}.K_{\epsilon}.K_{\beta}\sqrt{\frac{K_{d}.F_{\varsigma}}{b.d_{a}}\cdot\frac{i+1}{i}}$$